Abstract

By associating machine learning and an analytical model (i.e., the Gaussian noise model), we reduce uncertainties on the output power profile and the noise figure of each amplifier in an optical network. We leverage the signal-to-noise ratio (SNR) of all the light paths of an optical network, monitored in all the coherent receivers. The learning process is based on a gradient-descent algorithm where all the uncertain input parameters of the analytical model are iteratively modified from their estimated values to match with the SNR of light paths in a European optical network. The design margin is then reduced to 0.1 dB for new traffic demands.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Performance comparisons between machine learning and analytical models for quality of transmission estimation in wavelength-division-multiplexed systems [Invited]

Jianing Lu, Gai Zhou, Qirui Fan, Dengke Zeng, Changjian Guo, Linyue Lu, Jianqiang Li, Chongjin Xie, Chao Lu, Faisal Nadeem Khan, and Alan Pak Tao Lau
J. Opt. Commun. Netw. 13(4) B35-B44 (2021)

Learning Process for Reducing Uncertainties on Network Parameters and Design Margins

E. Seve, J. Pesic, C. Delezoide, S. Bigo, and Y. Pointurier
J. Opt. Commun. Netw. 10(2) A298-A306 (2018)

Machine learning techniques for quality of transmission estimation in optical networks

Yvan Pointurier
J. Opt. Commun. Netw. 13(4) B60-B71 (2021)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription