Abstract
The future-generation passive optical network (PON) physical layer, targeting 100 Gbps/wavelength, will have to deal with severe optoelectronics bandwidth and chromatic dispersion limitations. In this paper, largely extending our Optical Fiber Communication Conference (OFC) 2020 invited paper, we review 100 Gbps/wavelength PON downstream alternatives over standard single-mode fiber in the O- and C-bands, analyzing three modulation formats (PAM-4, partial-response PAM-4, and PAM-8), two types of direct-detection receivers (APD- and SOA $+$ PIN-based), and three digital reception strategies (unequalized, feed-forward equalized, and decision-feedback equalized). We evaluate by means of simulations the performance of these alternatives under different optoelectronics bandwidth and dispersion scenarios, identifying O-band feasible solutions able to reach 20 km of fiber and an optical path loss of at least 29 dB over a wide wavelength range of operation. Finally, we compare two digitally precompensated modulation schemes that are highly tolerant of chromatic dispersion, showing a possible extension to C-band operation, preserving direct-detection and linear-impairment equalization at the optical network unit side.
© 2020 Optical Society of America
Full Article | PDF ArticleMore Like This
Yixiao Zhu, Lilin Yi, Bo Yang, Xingang Huang, Jun Shan Wey, Zhuang Ma, and Weisheng Hu
J. Opt. Commun. Netw. 12(9) D36-D47 (2020)
M. S. Erkılınç, R. Emmerich, K. Habel, V. Jungnickel, C. Schmidt-Langhorst, C. Schubert, and R. Freund
J. Opt. Commun. Netw. 12(2) A162-A170 (2020)
Doutje van Veen and Vincent Houtsma
J. Opt. Commun. Netw. 12(1) A95-A103 (2020)