Abstract

This paper presents the concept of virtual dynamic bandwidth allocation (DBA), a method we propose to virtualize upstream capacity scheduling in passive optical networks (PONs), which provides multiple independent virtual network operators with the ability to precisely schedule their upstream traffic allocation. After a brief introduction on the evolution of access network sharing, we present our virtual DBA architecture, detailing its main components. We then provide a summary of the work done in this area from both theoretical and practical implementation perspectives. In this paper, we propose a novel stateless algorithm for merging multiple independent virtual bandwidth maps based on priority classes and analyze its performance in terms of efficiency of capacity allocation and latency. Through our results, we discuss the existence of a trade-off between traffic load and grant size distribution versus efficiency and latency. We find that, different from a residential single-tenant application, when PONs are used for low-latency and multi-tenant applications, the system has better overall performance if grants are allocated in small size. In addition, our analysis shows that for high-priority, strict latency services, our proposed merging algorithm presents delay performance that is independent of the traffic distribution considered.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Evaluating Dynamic Bandwidth Allocation of Virtualized Passive Optical Networks Over Mobile Traffic Traces

Pedro Alvarez, Nicola Marchetti, and Marco Ruffini
J. Opt. Commun. Netw. 8(3) 129-136 (2016)

Dynamic Bandwidth Allocation With SLA Awareness for QoS in Ethernet Passive Optical Networks

Abhishek Dixit, Bart Lannoo, Goutam Das, Didier Colle, Mario Pickavet, and Piet Demeester
J. Opt. Commun. Netw. 5(3) 240-253 (2013)

Performance Evaluation of XG-PON Based Mobile Front-Haul Transport in Cloud-RAN Architecture

Ahmed Mohammed Mikaeil, Weisheng Hu, Tong Ye, and Syed Baqar Hussain
J. Opt. Commun. Netw. 9(11) 984-994 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Gaudino, R. Giuliano, F. Mazzenga, L. Valcarenghi, and F. Vatalaro, “Unbundling in current broadband and next-generation ultra-broadband access networks,” Fiber Integr. Opt. 33, 129–148 (2014).
    [Crossref]
  2. N. Afraz, F. Slyne, H. Gill, and M. Ruffini, “Evolution of access network sharing and its role in 5G networks,” Appl. Sci. 9, 4566 (2019).
    [Crossref]
  3. S. Beardsley and L. Enriquez, “Creating a fiber future: the regulatory challenge,” Tech. Rep. (McKinsey & Co. Inc., 2011).
  4. 5G-PPP, The 5G infrastructure public private partnership: the next generation of communication networks and services (2015).
  5. L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart, G. Palukar, and W. Snow, “Central office re-architected as a data center,” IEEE Commun. Mag. 54(10), 96–101 (2016).
    [Crossref]
  6. “Seba white box access: XGS-PON and beyond,” 2019, https://www.opennetworking.org/wp-content/uploads/2019/09/3pm-Jeff-Catlin-SEBA-White-Box-Access.pdf .
  7. N. Afraz, A. Elrasad, and M. Ruffini, “DBA capacity auctions to enhance resource sharing across virtual network operators in multi-tenant pons,” in Optical Fiber Communication Conference and Exposition (OFC) (2018).
  8. F. Slyne, B. Cornaglia, M. Boselli, and M. Ruffini, “3-stage hierarchical quality of service for multi-tenant passive optical network,” in 23rd Conference on Optical Network Design and Modeling (ONDM) (2019).
  9. K. Asaka, H. Ujikawa, J. I. Kani, and A. Otaka, “Flexible access system architecture (FASA),” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu3L.7.
  10. F. Slyne, B. Cornaglia, M. Boselli, and M. Ruffini, “Single-stage scheduler for accurate QoS delivery in virtualised multi-tenant passive optical networks,” in European Conference on Optical Communications (ECOC) (2019).
  11. M. Ruffini, A. Elrasad, and N. Afraz, “System and method for dynamic bandwidth assignment (DBA) virtualization in a multi-tenant passive optical network,” Patent, International (PCT) Application No. PCT/EP2018/056767 (Sept.20, 2018).
  12. “Functional model for PON abstraction interface,” , (Standard BroadBand Forum (BBF), 2018).
  13. “40-gigabit-capable passive optical networks (NG-PON2): transmission convergence layer specification amendment 1,” , 2016.
  14. N. Afraz, F. Slyne, and M. Ruffini, “Full PON virtulisation supporting multi-tenancy beyond 5G,” in OSA Advanced Photonics Congress (AP) 2019 (IPR, Networks, NOMA, SPPCom, PVLED) (Optical Society of America, 2019), paper NeT2D.2.
  15. “10-gigabit-capable passive optical networks (XG-PON): transmission convergence (TC) layer specification,” , 2010.
  16. “Common public radio interface: ECPRI interface specification v1.1,” Standard (2018).
  17. T. Tashiro, S. Kuwano, J. Terada, T. Kawamura, N. Tanaka, S. Shigematsu, and N. Yoshimoto, “A novel DBA scheme for TDM-PON based mobile fronthaul,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Tu3F.3.
  18. H. Uzawa, H. Nomura, T. Shimada, D. Hisano, K. Miyamoto, Y. Nakayama, K. Takahashi, J. Terada, and A. Otaka, “Practical mobile-DBA scheme considering data arrival period for 5G mobile fronthaul with TDM-PON,” in European Conference on Optical Communication (ECOC) (2017), pp. 1–3.
  19. C. Li, W. Guo, W. Wang, W. Hu, and M. Xia, “Bandwidth resource sharing on the XGPON transmission convergence layer in a multi-operator scenario,” J. Opt. Commun. Netw. 8, 835–843 (2016).
    [Crossref]
  20. A. Elrasad and M. Ruffini, “Frame level sharing for DBA virtualization in multi-tenant PONs,” in International Conference on Optical Network Design and Modeling (ONDM) (2017), pp. 1–6.
  21. N. Afraz and M. Ruffini, “A sharing platform for multi-tenant PONs,” J. Lightwave Technol. 36, 5413–5423 (2018).
    [Crossref]
  22. N. Afraz and M. Ruffini, “A distributed bilateral resource market mechanism for future telecommunications networks,” in IEEE Global Communications Conference (GLOBECOM) (2019).
  23. “Hyperledger Fabric,” 2019, https://www.hyperledger.org/projects/fabric .
  24. “Performance and scale working group,” https://wiki.hyperledger.org/display/PSWG/Performance+and+Scale+Working+Group .
  25. C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “FastFabric: scaling Hyperledger Fabric to 20,000 transactions per second,” in IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (2019).
  26. M. O’Hanlon and B. Ryan, “DPDK Intel NIC performance report release 18.02” (Intel, 2018).
  27. “DPDK intel NIC performance report release 18.02,” Report (Intel, 2018).
  28. F. Slyne, A. Elrasad, C. Bluemm, and M. Ruffini, “Demonstration of real time VNF implementation of OLT with virtual DBA for sliceable multi-tenant PONs,” in Optical Fiber Communication Conference and Exposition (OFC) (2018).
  29. F. Slyne, R. Giller, J. Singh, and M. Ruffini, “Experimental demonstration of DPDK optimised VNF implementation of virtual DBA in a multi-tenant PON,” in European Conference on Optical Communication (ECOC) (2018).
  30. M. Ruffini and F. Slyne, “Moving the network to the cloud: the cloud central office revolution and its implications for the optical layer,” J. Lightwave Technol. 37, 1706–1716 (2019).
    [Crossref]
  31. K. Nishimoto, M. Tadokoro, T. Mochida, T. Yamada, T. Tanaka, A. Takeda, and T. Inoue, “Implementation of software-based EPON-OLT and performance evaluation,” IEICE Commun. Express 6, 467–472 (2017).
    [Crossref]
  32. “10-gigabit-capable symmetric passive optical network (XGS-PON),” , 2016.

2019 (2)

N. Afraz, F. Slyne, H. Gill, and M. Ruffini, “Evolution of access network sharing and its role in 5G networks,” Appl. Sci. 9, 4566 (2019).
[Crossref]

M. Ruffini and F. Slyne, “Moving the network to the cloud: the cloud central office revolution and its implications for the optical layer,” J. Lightwave Technol. 37, 1706–1716 (2019).
[Crossref]

2018 (1)

2017 (1)

K. Nishimoto, M. Tadokoro, T. Mochida, T. Yamada, T. Tanaka, A. Takeda, and T. Inoue, “Implementation of software-based EPON-OLT and performance evaluation,” IEICE Commun. Express 6, 467–472 (2017).
[Crossref]

2016 (2)

L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart, G. Palukar, and W. Snow, “Central office re-architected as a data center,” IEEE Commun. Mag. 54(10), 96–101 (2016).
[Crossref]

C. Li, W. Guo, W. Wang, W. Hu, and M. Xia, “Bandwidth resource sharing on the XGPON transmission convergence layer in a multi-operator scenario,” J. Opt. Commun. Netw. 8, 835–843 (2016).
[Crossref]

2014 (1)

R. Gaudino, R. Giuliano, F. Mazzenga, L. Valcarenghi, and F. Vatalaro, “Unbundling in current broadband and next-generation ultra-broadband access networks,” Fiber Integr. Opt. 33, 129–148 (2014).
[Crossref]

Afraz, N.

N. Afraz, F. Slyne, H. Gill, and M. Ruffini, “Evolution of access network sharing and its role in 5G networks,” Appl. Sci. 9, 4566 (2019).
[Crossref]

N. Afraz and M. Ruffini, “A sharing platform for multi-tenant PONs,” J. Lightwave Technol. 36, 5413–5423 (2018).
[Crossref]

N. Afraz, A. Elrasad, and M. Ruffini, “DBA capacity auctions to enhance resource sharing across virtual network operators in multi-tenant pons,” in Optical Fiber Communication Conference and Exposition (OFC) (2018).

M. Ruffini, A. Elrasad, and N. Afraz, “System and method for dynamic bandwidth assignment (DBA) virtualization in a multi-tenant passive optical network,” Patent, International (PCT) Application No. PCT/EP2018/056767 (Sept.20, 2018).

N. Afraz, F. Slyne, and M. Ruffini, “Full PON virtulisation supporting multi-tenancy beyond 5G,” in OSA Advanced Photonics Congress (AP) 2019 (IPR, Networks, NOMA, SPPCom, PVLED) (Optical Society of America, 2019), paper NeT2D.2.

N. Afraz and M. Ruffini, “A distributed bilateral resource market mechanism for future telecommunications networks,” in IEEE Global Communications Conference (GLOBECOM) (2019).

Al-Shabibi, A.

L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart, G. Palukar, and W. Snow, “Central office re-architected as a data center,” IEEE Commun. Mag. 54(10), 96–101 (2016).
[Crossref]

Anshutz, T.

L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart, G. Palukar, and W. Snow, “Central office re-architected as a data center,” IEEE Commun. Mag. 54(10), 96–101 (2016).
[Crossref]

Asaka, K.

K. Asaka, H. Ujikawa, J. I. Kani, and A. Otaka, “Flexible access system architecture (FASA),” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu3L.7.

Baker, S.

L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart, G. Palukar, and W. Snow, “Central office re-architected as a data center,” IEEE Commun. Mag. 54(10), 96–101 (2016).
[Crossref]

Bavier, A.

L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart, G. Palukar, and W. Snow, “Central office re-architected as a data center,” IEEE Commun. Mag. 54(10), 96–101 (2016).
[Crossref]

Beardsley, S.

S. Beardsley and L. Enriquez, “Creating a fiber future: the regulatory challenge,” Tech. Rep. (McKinsey & Co. Inc., 2011).

Bluemm, C.

F. Slyne, A. Elrasad, C. Bluemm, and M. Ruffini, “Demonstration of real time VNF implementation of OLT with virtual DBA for sliceable multi-tenant PONs,” in Optical Fiber Communication Conference and Exposition (OFC) (2018).

Boselli, M.

F. Slyne, B. Cornaglia, M. Boselli, and M. Ruffini, “3-stage hierarchical quality of service for multi-tenant passive optical network,” in 23rd Conference on Optical Network Design and Modeling (ONDM) (2019).

F. Slyne, B. Cornaglia, M. Boselli, and M. Ruffini, “Single-stage scheduler for accurate QoS delivery in virtualised multi-tenant passive optical networks,” in European Conference on Optical Communications (ECOC) (2019).

Cornaglia, B.

F. Slyne, B. Cornaglia, M. Boselli, and M. Ruffini, “3-stage hierarchical quality of service for multi-tenant passive optical network,” in 23rd Conference on Optical Network Design and Modeling (ONDM) (2019).

F. Slyne, B. Cornaglia, M. Boselli, and M. Ruffini, “Single-stage scheduler for accurate QoS delivery in virtualised multi-tenant passive optical networks,” in European Conference on Optical Communications (ECOC) (2019).

Das, S.

L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart, G. Palukar, and W. Snow, “Central office re-architected as a data center,” IEEE Commun. Mag. 54(10), 96–101 (2016).
[Crossref]

Elrasad, A.

N. Afraz, A. Elrasad, and M. Ruffini, “DBA capacity auctions to enhance resource sharing across virtual network operators in multi-tenant pons,” in Optical Fiber Communication Conference and Exposition (OFC) (2018).

F. Slyne, A. Elrasad, C. Bluemm, and M. Ruffini, “Demonstration of real time VNF implementation of OLT with virtual DBA for sliceable multi-tenant PONs,” in Optical Fiber Communication Conference and Exposition (OFC) (2018).

A. Elrasad and M. Ruffini, “Frame level sharing for DBA virtualization in multi-tenant PONs,” in International Conference on Optical Network Design and Modeling (ONDM) (2017), pp. 1–6.

M. Ruffini, A. Elrasad, and N. Afraz, “System and method for dynamic bandwidth assignment (DBA) virtualization in a multi-tenant passive optical network,” Patent, International (PCT) Application No. PCT/EP2018/056767 (Sept.20, 2018).

Enriquez, L.

S. Beardsley and L. Enriquez, “Creating a fiber future: the regulatory challenge,” Tech. Rep. (McKinsey & Co. Inc., 2011).

Gaudino, R.

R. Gaudino, R. Giuliano, F. Mazzenga, L. Valcarenghi, and F. Vatalaro, “Unbundling in current broadband and next-generation ultra-broadband access networks,” Fiber Integr. Opt. 33, 129–148 (2014).
[Crossref]

Gill, H.

N. Afraz, F. Slyne, H. Gill, and M. Ruffini, “Evolution of access network sharing and its role in 5G networks,” Appl. Sci. 9, 4566 (2019).
[Crossref]

Giller, R.

F. Slyne, R. Giller, J. Singh, and M. Ruffini, “Experimental demonstration of DPDK optimised VNF implementation of virtual DBA in a multi-tenant PON,” in European Conference on Optical Communication (ECOC) (2018).

Giuliano, R.

R. Gaudino, R. Giuliano, F. Mazzenga, L. Valcarenghi, and F. Vatalaro, “Unbundling in current broadband and next-generation ultra-broadband access networks,” Fiber Integr. Opt. 33, 129–148 (2014).
[Crossref]

Golab, L.

C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “FastFabric: scaling Hyperledger Fabric to 20,000 transactions per second,” in IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (2019).

Gorenflo, C.

C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “FastFabric: scaling Hyperledger Fabric to 20,000 transactions per second,” in IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (2019).

Guo, W.

Hart, J.

L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart, G. Palukar, and W. Snow, “Central office re-architected as a data center,” IEEE Commun. Mag. 54(10), 96–101 (2016).
[Crossref]

Hisano, D.

H. Uzawa, H. Nomura, T. Shimada, D. Hisano, K. Miyamoto, Y. Nakayama, K. Takahashi, J. Terada, and A. Otaka, “Practical mobile-DBA scheme considering data arrival period for 5G mobile fronthaul with TDM-PON,” in European Conference on Optical Communication (ECOC) (2017), pp. 1–3.

Hu, W.

Inoue, T.

K. Nishimoto, M. Tadokoro, T. Mochida, T. Yamada, T. Tanaka, A. Takeda, and T. Inoue, “Implementation of software-based EPON-OLT and performance evaluation,” IEICE Commun. Express 6, 467–472 (2017).
[Crossref]

Kani, J. I.

K. Asaka, H. Ujikawa, J. I. Kani, and A. Otaka, “Flexible access system architecture (FASA),” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu3L.7.

Kawamura, T.

T. Tashiro, S. Kuwano, J. Terada, T. Kawamura, N. Tanaka, S. Shigematsu, and N. Yoshimoto, “A novel DBA scheme for TDM-PON based mobile fronthaul,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Tu3F.3.

Keshav, S.

C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “FastFabric: scaling Hyperledger Fabric to 20,000 transactions per second,” in IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (2019).

Kuwano, S.

T. Tashiro, S. Kuwano, J. Terada, T. Kawamura, N. Tanaka, S. Shigematsu, and N. Yoshimoto, “A novel DBA scheme for TDM-PON based mobile fronthaul,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Tu3F.3.

Lee, S.

C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “FastFabric: scaling Hyperledger Fabric to 20,000 transactions per second,” in IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (2019).

Li, C.

Mazzenga, F.

R. Gaudino, R. Giuliano, F. Mazzenga, L. Valcarenghi, and F. Vatalaro, “Unbundling in current broadband and next-generation ultra-broadband access networks,” Fiber Integr. Opt. 33, 129–148 (2014).
[Crossref]

Miyamoto, K.

H. Uzawa, H. Nomura, T. Shimada, D. Hisano, K. Miyamoto, Y. Nakayama, K. Takahashi, J. Terada, and A. Otaka, “Practical mobile-DBA scheme considering data arrival period for 5G mobile fronthaul with TDM-PON,” in European Conference on Optical Communication (ECOC) (2017), pp. 1–3.

Mochida, T.

K. Nishimoto, M. Tadokoro, T. Mochida, T. Yamada, T. Tanaka, A. Takeda, and T. Inoue, “Implementation of software-based EPON-OLT and performance evaluation,” IEICE Commun. Express 6, 467–472 (2017).
[Crossref]

Nakayama, Y.

H. Uzawa, H. Nomura, T. Shimada, D. Hisano, K. Miyamoto, Y. Nakayama, K. Takahashi, J. Terada, and A. Otaka, “Practical mobile-DBA scheme considering data arrival period for 5G mobile fronthaul with TDM-PON,” in European Conference on Optical Communication (ECOC) (2017), pp. 1–3.

Nishimoto, K.

K. Nishimoto, M. Tadokoro, T. Mochida, T. Yamada, T. Tanaka, A. Takeda, and T. Inoue, “Implementation of software-based EPON-OLT and performance evaluation,” IEICE Commun. Express 6, 467–472 (2017).
[Crossref]

Nomura, H.

H. Uzawa, H. Nomura, T. Shimada, D. Hisano, K. Miyamoto, Y. Nakayama, K. Takahashi, J. Terada, and A. Otaka, “Practical mobile-DBA scheme considering data arrival period for 5G mobile fronthaul with TDM-PON,” in European Conference on Optical Communication (ECOC) (2017), pp. 1–3.

O’Hanlon, M.

M. O’Hanlon and B. Ryan, “DPDK Intel NIC performance report release 18.02” (Intel, 2018).

Otaka, A.

H. Uzawa, H. Nomura, T. Shimada, D. Hisano, K. Miyamoto, Y. Nakayama, K. Takahashi, J. Terada, and A. Otaka, “Practical mobile-DBA scheme considering data arrival period for 5G mobile fronthaul with TDM-PON,” in European Conference on Optical Communication (ECOC) (2017), pp. 1–3.

K. Asaka, H. Ujikawa, J. I. Kani, and A. Otaka, “Flexible access system architecture (FASA),” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu3L.7.

Palukar, G.

L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart, G. Palukar, and W. Snow, “Central office re-architected as a data center,” IEEE Commun. Mag. 54(10), 96–101 (2016).
[Crossref]

Peterson, L.

L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart, G. Palukar, and W. Snow, “Central office re-architected as a data center,” IEEE Commun. Mag. 54(10), 96–101 (2016).
[Crossref]

Ruffini, M.

N. Afraz, F. Slyne, H. Gill, and M. Ruffini, “Evolution of access network sharing and its role in 5G networks,” Appl. Sci. 9, 4566 (2019).
[Crossref]

M. Ruffini and F. Slyne, “Moving the network to the cloud: the cloud central office revolution and its implications for the optical layer,” J. Lightwave Technol. 37, 1706–1716 (2019).
[Crossref]

N. Afraz and M. Ruffini, “A sharing platform for multi-tenant PONs,” J. Lightwave Technol. 36, 5413–5423 (2018).
[Crossref]

F. Slyne, R. Giller, J. Singh, and M. Ruffini, “Experimental demonstration of DPDK optimised VNF implementation of virtual DBA in a multi-tenant PON,” in European Conference on Optical Communication (ECOC) (2018).

F. Slyne, B. Cornaglia, M. Boselli, and M. Ruffini, “3-stage hierarchical quality of service for multi-tenant passive optical network,” in 23rd Conference on Optical Network Design and Modeling (ONDM) (2019).

N. Afraz, A. Elrasad, and M. Ruffini, “DBA capacity auctions to enhance resource sharing across virtual network operators in multi-tenant pons,” in Optical Fiber Communication Conference and Exposition (OFC) (2018).

F. Slyne, B. Cornaglia, M. Boselli, and M. Ruffini, “Single-stage scheduler for accurate QoS delivery in virtualised multi-tenant passive optical networks,” in European Conference on Optical Communications (ECOC) (2019).

M. Ruffini, A. Elrasad, and N. Afraz, “System and method for dynamic bandwidth assignment (DBA) virtualization in a multi-tenant passive optical network,” Patent, International (PCT) Application No. PCT/EP2018/056767 (Sept.20, 2018).

F. Slyne, A. Elrasad, C. Bluemm, and M. Ruffini, “Demonstration of real time VNF implementation of OLT with virtual DBA for sliceable multi-tenant PONs,” in Optical Fiber Communication Conference and Exposition (OFC) (2018).

A. Elrasad and M. Ruffini, “Frame level sharing for DBA virtualization in multi-tenant PONs,” in International Conference on Optical Network Design and Modeling (ONDM) (2017), pp. 1–6.

N. Afraz and M. Ruffini, “A distributed bilateral resource market mechanism for future telecommunications networks,” in IEEE Global Communications Conference (GLOBECOM) (2019).

N. Afraz, F. Slyne, and M. Ruffini, “Full PON virtulisation supporting multi-tenancy beyond 5G,” in OSA Advanced Photonics Congress (AP) 2019 (IPR, Networks, NOMA, SPPCom, PVLED) (Optical Society of America, 2019), paper NeT2D.2.

Ryan, B.

M. O’Hanlon and B. Ryan, “DPDK Intel NIC performance report release 18.02” (Intel, 2018).

Shigematsu, S.

T. Tashiro, S. Kuwano, J. Terada, T. Kawamura, N. Tanaka, S. Shigematsu, and N. Yoshimoto, “A novel DBA scheme for TDM-PON based mobile fronthaul,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Tu3F.3.

Shimada, T.

H. Uzawa, H. Nomura, T. Shimada, D. Hisano, K. Miyamoto, Y. Nakayama, K. Takahashi, J. Terada, and A. Otaka, “Practical mobile-DBA scheme considering data arrival period for 5G mobile fronthaul with TDM-PON,” in European Conference on Optical Communication (ECOC) (2017), pp. 1–3.

Singh, J.

F. Slyne, R. Giller, J. Singh, and M. Ruffini, “Experimental demonstration of DPDK optimised VNF implementation of virtual DBA in a multi-tenant PON,” in European Conference on Optical Communication (ECOC) (2018).

Slyne, F.

N. Afraz, F. Slyne, H. Gill, and M. Ruffini, “Evolution of access network sharing and its role in 5G networks,” Appl. Sci. 9, 4566 (2019).
[Crossref]

M. Ruffini and F. Slyne, “Moving the network to the cloud: the cloud central office revolution and its implications for the optical layer,” J. Lightwave Technol. 37, 1706–1716 (2019).
[Crossref]

F. Slyne, B. Cornaglia, M. Boselli, and M. Ruffini, “Single-stage scheduler for accurate QoS delivery in virtualised multi-tenant passive optical networks,” in European Conference on Optical Communications (ECOC) (2019).

F. Slyne, B. Cornaglia, M. Boselli, and M. Ruffini, “3-stage hierarchical quality of service for multi-tenant passive optical network,” in 23rd Conference on Optical Network Design and Modeling (ONDM) (2019).

F. Slyne, A. Elrasad, C. Bluemm, and M. Ruffini, “Demonstration of real time VNF implementation of OLT with virtual DBA for sliceable multi-tenant PONs,” in Optical Fiber Communication Conference and Exposition (OFC) (2018).

F. Slyne, R. Giller, J. Singh, and M. Ruffini, “Experimental demonstration of DPDK optimised VNF implementation of virtual DBA in a multi-tenant PON,” in European Conference on Optical Communication (ECOC) (2018).

N. Afraz, F. Slyne, and M. Ruffini, “Full PON virtulisation supporting multi-tenancy beyond 5G,” in OSA Advanced Photonics Congress (AP) 2019 (IPR, Networks, NOMA, SPPCom, PVLED) (Optical Society of America, 2019), paper NeT2D.2.

Snow, W.

L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart, G. Palukar, and W. Snow, “Central office re-architected as a data center,” IEEE Commun. Mag. 54(10), 96–101 (2016).
[Crossref]

Tadokoro, M.

K. Nishimoto, M. Tadokoro, T. Mochida, T. Yamada, T. Tanaka, A. Takeda, and T. Inoue, “Implementation of software-based EPON-OLT and performance evaluation,” IEICE Commun. Express 6, 467–472 (2017).
[Crossref]

Takahashi, K.

H. Uzawa, H. Nomura, T. Shimada, D. Hisano, K. Miyamoto, Y. Nakayama, K. Takahashi, J. Terada, and A. Otaka, “Practical mobile-DBA scheme considering data arrival period for 5G mobile fronthaul with TDM-PON,” in European Conference on Optical Communication (ECOC) (2017), pp. 1–3.

Takeda, A.

K. Nishimoto, M. Tadokoro, T. Mochida, T. Yamada, T. Tanaka, A. Takeda, and T. Inoue, “Implementation of software-based EPON-OLT and performance evaluation,” IEICE Commun. Express 6, 467–472 (2017).
[Crossref]

Tanaka, N.

T. Tashiro, S. Kuwano, J. Terada, T. Kawamura, N. Tanaka, S. Shigematsu, and N. Yoshimoto, “A novel DBA scheme for TDM-PON based mobile fronthaul,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Tu3F.3.

Tanaka, T.

K. Nishimoto, M. Tadokoro, T. Mochida, T. Yamada, T. Tanaka, A. Takeda, and T. Inoue, “Implementation of software-based EPON-OLT and performance evaluation,” IEICE Commun. Express 6, 467–472 (2017).
[Crossref]

Tashiro, T.

T. Tashiro, S. Kuwano, J. Terada, T. Kawamura, N. Tanaka, S. Shigematsu, and N. Yoshimoto, “A novel DBA scheme for TDM-PON based mobile fronthaul,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Tu3F.3.

Terada, J.

T. Tashiro, S. Kuwano, J. Terada, T. Kawamura, N. Tanaka, S. Shigematsu, and N. Yoshimoto, “A novel DBA scheme for TDM-PON based mobile fronthaul,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Tu3F.3.

H. Uzawa, H. Nomura, T. Shimada, D. Hisano, K. Miyamoto, Y. Nakayama, K. Takahashi, J. Terada, and A. Otaka, “Practical mobile-DBA scheme considering data arrival period for 5G mobile fronthaul with TDM-PON,” in European Conference on Optical Communication (ECOC) (2017), pp. 1–3.

Ujikawa, H.

K. Asaka, H. Ujikawa, J. I. Kani, and A. Otaka, “Flexible access system architecture (FASA),” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu3L.7.

Uzawa, H.

H. Uzawa, H. Nomura, T. Shimada, D. Hisano, K. Miyamoto, Y. Nakayama, K. Takahashi, J. Terada, and A. Otaka, “Practical mobile-DBA scheme considering data arrival period for 5G mobile fronthaul with TDM-PON,” in European Conference on Optical Communication (ECOC) (2017), pp. 1–3.

Valcarenghi, L.

R. Gaudino, R. Giuliano, F. Mazzenga, L. Valcarenghi, and F. Vatalaro, “Unbundling in current broadband and next-generation ultra-broadband access networks,” Fiber Integr. Opt. 33, 129–148 (2014).
[Crossref]

Vatalaro, F.

R. Gaudino, R. Giuliano, F. Mazzenga, L. Valcarenghi, and F. Vatalaro, “Unbundling in current broadband and next-generation ultra-broadband access networks,” Fiber Integr. Opt. 33, 129–148 (2014).
[Crossref]

Wang, W.

Xia, M.

Yamada, T.

K. Nishimoto, M. Tadokoro, T. Mochida, T. Yamada, T. Tanaka, A. Takeda, and T. Inoue, “Implementation of software-based EPON-OLT and performance evaluation,” IEICE Commun. Express 6, 467–472 (2017).
[Crossref]

Yoshimoto, N.

T. Tashiro, S. Kuwano, J. Terada, T. Kawamura, N. Tanaka, S. Shigematsu, and N. Yoshimoto, “A novel DBA scheme for TDM-PON based mobile fronthaul,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Tu3F.3.

Appl. Sci. (1)

N. Afraz, F. Slyne, H. Gill, and M. Ruffini, “Evolution of access network sharing and its role in 5G networks,” Appl. Sci. 9, 4566 (2019).
[Crossref]

Fiber Integr. Opt. (1)

R. Gaudino, R. Giuliano, F. Mazzenga, L. Valcarenghi, and F. Vatalaro, “Unbundling in current broadband and next-generation ultra-broadband access networks,” Fiber Integr. Opt. 33, 129–148 (2014).
[Crossref]

IEEE Commun. Mag. (1)

L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart, G. Palukar, and W. Snow, “Central office re-architected as a data center,” IEEE Commun. Mag. 54(10), 96–101 (2016).
[Crossref]

IEICE Commun. Express (1)

K. Nishimoto, M. Tadokoro, T. Mochida, T. Yamada, T. Tanaka, A. Takeda, and T. Inoue, “Implementation of software-based EPON-OLT and performance evaluation,” IEICE Commun. Express 6, 467–472 (2017).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (1)

Other (25)

“10-gigabit-capable symmetric passive optical network (XGS-PON),” , 2016.

S. Beardsley and L. Enriquez, “Creating a fiber future: the regulatory challenge,” Tech. Rep. (McKinsey & Co. Inc., 2011).

5G-PPP, The 5G infrastructure public private partnership: the next generation of communication networks and services (2015).

“Seba white box access: XGS-PON and beyond,” 2019, https://www.opennetworking.org/wp-content/uploads/2019/09/3pm-Jeff-Catlin-SEBA-White-Box-Access.pdf .

N. Afraz, A. Elrasad, and M. Ruffini, “DBA capacity auctions to enhance resource sharing across virtual network operators in multi-tenant pons,” in Optical Fiber Communication Conference and Exposition (OFC) (2018).

F. Slyne, B. Cornaglia, M. Boselli, and M. Ruffini, “3-stage hierarchical quality of service for multi-tenant passive optical network,” in 23rd Conference on Optical Network Design and Modeling (ONDM) (2019).

K. Asaka, H. Ujikawa, J. I. Kani, and A. Otaka, “Flexible access system architecture (FASA),” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu3L.7.

F. Slyne, B. Cornaglia, M. Boselli, and M. Ruffini, “Single-stage scheduler for accurate QoS delivery in virtualised multi-tenant passive optical networks,” in European Conference on Optical Communications (ECOC) (2019).

M. Ruffini, A. Elrasad, and N. Afraz, “System and method for dynamic bandwidth assignment (DBA) virtualization in a multi-tenant passive optical network,” Patent, International (PCT) Application No. PCT/EP2018/056767 (Sept.20, 2018).

“Functional model for PON abstraction interface,” , (Standard BroadBand Forum (BBF), 2018).

“40-gigabit-capable passive optical networks (NG-PON2): transmission convergence layer specification amendment 1,” , 2016.

N. Afraz, F. Slyne, and M. Ruffini, “Full PON virtulisation supporting multi-tenancy beyond 5G,” in OSA Advanced Photonics Congress (AP) 2019 (IPR, Networks, NOMA, SPPCom, PVLED) (Optical Society of America, 2019), paper NeT2D.2.

“10-gigabit-capable passive optical networks (XG-PON): transmission convergence (TC) layer specification,” , 2010.

“Common public radio interface: ECPRI interface specification v1.1,” Standard (2018).

T. Tashiro, S. Kuwano, J. Terada, T. Kawamura, N. Tanaka, S. Shigematsu, and N. Yoshimoto, “A novel DBA scheme for TDM-PON based mobile fronthaul,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Tu3F.3.

H. Uzawa, H. Nomura, T. Shimada, D. Hisano, K. Miyamoto, Y. Nakayama, K. Takahashi, J. Terada, and A. Otaka, “Practical mobile-DBA scheme considering data arrival period for 5G mobile fronthaul with TDM-PON,” in European Conference on Optical Communication (ECOC) (2017), pp. 1–3.

N. Afraz and M. Ruffini, “A distributed bilateral resource market mechanism for future telecommunications networks,” in IEEE Global Communications Conference (GLOBECOM) (2019).

“Hyperledger Fabric,” 2019, https://www.hyperledger.org/projects/fabric .

“Performance and scale working group,” https://wiki.hyperledger.org/display/PSWG/Performance+and+Scale+Working+Group .

C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “FastFabric: scaling Hyperledger Fabric to 20,000 transactions per second,” in IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (2019).

M. O’Hanlon and B. Ryan, “DPDK Intel NIC performance report release 18.02” (Intel, 2018).

“DPDK intel NIC performance report release 18.02,” Report (Intel, 2018).

F. Slyne, A. Elrasad, C. Bluemm, and M. Ruffini, “Demonstration of real time VNF implementation of OLT with virtual DBA for sliceable multi-tenant PONs,” in Optical Fiber Communication Conference and Exposition (OFC) (2018).

F. Slyne, R. Giller, J. Singh, and M. Ruffini, “Experimental demonstration of DPDK optimised VNF implementation of virtual DBA in a multi-tenant PON,” in European Conference on Optical Communication (ECOC) (2018).

A. Elrasad and M. Ruffini, “Frame level sharing for DBA virtualization in multi-tenant PONs,” in International Conference on Optical Network Design and Modeling (ONDM) (2017), pp. 1–6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. Architectural design of the virtual DBA mechanism.
Fig. 2.
Fig. 2. Schematic of the PON auction mechanism.
Fig. 3.
Fig. 3. Overall architecture of the PON system prototype running the virtual DBA.
Fig. 4.
Fig. 4. Interface between a virtual OLT and vDBA.
Fig. 5.
Fig. 5. Traffic scenario 1: (a) served traffic and (b) latency versus offered traffic.
Fig. 6.
Fig. 6. Traffic scenario 1: (a) served traffic and (b) latency versus high-priority traffic.
Fig. 7.
Fig. 7. Traffic scenario 2: (a) served traffic and (b) latency versus offered traffic.
Fig. 8.
Fig. 8. Traffic scenario 2: (a) served traffic and (b) latency versus high-priority traffic.
Fig. 9.
Fig. 9. Traffic scenario 3: (a) served traffic and (b) latency versus offered traffic.
Fig. 10.
Fig. 10. Traffic scenario 3: (a) served traffic and (b) latency versus high-priority traffic.
Fig. 11.
Fig. 11. Traffic scenario 1: (a) served traffic and (b) latency versus offered traffic for high traffic priority, for uniform, Poisson, and self-similar distributions.
Fig. 12.
Fig. 12. Traffic scenario 1: (a) served traffic and (b) latency versus offered traffic for low traffic priority, for uniform, Poisson, and self-similar distributions.
Fig. 13.
Fig. 13. Traffic scenario 3: (a) served traffic and (b) latency versus offered traffic for low traffic priority, for uniform, Poisson, and self-similar distributions.
Fig. 14.
Fig. 14. Traffic scenario 3: (a) served traffic and (b) latency versus offered traffic for high traffic priority, for uniform, Poisson, and self-similar distributions.
Fig. 15.
Fig. 15. Traffic scenario 3: (a) served traffic and (b) latency versus high-priority traffic, for traffic priorities 3 and 4, for uniform, Poisson, and self-similar distributions.
Fig. 16.
Fig. 16. Traffic scenario 3: (a) served traffic and (b) latency versus high-priority traffic, for traffic priorities 1 and 2, for uniform, Poisson, and self-similar distributions.

Tables (1)

Tables Icon

Algorithm 1. Priority-Based Merging Algorithm