Abstract

This paper reviews the key factors in the discussion and selection process before the launch of the higher speed passive optical network (PON) standards project in the Full Service Access Network and ITU-T SG15/Q2. It reviews the requirements for such a system and the progress of the related ITU-T standards documents. The key technologies necessary for the physical and protocol layers of the 50G-PON are also discussed.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Super-PON: an evolution for access networks [Invited]

Claudio DeSanti, Liang Du, Jhon Guarin, Jason Bone, and Cedric F. Lam
J. Opt. Commun. Netw. 12(10) D66-D77 (2020)

Efficient T-CONT-Agnostic Bandwidth and Wavelength Allocation for NG-PON2

Pandelis Kourtessis, Wansu Lim, Noemi Merayo, Yeon-Mo Yang, and John M. Senior
J. Opt. Commun. Netw. 11(7) 383-396 (2019)

DSP enabled next generation 50G TDM-PON

Borui Li, Kuo Zhang, Dechao Zhang, Jiale He, Xiaolong Dong, Qian Liu, and Shengping Li
J. Opt. Commun. Netw. 12(9) D1-D8 (2020)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Wey, “The outlook for PON standardization: a tutorial,” J. Lightwave Technol. 38, 31–42 (2020).
    [Crossref]
  2. “FSAN standards roadmap 2.0,” 2016, https://www.fsan.org/roadmap/ .
  3. “PON transmission technologies above 10  Gb/s per wavelength,” ITU-T Recommendation G.Sup64, 2018, https://www.itu.int/rec/T-REC-G.Sup64/en .
  4. “10-gigabit-capable passive optical networks (XG-PON): general requirements,” ITU-T Recommendation G.987.1, 2016, https://www.itu.int/rec/T-REC-G.987.1/en .
  5. “10-gigabit-capable symmetric passive optical network (XGS-PON),” ITU-T Recommendation G.9807.1, 2017, https://www.itu.int/rec/T-REC-G.9807.1/en .
  6. “40-gigabit-capable passive optical networks (NG-PON2): general requirements,” ITU-T Recommendation G.989.1, 2015, https://www.itu.int/rec/T-REC-G.989.1/en .
  7. “Higher speed passive optical networks: requirements,” ITU-T Recommendation G.9804.1, 2019, https://www.itu.int/rec/T-REC-G.9804.1-201911-I/en .
  8. “ONU management and control interface (OMCI) specification,” ITU-T Recommendation G.988, 2019, https://www.itu.int/rec/T-REC-G.988/en .
  9. “Characteristics of a single-mode optical fibre and cable,” ITU-T Recommendation G.652, 2016, https://www.itu.int/rec/T-REC-G.652-201611-I/en .
  10. “Characteristics of a bending-loss insensitive single-mode optical fibre and cable,” ITU-T Recommendation G.657, 2016, https://www.itu.int/rec/T-REC-G.657-201611-I/en .
  11. “SDOs team up on PON convergence,” LightReading, 2017, https://www.lightreading.com/gigabit/fttx/sdos-team-up-on-pon-convergence/d/d-id/731234 .
  12. “Gigabit-capable passive optical networks (G-PON): enhancement band,” ITU-T Recommendation G.984.5, 2018, https://www.itu.int/rec/T-REC-G.984.5/en .
  13. “IEEE standard for Ethernet—Amendment 2: media access control parameters, physical layers, and management parameters for 25  Gb/s operation,” IEEE P802.3by, 2016, https://ieeexplore.ieee.org/document/7457590 .
  14. “Common Public Radio Interface: eCPRI interface specification,” eCPRI specification V2.0, 2019, http://www.cpri.info/downloads/eCPRI_v_2.0_2019_05_10c.pdf .
  15. D. Liu and M. Tao, “50G single wavelength PON analysis and comparison,” in IEEE P802.3ca 50G-EPON Task Force Meeting, November2017.
  16. V. Houtsma, D. van Veen, and E. Harstead, “Recent progress on standardization of next-generation 25, 50, and 100G EPON,” J. Lightwave Technol. 35, 1228–1234 (2017).
    [Crossref]
  17. D. van Veen and V. Houtsma, “50 Gbps low complex burst mode coherent detection for time-division multiplexed passive optical networks,” in European Conference on Optical Communication (ECOC), September2018.
  18. V. E. Houtsma and D. T. Van Veen, “Investigation of modulation schemes for flexible line-rate high-speed TDM-PON,” J. Lightwave Technol. 38, 3261–3267 (2020).
    [Crossref]
  19. T. Funada and T. Kihara, “Consideration on US/DS WDM filter for ONU,” in IEEE P802.3ca 50G-EPON Task Force Meeting, January2017.
  20. Z. Liao and D. Liu, “NG-EPON diplexer filter analysis,” in IEEE P802.3ca 50G-EPON Task Force Meeting, January2017.
  21. IEEE P802.3ca 50G-EPON Task Force, “Physical layer specifications and management parameters for 25  Gb/s and 50  Gb/s passive optical networks,” http://www.ieee802.org/3/ca/ .
  22. N. Tanaka, D. Umeda, Y. Sugimoto, T. Funada, K. Tanaka, and S. Ogita, “25.78-Gbit/s burst-mode receiver for 50G-EPON OLT,” in Optical Fiber Communications Conference and Exhibition (OFC) (2020), paper M1F.5.
  23. F. J. Effenberger, H. Zeng, and X. Liu, “Burst-mode error distribution and mitigation in DSP-assisted high-speed PONs,” J. Lightwave Technol. 38, 754–760 (2020).
    [Crossref]
  24. F. Chang, ed., Datacenter Connectivity Technologies: Principles and Practice (River, 2018).
  25. J. Petrilla, P. Dawe, and G. LeCheminant, “New metric offers more accurate estimate of optical transmitter’s impact on multimode fiber-optic links,” in DesignCon, Santa Clara, California, January2015.
  26. I. B. Djordjevic, O. Milenkovic, and B. Vasic, “Generalized low-density parity-check codes for optical communication systems,” J. Lightwave Technol. 23, 1939–1946 (2005).
    [Crossref]
  27. I. B. Djordjevic and B. Vasic, “Iteratively decodable codes from orthogonal arrays for optical communication systems,” IEEE Commun. Lett. 9, 924–926 (2005).
    [Crossref]
  28. S. Sankaranarayanan, I. B. Djordjevic, and B. Vasic, “Iteratively decodable codes on m-flats for WDM high-speed long-haul transmission,” J. Lightwave Technol. 23, 3696–3701 (2005).
    [Crossref]
  29. I. B. Djordjevic, S. Sankaranarayanan, and B. Vasic, “Irregular low-density parity-check codes for long–haul optical communications,” IEEE Photon. Technol. Lett. 16, 338–340 (2004).
    [Crossref]
  30. F. Effenberger, “Enhanced FEC consideration for 100G EPON,” in IEEE P802.3ca 50G-EPON Task Force Meeting, March2016.
  31. M. Yang, L. Li, X. Liu, and I. B. Djordjevic, “FPGA-based real-time soft-decision LDPC performance verification for 50G-PON,” in Optical Fiber Communications Conference and Exhibition (OFC) (2019), paper W3H.2.

2020 (3)

2017 (1)

2005 (3)

2004 (1)

I. B. Djordjevic, S. Sankaranarayanan, and B. Vasic, “Irregular low-density parity-check codes for long–haul optical communications,” IEEE Photon. Technol. Lett. 16, 338–340 (2004).
[Crossref]

Dawe, P.

J. Petrilla, P. Dawe, and G. LeCheminant, “New metric offers more accurate estimate of optical transmitter’s impact on multimode fiber-optic links,” in DesignCon, Santa Clara, California, January2015.

Djordjevic, I. B.

I. B. Djordjevic, O. Milenkovic, and B. Vasic, “Generalized low-density parity-check codes for optical communication systems,” J. Lightwave Technol. 23, 1939–1946 (2005).
[Crossref]

I. B. Djordjevic and B. Vasic, “Iteratively decodable codes from orthogonal arrays for optical communication systems,” IEEE Commun. Lett. 9, 924–926 (2005).
[Crossref]

S. Sankaranarayanan, I. B. Djordjevic, and B. Vasic, “Iteratively decodable codes on m-flats for WDM high-speed long-haul transmission,” J. Lightwave Technol. 23, 3696–3701 (2005).
[Crossref]

I. B. Djordjevic, S. Sankaranarayanan, and B. Vasic, “Irregular low-density parity-check codes for long–haul optical communications,” IEEE Photon. Technol. Lett. 16, 338–340 (2004).
[Crossref]

M. Yang, L. Li, X. Liu, and I. B. Djordjevic, “FPGA-based real-time soft-decision LDPC performance verification for 50G-PON,” in Optical Fiber Communications Conference and Exhibition (OFC) (2019), paper W3H.2.

Effenberger, F.

F. Effenberger, “Enhanced FEC consideration for 100G EPON,” in IEEE P802.3ca 50G-EPON Task Force Meeting, March2016.

Effenberger, F. J.

Funada, T.

T. Funada and T. Kihara, “Consideration on US/DS WDM filter for ONU,” in IEEE P802.3ca 50G-EPON Task Force Meeting, January2017.

N. Tanaka, D. Umeda, Y. Sugimoto, T. Funada, K. Tanaka, and S. Ogita, “25.78-Gbit/s burst-mode receiver for 50G-EPON OLT,” in Optical Fiber Communications Conference and Exhibition (OFC) (2020), paper M1F.5.

Harstead, E.

Houtsma, V.

V. Houtsma, D. van Veen, and E. Harstead, “Recent progress on standardization of next-generation 25, 50, and 100G EPON,” J. Lightwave Technol. 35, 1228–1234 (2017).
[Crossref]

D. van Veen and V. Houtsma, “50 Gbps low complex burst mode coherent detection for time-division multiplexed passive optical networks,” in European Conference on Optical Communication (ECOC), September2018.

Houtsma, V. E.

Kihara, T.

T. Funada and T. Kihara, “Consideration on US/DS WDM filter for ONU,” in IEEE P802.3ca 50G-EPON Task Force Meeting, January2017.

LeCheminant, G.

J. Petrilla, P. Dawe, and G. LeCheminant, “New metric offers more accurate estimate of optical transmitter’s impact on multimode fiber-optic links,” in DesignCon, Santa Clara, California, January2015.

Li, L.

M. Yang, L. Li, X. Liu, and I. B. Djordjevic, “FPGA-based real-time soft-decision LDPC performance verification for 50G-PON,” in Optical Fiber Communications Conference and Exhibition (OFC) (2019), paper W3H.2.

Liao, Z.

Z. Liao and D. Liu, “NG-EPON diplexer filter analysis,” in IEEE P802.3ca 50G-EPON Task Force Meeting, January2017.

Liu, D.

Z. Liao and D. Liu, “NG-EPON diplexer filter analysis,” in IEEE P802.3ca 50G-EPON Task Force Meeting, January2017.

D. Liu and M. Tao, “50G single wavelength PON analysis and comparison,” in IEEE P802.3ca 50G-EPON Task Force Meeting, November2017.

Liu, X.

F. J. Effenberger, H. Zeng, and X. Liu, “Burst-mode error distribution and mitigation in DSP-assisted high-speed PONs,” J. Lightwave Technol. 38, 754–760 (2020).
[Crossref]

M. Yang, L. Li, X. Liu, and I. B. Djordjevic, “FPGA-based real-time soft-decision LDPC performance verification for 50G-PON,” in Optical Fiber Communications Conference and Exhibition (OFC) (2019), paper W3H.2.

Milenkovic, O.

Ogita, S.

N. Tanaka, D. Umeda, Y. Sugimoto, T. Funada, K. Tanaka, and S. Ogita, “25.78-Gbit/s burst-mode receiver for 50G-EPON OLT,” in Optical Fiber Communications Conference and Exhibition (OFC) (2020), paper M1F.5.

Petrilla, J.

J. Petrilla, P. Dawe, and G. LeCheminant, “New metric offers more accurate estimate of optical transmitter’s impact on multimode fiber-optic links,” in DesignCon, Santa Clara, California, January2015.

Sankaranarayanan, S.

S. Sankaranarayanan, I. B. Djordjevic, and B. Vasic, “Iteratively decodable codes on m-flats for WDM high-speed long-haul transmission,” J. Lightwave Technol. 23, 3696–3701 (2005).
[Crossref]

I. B. Djordjevic, S. Sankaranarayanan, and B. Vasic, “Irregular low-density parity-check codes for long–haul optical communications,” IEEE Photon. Technol. Lett. 16, 338–340 (2004).
[Crossref]

Sugimoto, Y.

N. Tanaka, D. Umeda, Y. Sugimoto, T. Funada, K. Tanaka, and S. Ogita, “25.78-Gbit/s burst-mode receiver for 50G-EPON OLT,” in Optical Fiber Communications Conference and Exhibition (OFC) (2020), paper M1F.5.

Tanaka, K.

N. Tanaka, D. Umeda, Y. Sugimoto, T. Funada, K. Tanaka, and S. Ogita, “25.78-Gbit/s burst-mode receiver for 50G-EPON OLT,” in Optical Fiber Communications Conference and Exhibition (OFC) (2020), paper M1F.5.

Tanaka, N.

N. Tanaka, D. Umeda, Y. Sugimoto, T. Funada, K. Tanaka, and S. Ogita, “25.78-Gbit/s burst-mode receiver for 50G-EPON OLT,” in Optical Fiber Communications Conference and Exhibition (OFC) (2020), paper M1F.5.

Tao, M.

D. Liu and M. Tao, “50G single wavelength PON analysis and comparison,” in IEEE P802.3ca 50G-EPON Task Force Meeting, November2017.

Umeda, D.

N. Tanaka, D. Umeda, Y. Sugimoto, T. Funada, K. Tanaka, and S. Ogita, “25.78-Gbit/s burst-mode receiver for 50G-EPON OLT,” in Optical Fiber Communications Conference and Exhibition (OFC) (2020), paper M1F.5.

van Veen, D.

V. Houtsma, D. van Veen, and E. Harstead, “Recent progress on standardization of next-generation 25, 50, and 100G EPON,” J. Lightwave Technol. 35, 1228–1234 (2017).
[Crossref]

D. van Veen and V. Houtsma, “50 Gbps low complex burst mode coherent detection for time-division multiplexed passive optical networks,” in European Conference on Optical Communication (ECOC), September2018.

Van Veen, D. T.

Vasic, B.

S. Sankaranarayanan, I. B. Djordjevic, and B. Vasic, “Iteratively decodable codes on m-flats for WDM high-speed long-haul transmission,” J. Lightwave Technol. 23, 3696–3701 (2005).
[Crossref]

I. B. Djordjevic and B. Vasic, “Iteratively decodable codes from orthogonal arrays for optical communication systems,” IEEE Commun. Lett. 9, 924–926 (2005).
[Crossref]

I. B. Djordjevic, O. Milenkovic, and B. Vasic, “Generalized low-density parity-check codes for optical communication systems,” J. Lightwave Technol. 23, 1939–1946 (2005).
[Crossref]

I. B. Djordjevic, S. Sankaranarayanan, and B. Vasic, “Irregular low-density parity-check codes for long–haul optical communications,” IEEE Photon. Technol. Lett. 16, 338–340 (2004).
[Crossref]

Wey, J. S.

Yang, M.

M. Yang, L. Li, X. Liu, and I. B. Djordjevic, “FPGA-based real-time soft-decision LDPC performance verification for 50G-PON,” in Optical Fiber Communications Conference and Exhibition (OFC) (2019), paper W3H.2.

Zeng, H.

IEEE Commun. Lett. (1)

I. B. Djordjevic and B. Vasic, “Iteratively decodable codes from orthogonal arrays for optical communication systems,” IEEE Commun. Lett. 9, 924–926 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (1)

I. B. Djordjevic, S. Sankaranarayanan, and B. Vasic, “Irregular low-density parity-check codes for long–haul optical communications,” IEEE Photon. Technol. Lett. 16, 338–340 (2004).
[Crossref]

J. Lightwave Technol. (6)

Other (23)

F. Chang, ed., Datacenter Connectivity Technologies: Principles and Practice (River, 2018).

J. Petrilla, P. Dawe, and G. LeCheminant, “New metric offers more accurate estimate of optical transmitter’s impact on multimode fiber-optic links,” in DesignCon, Santa Clara, California, January2015.

D. van Veen and V. Houtsma, “50 Gbps low complex burst mode coherent detection for time-division multiplexed passive optical networks,” in European Conference on Optical Communication (ECOC), September2018.

T. Funada and T. Kihara, “Consideration on US/DS WDM filter for ONU,” in IEEE P802.3ca 50G-EPON Task Force Meeting, January2017.

Z. Liao and D. Liu, “NG-EPON diplexer filter analysis,” in IEEE P802.3ca 50G-EPON Task Force Meeting, January2017.

IEEE P802.3ca 50G-EPON Task Force, “Physical layer specifications and management parameters for 25  Gb/s and 50  Gb/s passive optical networks,” http://www.ieee802.org/3/ca/ .

N. Tanaka, D. Umeda, Y. Sugimoto, T. Funada, K. Tanaka, and S. Ogita, “25.78-Gbit/s burst-mode receiver for 50G-EPON OLT,” in Optical Fiber Communications Conference and Exhibition (OFC) (2020), paper M1F.5.

“FSAN standards roadmap 2.0,” 2016, https://www.fsan.org/roadmap/ .

“PON transmission technologies above 10  Gb/s per wavelength,” ITU-T Recommendation G.Sup64, 2018, https://www.itu.int/rec/T-REC-G.Sup64/en .

“10-gigabit-capable passive optical networks (XG-PON): general requirements,” ITU-T Recommendation G.987.1, 2016, https://www.itu.int/rec/T-REC-G.987.1/en .

“10-gigabit-capable symmetric passive optical network (XGS-PON),” ITU-T Recommendation G.9807.1, 2017, https://www.itu.int/rec/T-REC-G.9807.1/en .

“40-gigabit-capable passive optical networks (NG-PON2): general requirements,” ITU-T Recommendation G.989.1, 2015, https://www.itu.int/rec/T-REC-G.989.1/en .

“Higher speed passive optical networks: requirements,” ITU-T Recommendation G.9804.1, 2019, https://www.itu.int/rec/T-REC-G.9804.1-201911-I/en .

“ONU management and control interface (OMCI) specification,” ITU-T Recommendation G.988, 2019, https://www.itu.int/rec/T-REC-G.988/en .

“Characteristics of a single-mode optical fibre and cable,” ITU-T Recommendation G.652, 2016, https://www.itu.int/rec/T-REC-G.652-201611-I/en .

“Characteristics of a bending-loss insensitive single-mode optical fibre and cable,” ITU-T Recommendation G.657, 2016, https://www.itu.int/rec/T-REC-G.657-201611-I/en .

“SDOs team up on PON convergence,” LightReading, 2017, https://www.lightreading.com/gigabit/fttx/sdos-team-up-on-pon-convergence/d/d-id/731234 .

“Gigabit-capable passive optical networks (G-PON): enhancement band,” ITU-T Recommendation G.984.5, 2018, https://www.itu.int/rec/T-REC-G.984.5/en .

“IEEE standard for Ethernet—Amendment 2: media access control parameters, physical layers, and management parameters for 25  Gb/s operation,” IEEE P802.3by, 2016, https://ieeexplore.ieee.org/document/7457590 .

“Common Public Radio Interface: eCPRI interface specification,” eCPRI specification V2.0, 2019, http://www.cpri.info/downloads/eCPRI_v_2.0_2019_05_10c.pdf .

D. Liu and M. Tao, “50G single wavelength PON analysis and comparison,” in IEEE P802.3ca 50G-EPON Task Force Meeting, November2017.

F. Effenberger, “Enhanced FEC consideration for 100G EPON,” in IEEE P802.3ca 50G-EPON Task Force Meeting, March2016.

M. Yang, L. Li, X. Liu, and I. B. Djordjevic, “FPGA-based real-time soft-decision LDPC performance verification for 50G-PON,” in Optical Fiber Communications Conference and Exhibition (OFC) (2019), paper W3H.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. FSAN standards roadmap 2.0 [2].
Fig. 2.
Fig. 2. 50 Gbps/ch TWDM PON reference architecture. UNI = user network interface, SNI = service network interface, ${{R}}$ = receive and ${{S}}$ = send when defining bidirectional PON interfaces, CG = channel group, CP = channel pair, CT = channel termination, WM = wavelength multiplexer.
Fig. 3.
Fig. 3. 50G TDM PON reference architecture.
Fig. 4.
Fig. 4. (a) ITU-T PON wavelength plan and (b) coexistence and upgrade evolution diagram. GPON US: ${{N}}$ = narrow and ${{R}}$ = reduced; XGS-PON: only the basic wavelength set is shown; 50G TDM PON: ${{W}}$ = wide and ${{N}}$ = narrow.
Fig. 5.
Fig. 5. PON system coexistence and upgrade evolution paths.
Fig. 6.
Fig. 6. PON evolution and upgrade methods: (a) by external coexistence elements and (b) by MPM.
Fig. 7.
Fig. 7. Implementation options for 50 Gbps NRZ signal reception.
Fig. 8.
Fig. 8. Wavelength plan of 50G TDM PON.
Fig. 9.
Fig. 9. Simulated BER performance improvement from soft decision versus hard decision LDPC.

Tables (4)

Tables Icon

Table 1. General Technical Requirements for HSP Systems

Tables Icon

Table 2. Coexistence Methods and Scenarios for 50G TDM PONa

Tables Icon

Table 3. Performances of Different FEC Codes

Tables Icon

Table 4. Latency Requirement

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R × 125 × 125 L P S B d ,