Abstract

An edge data center (EDC) network infrastructure is required to flexibly deliver massive bandwidth and ultralow latency for a 5G edge cloud. Existing electrical-switching-based infrastructure, however, has been shown incapable of meeting such requirements. In this paper, we present an EDC network architecture and prototype testbed, referred to as the intelligence-defined optical tunnel network system (OPTUNS). OPTUNS consists of a set of optical switching subsystems that operate collectively to facilitate packet transport through logical wavelength-based optical tunnels. These optical tunnels are governed by a software-defined-networking-based intelligent tunnel control system, in a proactive manner. As such, optical tunnels are always made available whenever needed. In essence, OPTUNS boasts several crucial features, including high scalability, massive wavelength reuse (yielding high bandwidth), proactive optical tunnel control (yielding ultralow latency), and fault tolerance. We have built an OPTUNS testbed, including 30 optical switching subsystem prototypes, that interconnect a total of 25 racks (400 servers). Benchmarking results show that OPTUNS achieves 82.6% power saving compared with electrical spine-leaf networks. Further, our NetPipe-based experimental results show that OPTUNS invariably achieves mean and p99 end-to-end latencies of less than 17 µs, regardless of traffic load and locality.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
HiFOST: A Scalable and Low-Latency Hybrid Data Center Network Architecture Based on Flow-Controlled Fast Optical Switches

Fulong Yan, Xuwei Xue, and Nicola Calabretta
J. Opt. Commun. Netw. 10(7) B1-B14 (2018)

Prototyping Optical Ethernet—A Network for Distributed Data Centers in the Edge Cloud

Wolfram Lautenschlaeger, Lars Dembeck, and Ulrich Gebhard
J. Opt. Commun. Netw. 10(12) 1005-1014 (2018)

P-Torus: wavelength-based switching in packet granularity for intra-data-center networks

Charidimos Chaintoutis, Adonis Bogris, and Dimitris Syvridis
J. Opt. Commun. Netw. 11(9) 491-500 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription