Abstract

2.5D integrated systems exploiting electronic interposers to tightly integrate multiple processor dies into the same package suffer from significant performance degradation caused by the large latency overheads of their die-to-die multihop electrical interconnection networks. Silicon-photonic interposers with wavelength-routed interconnects can overcome this issue by enabling directly connected, scalable topologies while exhibiting low-energy optical communication even at large distances. This paper studies the use of an arrayed waveguide grating router (AWGR) as a scalable, low-latency silicon-photonic interconnection fabric for computing systems with up to 256 cores. Our results indicate that AWGRs could be a key enabler for large-scale interposer systems, offering an average performance speed-up of at least 1.25× with 1.32× lower power for 256 cores compared to state-of-the-art electrical networks, while offering a more compact solution compared to alternative photonic interconnects.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hi-LION: Hierarchical Large-Scale Interconnection Optical Network With AWGRs [Invited]

Zheng Cao, Roberto Proietti, and S. J. B. Yoo
J. Opt. Commun. Netw. 7(1) A97-A105 (2015)

AWGR-Based Optical Topologies for Scalable and Efficient Global Communications in Large-Scale Multi-Processor Systems

Xiaohui Ye, S. J. B. Yoo, and Venkatesh Akella
J. Opt. Commun. Netw. 4(9) 651-662 (2012)

A scalable silicon photonic chip-scale optical switch for high performance computing systems

Runxiang Yu, Stanley Cheung, Yuliang Li, Katsunari Okamoto, Roberto Proietti, Yawei Yin, and S. J. B. Yoo
Opt. Express 21(26) 32655-32667 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription