Abstract

Historically, research efforts in optical networks have focused on the goal of continuously increasing capacity rather than on lowering end-to-end latency. This slowly started to change in the access environment with post-Next-Generation Passive Optical Network 2 research. The emphasis on latency grew in importance with the introduction of 5G ultra-reliable and low-latency communication requirements. In this paper, we focus on the emerging Tactile Internet as one of the most interesting 5G low-latency applications enabling novel immersive experiences. After describing the Tactile Internet’s human-in-the-loop-centric design principles and haptic communications models, we elaborate on the development of decentralized cooperative dynamic bandwidth allocation algorithms for end-to-end resource coordination in fiber-wireless (FiWi) access networks. We then use machine learning in the context of FiWi enhanced heterogeneous networks to decouple haptic feedback from the impact of extensive propagation delays. This enables humans to perceive remote task environments in time at a 1-ms granularity.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Remote Repeater-Based EPON With MAC Forwarding for Long-Reach and High-Split-Ratio Passive Optical Networks

Chien Aun Chan, Manik Attygalle, and Ampalavanapillai Nirmalathas
J. Opt. Commun. Netw. 2(1) 28-37 (2010)

Fronthaul Network Modeling and Dimensioning Meeting Ultra-Low Latency Requirements for 5G

Gabriel Otero Pérez, José Alberto Hernández, and David Larrabeiti
J. Opt. Commun. Netw. 10(6) 573-581 (2018)

Intra-ONU Bandwidth Allocation Games in Integrated EPON/WiMAX Networks

Hui-Tang Lin and Ying-You Lin
J. Opt. Commun. Netw. 5(6) 609-620 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Maier and N. Ghazisaidi, FiWi Access Networks, Cambridge, UK: Cambridge University, 2012.
  2. M. A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Markendahl, and M. Dohler, “Business case and technology analysis for 5G low latency applications,” IEEE Access, vol.  5, pp. 5917–5935, 2017.
    [Crossref]
  3. P. Green, “Progress in optical networking,” IEEE Commun. Mag., vol.  39, no. 1, pp. 54–61, Jan.2001.
    [Crossref]
  4. J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov.2009.
    [Crossref]
  5. M. Maier, “The escape of Sisyphus or what “Post NG-PON2” should do apart from neverending capacity upgrades,” Photonics, vol.  1, no. 1, pp. 47–66, Mar.2014, special issue on All Optical Networks for Communications.
    [Crossref]
  6. T. Biermann, L. Scalia, C. Choi, W. Kellerer, and H. Karl, “How backhaul networks influence the feasibility of coordinated multipoint in cellular networks,” IEEE Commun. Mag., vol.  51, no. 8, pp. 168–176, Aug.2013.
    [Crossref]
  7. T. Pfeiffer, “Can PON technologies accelerate 5G deployments?” in Conf. on Optical Network Design and Modelling (ONDM), Workshop on Optical Technologies in the 5G Era, Dublin, Ireland, May2018.
  8. “5G wireless fronthaul requirements in a PON context,” , Oct.2018.
  9. J. Li and J. Chen, “Passive optical network based mobile backhaul enabling ultra-low latency for communications among base stations,” J. Opt. Commun. Netw., vol.  9, no. 10, pp. 855–863, Oct.2017.
    [Crossref]
  10. C. Ranaweera, M. G. C. Resende, K. Reichmann, P. Iannone, P. Henry, B.-J. Kim, P. Magill, K. N. Oikonomou, R. K. Sinha, and S. Woodward, “Design and optimization of fiber optic small-cell backhaul based on an existing fiber-to-the-node residential access network,” IEEE Commun. Mag., vol.  51, no. 9, pp. 62–69, Sept.2013.
    [Crossref]
  11. C. S. Ranaweera, P. P. Iannone, K. N. Oikonomou, K. C. Reichmann, and R. K. Sinha, “Design of cost-optimal passive optical networks for small cell backhaul using installed fibers [Invited],” J. Opt. Commun. Netw., vol.  5, no. 10, pp. A230–A239, Oct.2013.
    [Crossref]
  12. H. Kim, “RoF-based optical fronthaul technology for 5G and beyond,” in Optical Fiber Communications Conf. and Exposition (OFC), San Diego, California, Mar.2018, pp. 1–3.
  13. L. Velasco, A. Castro, A. Asensio, M. Ruiz, G. Liu, C. Qin, R. Proietti, and S. J. B. Yoo, “Meeting the requirements to deploy cloud RAN over optical networks,” J. Opt. Commun. Netw., vol.  9, no. 3, pp. B22–B32, Mar.2017.
    [Crossref]
  14. S. Zhou, X. Liu, F. Effenberger, and J. Chao, “Low-latency high-efficiency mobile fronthaul with TDM-PON (mobile PON),” J. Opt. Commun. Netw., vol.  10, no. 1, pp. A20–A26, Jan.2018.
    [Crossref]
  15. G. O. Pérez, J. A. Hernández, and D. Larrabeiti, “Fronthaul network modeling and dimensioning meeting ultra-low latency requirements for 5G,” J. Opt. Commun. Netw., vol.  10, no. 6, pp. 573–581, June2018.
    [Crossref]
  16. B. P. Rimal, D. Pham Van, and M. Maier, “Mobile edge computing empowered fiber-wireless access networks in the 5G era,” IEEE Commun. Mag., vol.  55, no. 2, pp. 192–200, Feb.2017.
    [Crossref]
  17. M. Satyanarayanan, “The emergence of edge computing,” IEEE Comput., vol.  50, no. 1, pp. 30–39, Jan.2017.
    [Crossref]
  18. F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol.  52, no. 2, pp. 74–80, Feb.2014.
    [Crossref]
  19. J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanley, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol.  32, no. 6, pp. 1065–1082, June2014.
    [Crossref]
  20. B. Skubic, M. Fiorani, S. Tombaz, A. Furuskär, J. Mårtensson, and P. Monti, “Optical transport solutions for 5G fixed wireless access [Invited],” J. Opt. Commun. Netw., vol.  9, no. 9, pp. D10–D18, Sept.2017.
    [Crossref]
  21. C. Behrens, S. Krauss, E. Weis, and D. Breuer, “Technologies for convergence of fixed and mobile access: an operator’s perspective [Invited],” J. Opt. Commun. Netw., vol.  10, no. 1, pp. A37–A42, Jan.2018.
    [Crossref]
  22. T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration,” IEEE Commun. Surv. Tutorials, vol.  19, no. 3, pp. 1657–1681, 2017.
    [Crossref]
  23. G. P. Fettweis, “The tactile internet: applications and challenges,” IEEE Veh. Technol. Mag., vol.  9, no. 1, pp 64–70, Mar.2014.
    [Crossref]
  24. “The tactile internet,” , Aug.2014.
  25. M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “5G-enabled Tactile Internet,” IEEE J. Sel. Areas Commun., vol.  34, no. 3, pp. 460–473, Mar.2016.
    [Crossref]
  26. A. Aijaz, M. Dohler, A. H. Aghvami, V. Friderikos, and M. Frodigh, “Realizing the Tactile Internet: haptic communications over next generation 5G cellular networks,” IEEE Wireless Commun., vol.  24, no. 2, pp. 82–89, Apr.2017.
    [Crossref]
  27. J. G. Andrews, “Seven ways that HetNets are a cellular paradigm shift,” IEEE Commun. Mag., vol.  51, no. 3, pp. 136–144, Mar.2013.
    [Crossref]
  28. A. Aijaz, Z. Dawy, N. Pappas, M. Simsek, S. Oteafy, and O. Holland, “Toward a Tactile Internet reference architecture: vision and progress of the IEEE P1918.1 Standard,” arXiv:1807.11915 (2018).
  29. M. Maier, M. Chowdhury, B. P. Rimal, and D. Pham Van, “The tactile internet: vision, recent progress, and open challenges,” IEEE Commun. Mag., vol.  54, no. 5, pp. 138–145, May2016.
    [Crossref]
  30. M. Maier, A. Ebrahimzadeh, and M. Chowdhury, “The Tactile Internet: automation or augmentation of the human?” IEEE Access, vol.  6, pp. 41607–41618, July2018.
    [Crossref]
  31. K. Antonakoglou, X. Xu, E. Steinbach, T. Mahmoodi, and M. Dohler, “Towards haptic communications over the 5G Tactile Internet,” IEEE Commun. Surv. Tutorials, vol.  20, pp. 3034–3059, June2018.
    [Crossref]
  32. E. Weber, Die Lehre vom Tastsinn und Gemeingefuehl, auf Versuche gegruendet, London, UK: Verlag Friedrich Vieweg und Sohn, 1978.
  33. E. Steinbach, S. Hirche, M. Ernst, F. Brandi, R. Chaudhari, J. Kammerl, and I. Vittorias, “Haptic communications,” Proc. IEEE, vol.  100, no. 4, pp. 937–956, Apr.2012.
    [Crossref]
  34. E. Wong, M. P. I. Dias, and L. Ruan, “Predictive resource allocation for Tactile Internet capable passive optical LANs,” J. Lightwave Technol., vol.  35, no. 13, pp. 2629–2641, July2017.
    [Crossref]
  35. L. Meli, C. Pacchierotti, and D. Prattichizzo, “Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation,” Int. J. Med. Robot. Comput. Assist. Surg., vol.  13, no. 4, pp. e1809, Feb.2017.
    [Crossref]
  36. X. Xu, C. Schuwerk, B. Cizmeci, and E. Steinbach, “Energy prediction for teleoperation systems that combine the time domain passivity approach with perceptual deadband-based haptic data reduction,” IEEE Trans. Haptics, vol.  9, no. 4, pp. 560–573, Oct.–Dec. 2016.
    [Crossref]
  37. A. D. Hossain, M. Ummy, A. Hossain, and M. Kouar, “Revisiting FiWi: on the merits of a distributed upstream resource allocation scheme,” J. Opt. Commun. Netw., vol.  9, no. 9, pp. 773–781, Sept.2017.
    [Crossref]
  38. F. Aurzada, M. Lévesque, M. Maier, and M. Reisslein, “FiWi access networks based on next-generation PON and gigabit-class WLAN technologies: a capacity and delay analysis,” IEEE/ACM Trans. Netw., vol.  22, no. 4, pp. 1176–1189, Aug.2014.
    [Crossref]
  39. M. Maier, N. Ghazisaidi, and M. Reisslein, “The audacity of fiber-wireless (FiWi) networks (Invited Paper),” in ICST Int. Conf. on Access Networks (AccessNets), Las Vegas, Nevada, Oct.2008, pp. 1–10.
  40. N. Ghazisaidi and M. Maier, “Hierarchical frame aggregation techniques for hybrid fiber-wireless access networks,” IEEE Commun. Mag., vol.  49, no. 9, pp. 64–73, Sept.2011.
    [Crossref]
  41. M. Maier and B. P. Rimal, “The audacity of fiber-wireless (FiWi) networks: revisited for clouds and cloudlets (invited paper),” China Commun., vol.  12, no. 8, pp. 33–45, Aug.2015.
    [Crossref]
  42. B. P. Rimal, D. Pham Van, and M. Maier, “Cloudlet enhanced fiber-wireless access networks for mobile-edge computing,” IEEE Trans. Wireless Commun., vol.  16, no. 6, pp. 3601–3618, June2017.
    [Crossref]
  43. B. P. Rimal, D. Pham Van, and M. Maier, “Mobile-edge computing versus centralized cloud computing over a converged FiWi access network,” IEEE Trans. Netw. Serv. Manage., vol.  14, no. 3, pp. 498–513, Sept.2017.
    [Crossref]
  44. B. P. Rimal, M. Maier, and M. Satyanarayanan, “Experimental testbed for edge computing in fiber-wireless broadband access networks,” IEEE Commun. Mag., vol.  56, no. 8, pp. 160–167, Aug.2018.
    [Crossref]
  45. H. Beyranvand, M. Lévesque, M. Maier, J. A. Salehi, C. Verikoukis, and D. Tipper, “Toward 5G: FiWi enhanced LTE-A HetNets with reliable low-latency fiber backhaul sharing and WiFi offloading,” IEEE/ACM Trans. Netw., vol.  25, no. 2, pp. 690–707, Apr.2017.
    [Crossref]
  46. G. Fettweis and S. Alamouti, “5G: personal mobile Internet beyond what cellular did to telephony,” IEEE Commun. Mag., vol.  52, no. 2, pp. 140–145, Feb.2014.
    [Crossref]
  47. Aptilo Networks, “Why wait for 5G? Carrier Wi-Fi is here today,” Dec.2016 [Online]. Available: www.wifinowevents.com .
  48. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw., vol.  2, no. 5, pp. 359–366, 1989.
    [Crossref]
  49. M. Maier, “The Tactile Internet: where do we go from here? (invited paper),” in IEEE/OSA/SPIE Asia Communications and Photonics (ACP) Conf., Hangzhou, China, Oct.2018.
  50. M. E. Peck, “Blockchains: how they work and why they’ll change the world,” IEEE Spectrum, vol.  54, no. 10, pp. 26–35, Oct.2017.
    [Crossref]
  51. V. Buterin, “A next-generation smart contract and decentralized application platform,” Ethereum White Paper [Online]. Available: www.ethereum.org .
  52. R. Beck, “Beyond bitcoin: the rise of blockchain world,” IEEE Comput., vol.  51, no. 2, pp. 54–58, Feb.2018.
    [Crossref]

2018 (7)

S. Zhou, X. Liu, F. Effenberger, and J. Chao, “Low-latency high-efficiency mobile fronthaul with TDM-PON (mobile PON),” J. Opt. Commun. Netw., vol.  10, no. 1, pp. A20–A26, Jan.2018.
[Crossref]

G. O. Pérez, J. A. Hernández, and D. Larrabeiti, “Fronthaul network modeling and dimensioning meeting ultra-low latency requirements for 5G,” J. Opt. Commun. Netw., vol.  10, no. 6, pp. 573–581, June2018.
[Crossref]

C. Behrens, S. Krauss, E. Weis, and D. Breuer, “Technologies for convergence of fixed and mobile access: an operator’s perspective [Invited],” J. Opt. Commun. Netw., vol.  10, no. 1, pp. A37–A42, Jan.2018.
[Crossref]

M. Maier, A. Ebrahimzadeh, and M. Chowdhury, “The Tactile Internet: automation or augmentation of the human?” IEEE Access, vol.  6, pp. 41607–41618, July2018.
[Crossref]

K. Antonakoglou, X. Xu, E. Steinbach, T. Mahmoodi, and M. Dohler, “Towards haptic communications over the 5G Tactile Internet,” IEEE Commun. Surv. Tutorials, vol.  20, pp. 3034–3059, June2018.
[Crossref]

B. P. Rimal, M. Maier, and M. Satyanarayanan, “Experimental testbed for edge computing in fiber-wireless broadband access networks,” IEEE Commun. Mag., vol.  56, no. 8, pp. 160–167, Aug.2018.
[Crossref]

R. Beck, “Beyond bitcoin: the rise of blockchain world,” IEEE Comput., vol.  51, no. 2, pp. 54–58, Feb.2018.
[Crossref]

2017 (15)

M. E. Peck, “Blockchains: how they work and why they’ll change the world,” IEEE Spectrum, vol.  54, no. 10, pp. 26–35, Oct.2017.
[Crossref]

H. Beyranvand, M. Lévesque, M. Maier, J. A. Salehi, C. Verikoukis, and D. Tipper, “Toward 5G: FiWi enhanced LTE-A HetNets with reliable low-latency fiber backhaul sharing and WiFi offloading,” IEEE/ACM Trans. Netw., vol.  25, no. 2, pp. 690–707, Apr.2017.
[Crossref]

B. P. Rimal, D. Pham Van, and M. Maier, “Cloudlet enhanced fiber-wireless access networks for mobile-edge computing,” IEEE Trans. Wireless Commun., vol.  16, no. 6, pp. 3601–3618, June2017.
[Crossref]

B. P. Rimal, D. Pham Van, and M. Maier, “Mobile-edge computing versus centralized cloud computing over a converged FiWi access network,” IEEE Trans. Netw. Serv. Manage., vol.  14, no. 3, pp. 498–513, Sept.2017.
[Crossref]

A. Aijaz, M. Dohler, A. H. Aghvami, V. Friderikos, and M. Frodigh, “Realizing the Tactile Internet: haptic communications over next generation 5G cellular networks,” IEEE Wireless Commun., vol.  24, no. 2, pp. 82–89, Apr.2017.
[Crossref]

E. Wong, M. P. I. Dias, and L. Ruan, “Predictive resource allocation for Tactile Internet capable passive optical LANs,” J. Lightwave Technol., vol.  35, no. 13, pp. 2629–2641, July2017.
[Crossref]

L. Meli, C. Pacchierotti, and D. Prattichizzo, “Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation,” Int. J. Med. Robot. Comput. Assist. Surg., vol.  13, no. 4, pp. e1809, Feb.2017.
[Crossref]

A. D. Hossain, M. Ummy, A. Hossain, and M. Kouar, “Revisiting FiWi: on the merits of a distributed upstream resource allocation scheme,” J. Opt. Commun. Netw., vol.  9, no. 9, pp. 773–781, Sept.2017.
[Crossref]

T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration,” IEEE Commun. Surv. Tutorials, vol.  19, no. 3, pp. 1657–1681, 2017.
[Crossref]

B. Skubic, M. Fiorani, S. Tombaz, A. Furuskär, J. Mårtensson, and P. Monti, “Optical transport solutions for 5G fixed wireless access [Invited],” J. Opt. Commun. Netw., vol.  9, no. 9, pp. D10–D18, Sept.2017.
[Crossref]

B. P. Rimal, D. Pham Van, and M. Maier, “Mobile edge computing empowered fiber-wireless access networks in the 5G era,” IEEE Commun. Mag., vol.  55, no. 2, pp. 192–200, Feb.2017.
[Crossref]

M. Satyanarayanan, “The emergence of edge computing,” IEEE Comput., vol.  50, no. 1, pp. 30–39, Jan.2017.
[Crossref]

M. A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Markendahl, and M. Dohler, “Business case and technology analysis for 5G low latency applications,” IEEE Access, vol.  5, pp. 5917–5935, 2017.
[Crossref]

J. Li and J. Chen, “Passive optical network based mobile backhaul enabling ultra-low latency for communications among base stations,” J. Opt. Commun. Netw., vol.  9, no. 10, pp. 855–863, Oct.2017.
[Crossref]

L. Velasco, A. Castro, A. Asensio, M. Ruiz, G. Liu, C. Qin, R. Proietti, and S. J. B. Yoo, “Meeting the requirements to deploy cloud RAN over optical networks,” J. Opt. Commun. Netw., vol.  9, no. 3, pp. B22–B32, Mar.2017.
[Crossref]

2016 (3)

M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “5G-enabled Tactile Internet,” IEEE J. Sel. Areas Commun., vol.  34, no. 3, pp. 460–473, Mar.2016.
[Crossref]

X. Xu, C. Schuwerk, B. Cizmeci, and E. Steinbach, “Energy prediction for teleoperation systems that combine the time domain passivity approach with perceptual deadband-based haptic data reduction,” IEEE Trans. Haptics, vol.  9, no. 4, pp. 560–573, Oct.–Dec. 2016.
[Crossref]

M. Maier, M. Chowdhury, B. P. Rimal, and D. Pham Van, “The tactile internet: vision, recent progress, and open challenges,” IEEE Commun. Mag., vol.  54, no. 5, pp. 138–145, May2016.
[Crossref]

2015 (1)

M. Maier and B. P. Rimal, “The audacity of fiber-wireless (FiWi) networks: revisited for clouds and cloudlets (invited paper),” China Commun., vol.  12, no. 8, pp. 33–45, Aug.2015.
[Crossref]

2014 (6)

G. Fettweis and S. Alamouti, “5G: personal mobile Internet beyond what cellular did to telephony,” IEEE Commun. Mag., vol.  52, no. 2, pp. 140–145, Feb.2014.
[Crossref]

F. Aurzada, M. Lévesque, M. Maier, and M. Reisslein, “FiWi access networks based on next-generation PON and gigabit-class WLAN technologies: a capacity and delay analysis,” IEEE/ACM Trans. Netw., vol.  22, no. 4, pp. 1176–1189, Aug.2014.
[Crossref]

G. P. Fettweis, “The tactile internet: applications and challenges,” IEEE Veh. Technol. Mag., vol.  9, no. 1, pp 64–70, Mar.2014.
[Crossref]

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol.  52, no. 2, pp. 74–80, Feb.2014.
[Crossref]

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanley, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol.  32, no. 6, pp. 1065–1082, June2014.
[Crossref]

M. Maier, “The escape of Sisyphus or what “Post NG-PON2” should do apart from neverending capacity upgrades,” Photonics, vol.  1, no. 1, pp. 47–66, Mar.2014, special issue on All Optical Networks for Communications.
[Crossref]

2013 (4)

T. Biermann, L. Scalia, C. Choi, W. Kellerer, and H. Karl, “How backhaul networks influence the feasibility of coordinated multipoint in cellular networks,” IEEE Commun. Mag., vol.  51, no. 8, pp. 168–176, Aug.2013.
[Crossref]

C. Ranaweera, M. G. C. Resende, K. Reichmann, P. Iannone, P. Henry, B.-J. Kim, P. Magill, K. N. Oikonomou, R. K. Sinha, and S. Woodward, “Design and optimization of fiber optic small-cell backhaul based on an existing fiber-to-the-node residential access network,” IEEE Commun. Mag., vol.  51, no. 9, pp. 62–69, Sept.2013.
[Crossref]

C. S. Ranaweera, P. P. Iannone, K. N. Oikonomou, K. C. Reichmann, and R. K. Sinha, “Design of cost-optimal passive optical networks for small cell backhaul using installed fibers [Invited],” J. Opt. Commun. Netw., vol.  5, no. 10, pp. A230–A239, Oct.2013.
[Crossref]

J. G. Andrews, “Seven ways that HetNets are a cellular paradigm shift,” IEEE Commun. Mag., vol.  51, no. 3, pp. 136–144, Mar.2013.
[Crossref]

2012 (1)

E. Steinbach, S. Hirche, M. Ernst, F. Brandi, R. Chaudhari, J. Kammerl, and I. Vittorias, “Haptic communications,” Proc. IEEE, vol.  100, no. 4, pp. 937–956, Apr.2012.
[Crossref]

2011 (1)

N. Ghazisaidi and M. Maier, “Hierarchical frame aggregation techniques for hybrid fiber-wireless access networks,” IEEE Commun. Mag., vol.  49, no. 9, pp. 64–73, Sept.2011.
[Crossref]

2009 (1)

J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov.2009.
[Crossref]

2001 (1)

P. Green, “Progress in optical networking,” IEEE Commun. Mag., vol.  39, no. 1, pp. 54–61, Jan.2001.
[Crossref]

1989 (1)

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw., vol.  2, no. 5, pp. 359–366, 1989.
[Crossref]

Aghvami, A. H.

A. Aijaz, M. Dohler, A. H. Aghvami, V. Friderikos, and M. Frodigh, “Realizing the Tactile Internet: haptic communications over next generation 5G cellular networks,” IEEE Wireless Commun., vol.  24, no. 2, pp. 82–89, Apr.2017.
[Crossref]

Aijaz, A.

A. Aijaz, M. Dohler, A. H. Aghvami, V. Friderikos, and M. Frodigh, “Realizing the Tactile Internet: haptic communications over next generation 5G cellular networks,” IEEE Wireless Commun., vol.  24, no. 2, pp. 82–89, Apr.2017.
[Crossref]

M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “5G-enabled Tactile Internet,” IEEE J. Sel. Areas Commun., vol.  34, no. 3, pp. 460–473, Mar.2016.
[Crossref]

A. Aijaz, Z. Dawy, N. Pappas, M. Simsek, S. Oteafy, and O. Holland, “Toward a Tactile Internet reference architecture: vision and progress of the IEEE P1918.1 Standard,” arXiv:1807.11915 (2018).

Alamouti, S.

G. Fettweis and S. Alamouti, “5G: personal mobile Internet beyond what cellular did to telephony,” IEEE Commun. Mag., vol.  52, no. 2, pp. 140–145, Feb.2014.
[Crossref]

Andrews, J. G.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanley, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol.  32, no. 6, pp. 1065–1082, June2014.
[Crossref]

J. G. Andrews, “Seven ways that HetNets are a cellular paradigm shift,” IEEE Commun. Mag., vol.  51, no. 3, pp. 136–144, Mar.2013.
[Crossref]

Antonakoglou, K.

K. Antonakoglou, X. Xu, E. Steinbach, T. Mahmoodi, and M. Dohler, “Towards haptic communications over the 5G Tactile Internet,” IEEE Commun. Surv. Tutorials, vol.  20, pp. 3034–3059, June2018.
[Crossref]

Asensio, A.

Aurzada, F.

F. Aurzada, M. Lévesque, M. Maier, and M. Reisslein, “FiWi access networks based on next-generation PON and gigabit-class WLAN technologies: a capacity and delay analysis,” IEEE/ACM Trans. Netw., vol.  22, no. 4, pp. 1176–1189, Aug.2014.
[Crossref]

Beck, R.

R. Beck, “Beyond bitcoin: the rise of blockchain world,” IEEE Comput., vol.  51, no. 2, pp. 54–58, Feb.2018.
[Crossref]

Behrens, C.

Beyranvand, H.

H. Beyranvand, M. Lévesque, M. Maier, J. A. Salehi, C. Verikoukis, and D. Tipper, “Toward 5G: FiWi enhanced LTE-A HetNets with reliable low-latency fiber backhaul sharing and WiFi offloading,” IEEE/ACM Trans. Netw., vol.  25, no. 2, pp. 690–707, Apr.2017.
[Crossref]

Biermann, T.

T. Biermann, L. Scalia, C. Choi, W. Kellerer, and H. Karl, “How backhaul networks influence the feasibility of coordinated multipoint in cellular networks,” IEEE Commun. Mag., vol.  51, no. 8, pp. 168–176, Aug.2013.
[Crossref]

Boccardi, F.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol.  52, no. 2, pp. 74–80, Feb.2014.
[Crossref]

Bourgart, F.

J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov.2009.
[Crossref]

Brandi, F.

E. Steinbach, S. Hirche, M. Ernst, F. Brandi, R. Chaudhari, J. Kammerl, and I. Vittorias, “Haptic communications,” Proc. IEEE, vol.  100, no. 4, pp. 937–956, Apr.2012.
[Crossref]

Breuer, D.

Buzzi, S.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanley, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol.  32, no. 6, pp. 1065–1082, June2014.
[Crossref]

Campbell, M.

J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov.2009.
[Crossref]

Castro, A.

Chao, J.

Chaudhari, R.

E. Steinbach, S. Hirche, M. Ernst, F. Brandi, R. Chaudhari, J. Kammerl, and I. Vittorias, “Haptic communications,” Proc. IEEE, vol.  100, no. 4, pp. 937–956, Apr.2012.
[Crossref]

Chen, J.

Choi, C.

T. Biermann, L. Scalia, C. Choi, W. Kellerer, and H. Karl, “How backhaul networks influence the feasibility of coordinated multipoint in cellular networks,” IEEE Commun. Mag., vol.  51, no. 8, pp. 168–176, Aug.2013.
[Crossref]

Choi, W.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanley, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol.  32, no. 6, pp. 1065–1082, June2014.
[Crossref]

Chowdhury, M.

M. Maier, A. Ebrahimzadeh, and M. Chowdhury, “The Tactile Internet: automation or augmentation of the human?” IEEE Access, vol.  6, pp. 41607–41618, July2018.
[Crossref]

M. Maier, M. Chowdhury, B. P. Rimal, and D. Pham Van, “The tactile internet: vision, recent progress, and open challenges,” IEEE Commun. Mag., vol.  54, no. 5, pp. 138–145, May2016.
[Crossref]

Cizmeci, B.

X. Xu, C. Schuwerk, B. Cizmeci, and E. Steinbach, “Energy prediction for teleoperation systems that combine the time domain passivity approach with perceptual deadband-based haptic data reduction,” IEEE Trans. Haptics, vol.  9, no. 4, pp. 560–573, Oct.–Dec. 2016.
[Crossref]

Cuevas, M.

M. A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Markendahl, and M. Dohler, “Business case and technology analysis for 5G low latency applications,” IEEE Access, vol.  5, pp. 5917–5935, 2017.
[Crossref]

Cui, A.

J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov.2009.
[Crossref]

Davey, R.

J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov.2009.
[Crossref]

Dawy, Z.

A. Aijaz, Z. Dawy, N. Pappas, M. Simsek, S. Oteafy, and O. Holland, “Toward a Tactile Internet reference architecture: vision and progress of the IEEE P1918.1 Standard,” arXiv:1807.11915 (2018).

Dias, M. P. I.

Dohler, M.

K. Antonakoglou, X. Xu, E. Steinbach, T. Mahmoodi, and M. Dohler, “Towards haptic communications over the 5G Tactile Internet,” IEEE Commun. Surv. Tutorials, vol.  20, pp. 3034–3059, June2018.
[Crossref]

A. Aijaz, M. Dohler, A. H. Aghvami, V. Friderikos, and M. Frodigh, “Realizing the Tactile Internet: haptic communications over next generation 5G cellular networks,” IEEE Wireless Commun., vol.  24, no. 2, pp. 82–89, Apr.2017.
[Crossref]

M. A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Markendahl, and M. Dohler, “Business case and technology analysis for 5G low latency applications,” IEEE Access, vol.  5, pp. 5917–5935, 2017.
[Crossref]

M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “5G-enabled Tactile Internet,” IEEE J. Sel. Areas Commun., vol.  34, no. 3, pp. 460–473, Mar.2016.
[Crossref]

Dutta, S.

T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration,” IEEE Commun. Surv. Tutorials, vol.  19, no. 3, pp. 1657–1681, 2017.
[Crossref]

Ebrahimzadeh, A.

M. Maier, A. Ebrahimzadeh, and M. Chowdhury, “The Tactile Internet: automation or augmentation of the human?” IEEE Access, vol.  6, pp. 41607–41618, July2018.
[Crossref]

Effenberger, F.

Ernst, M.

E. Steinbach, S. Hirche, M. Ernst, F. Brandi, R. Chaudhari, J. Kammerl, and I. Vittorias, “Haptic communications,” Proc. IEEE, vol.  100, no. 4, pp. 937–956, Apr.2012.
[Crossref]

Fettweis, G.

M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “5G-enabled Tactile Internet,” IEEE J. Sel. Areas Commun., vol.  34, no. 3, pp. 460–473, Mar.2016.
[Crossref]

G. Fettweis and S. Alamouti, “5G: personal mobile Internet beyond what cellular did to telephony,” IEEE Commun. Mag., vol.  52, no. 2, pp. 140–145, Feb.2014.
[Crossref]

Fettweis, G. P.

G. P. Fettweis, “The tactile internet: applications and challenges,” IEEE Veh. Technol. Mag., vol.  9, no. 1, pp 64–70, Mar.2014.
[Crossref]

Fiorani, M.

Flinck, H.

T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration,” IEEE Commun. Surv. Tutorials, vol.  19, no. 3, pp. 1657–1681, 2017.
[Crossref]

Friderikos, V.

A. Aijaz, M. Dohler, A. H. Aghvami, V. Friderikos, and M. Frodigh, “Realizing the Tactile Internet: haptic communications over next generation 5G cellular networks,” IEEE Wireless Commun., vol.  24, no. 2, pp. 82–89, Apr.2017.
[Crossref]

Frodigh, M.

A. Aijaz, M. Dohler, A. H. Aghvami, V. Friderikos, and M. Frodigh, “Realizing the Tactile Internet: haptic communications over next generation 5G cellular networks,” IEEE Wireless Commun., vol.  24, no. 2, pp. 82–89, Apr.2017.
[Crossref]

Furuskär, A.

Ghazisaidi, N.

N. Ghazisaidi and M. Maier, “Hierarchical frame aggregation techniques for hybrid fiber-wireless access networks,” IEEE Commun. Mag., vol.  49, no. 9, pp. 64–73, Sept.2011.
[Crossref]

M. Maier, N. Ghazisaidi, and M. Reisslein, “The audacity of fiber-wireless (FiWi) networks (Invited Paper),” in ICST Int. Conf. on Access Networks (AccessNets), Las Vegas, Nevada, Oct.2008, pp. 1–10.

M. Maier and N. Ghazisaidi, FiWi Access Networks, Cambridge, UK: Cambridge University, 2012.

Green, P.

P. Green, “Progress in optical networking,” IEEE Commun. Mag., vol.  39, no. 1, pp. 54–61, Jan.2001.
[Crossref]

Hanley, S. V.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanley, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol.  32, no. 6, pp. 1065–1082, June2014.
[Crossref]

Heath, R. W.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol.  52, no. 2, pp. 74–80, Feb.2014.
[Crossref]

Henry, P.

C. Ranaweera, M. G. C. Resende, K. Reichmann, P. Iannone, P. Henry, B.-J. Kim, P. Magill, K. N. Oikonomou, R. K. Sinha, and S. Woodward, “Design and optimization of fiber optic small-cell backhaul based on an existing fiber-to-the-node residential access network,” IEEE Commun. Mag., vol.  51, no. 9, pp. 62–69, Sept.2013.
[Crossref]

Hernández, J. A.

Hirche, S.

E. Steinbach, S. Hirche, M. Ernst, F. Brandi, R. Chaudhari, J. Kammerl, and I. Vittorias, “Haptic communications,” Proc. IEEE, vol.  100, no. 4, pp. 937–956, Apr.2012.
[Crossref]

Holland, O.

A. Aijaz, Z. Dawy, N. Pappas, M. Simsek, S. Oteafy, and O. Holland, “Toward a Tactile Internet reference architecture: vision and progress of the IEEE P1918.1 Standard,” arXiv:1807.11915 (2018).

Hornik, K.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw., vol.  2, no. 5, pp. 359–366, 1989.
[Crossref]

Hossain, A.

Hossain, A. D.

Iannone, P.

C. Ranaweera, M. G. C. Resende, K. Reichmann, P. Iannone, P. Henry, B.-J. Kim, P. Magill, K. N. Oikonomou, R. K. Sinha, and S. Woodward, “Design and optimization of fiber optic small-cell backhaul based on an existing fiber-to-the-node residential access network,” IEEE Commun. Mag., vol.  51, no. 9, pp. 62–69, Sept.2013.
[Crossref]

Iannone, P. P.

Kammerl, J.

E. Steinbach, S. Hirche, M. Ernst, F. Brandi, R. Chaudhari, J. Kammerl, and I. Vittorias, “Haptic communications,” Proc. IEEE, vol.  100, no. 4, pp. 937–956, Apr.2012.
[Crossref]

Kani, J.-I.

J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov.2009.
[Crossref]

Karl, H.

T. Biermann, L. Scalia, C. Choi, W. Kellerer, and H. Karl, “How backhaul networks influence the feasibility of coordinated multipoint in cellular networks,” IEEE Commun. Mag., vol.  51, no. 8, pp. 168–176, Aug.2013.
[Crossref]

Kellerer, W.

T. Biermann, L. Scalia, C. Choi, W. Kellerer, and H. Karl, “How backhaul networks influence the feasibility of coordinated multipoint in cellular networks,” IEEE Commun. Mag., vol.  51, no. 8, pp. 168–176, Aug.2013.
[Crossref]

Kim, B.-J.

C. Ranaweera, M. G. C. Resende, K. Reichmann, P. Iannone, P. Henry, B.-J. Kim, P. Magill, K. N. Oikonomou, R. K. Sinha, and S. Woodward, “Design and optimization of fiber optic small-cell backhaul based on an existing fiber-to-the-node residential access network,” IEEE Commun. Mag., vol.  51, no. 9, pp. 62–69, Sept.2013.
[Crossref]

Kim, H.

H. Kim, “RoF-based optical fronthaul technology for 5G and beyond,” in Optical Fiber Communications Conf. and Exposition (OFC), San Diego, California, Mar.2018, pp. 1–3.

Kouar, M.

Krauss, S.

Larrabeiti, D.

Laya, A.

M. A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Markendahl, and M. Dohler, “Business case and technology analysis for 5G low latency applications,” IEEE Access, vol.  5, pp. 5917–5935, 2017.
[Crossref]

Lema, M. A.

M. A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Markendahl, and M. Dohler, “Business case and technology analysis for 5G low latency applications,” IEEE Access, vol.  5, pp. 5917–5935, 2017.
[Crossref]

Lévesque, M.

H. Beyranvand, M. Lévesque, M. Maier, J. A. Salehi, C. Verikoukis, and D. Tipper, “Toward 5G: FiWi enhanced LTE-A HetNets with reliable low-latency fiber backhaul sharing and WiFi offloading,” IEEE/ACM Trans. Netw., vol.  25, no. 2, pp. 690–707, Apr.2017.
[Crossref]

F. Aurzada, M. Lévesque, M. Maier, and M. Reisslein, “FiWi access networks based on next-generation PON and gigabit-class WLAN technologies: a capacity and delay analysis,” IEEE/ACM Trans. Netw., vol.  22, no. 4, pp. 1176–1189, Aug.2014.
[Crossref]

Li, J.

Liu, G.

Liu, X.

Lozano, A.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanley, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol.  32, no. 6, pp. 1065–1082, June2014.
[Crossref]

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol.  52, no. 2, pp. 74–80, Feb.2014.
[Crossref]

Mada, B.

T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration,” IEEE Commun. Surv. Tutorials, vol.  19, no. 3, pp. 1657–1681, 2017.
[Crossref]

Magill, P.

C. Ranaweera, M. G. C. Resende, K. Reichmann, P. Iannone, P. Henry, B.-J. Kim, P. Magill, K. N. Oikonomou, R. K. Sinha, and S. Woodward, “Design and optimization of fiber optic small-cell backhaul based on an existing fiber-to-the-node residential access network,” IEEE Commun. Mag., vol.  51, no. 9, pp. 62–69, Sept.2013.
[Crossref]

Mahmoodi, T.

K. Antonakoglou, X. Xu, E. Steinbach, T. Mahmoodi, and M. Dohler, “Towards haptic communications over the 5G Tactile Internet,” IEEE Commun. Surv. Tutorials, vol.  20, pp. 3034–3059, June2018.
[Crossref]

M. A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Markendahl, and M. Dohler, “Business case and technology analysis for 5G low latency applications,” IEEE Access, vol.  5, pp. 5917–5935, 2017.
[Crossref]

Maier, M.

M. Maier, A. Ebrahimzadeh, and M. Chowdhury, “The Tactile Internet: automation or augmentation of the human?” IEEE Access, vol.  6, pp. 41607–41618, July2018.
[Crossref]

B. P. Rimal, M. Maier, and M. Satyanarayanan, “Experimental testbed for edge computing in fiber-wireless broadband access networks,” IEEE Commun. Mag., vol.  56, no. 8, pp. 160–167, Aug.2018.
[Crossref]

H. Beyranvand, M. Lévesque, M. Maier, J. A. Salehi, C. Verikoukis, and D. Tipper, “Toward 5G: FiWi enhanced LTE-A HetNets with reliable low-latency fiber backhaul sharing and WiFi offloading,” IEEE/ACM Trans. Netw., vol.  25, no. 2, pp. 690–707, Apr.2017.
[Crossref]

B. P. Rimal, D. Pham Van, and M. Maier, “Cloudlet enhanced fiber-wireless access networks for mobile-edge computing,” IEEE Trans. Wireless Commun., vol.  16, no. 6, pp. 3601–3618, June2017.
[Crossref]

B. P. Rimal, D. Pham Van, and M. Maier, “Mobile-edge computing versus centralized cloud computing over a converged FiWi access network,” IEEE Trans. Netw. Serv. Manage., vol.  14, no. 3, pp. 498–513, Sept.2017.
[Crossref]

B. P. Rimal, D. Pham Van, and M. Maier, “Mobile edge computing empowered fiber-wireless access networks in the 5G era,” IEEE Commun. Mag., vol.  55, no. 2, pp. 192–200, Feb.2017.
[Crossref]

M. Maier, M. Chowdhury, B. P. Rimal, and D. Pham Van, “The tactile internet: vision, recent progress, and open challenges,” IEEE Commun. Mag., vol.  54, no. 5, pp. 138–145, May2016.
[Crossref]

M. Maier and B. P. Rimal, “The audacity of fiber-wireless (FiWi) networks: revisited for clouds and cloudlets (invited paper),” China Commun., vol.  12, no. 8, pp. 33–45, Aug.2015.
[Crossref]

F. Aurzada, M. Lévesque, M. Maier, and M. Reisslein, “FiWi access networks based on next-generation PON and gigabit-class WLAN technologies: a capacity and delay analysis,” IEEE/ACM Trans. Netw., vol.  22, no. 4, pp. 1176–1189, Aug.2014.
[Crossref]

M. Maier, “The escape of Sisyphus or what “Post NG-PON2” should do apart from neverending capacity upgrades,” Photonics, vol.  1, no. 1, pp. 47–66, Mar.2014, special issue on All Optical Networks for Communications.
[Crossref]

N. Ghazisaidi and M. Maier, “Hierarchical frame aggregation techniques for hybrid fiber-wireless access networks,” IEEE Commun. Mag., vol.  49, no. 9, pp. 64–73, Sept.2011.
[Crossref]

M. Maier, “The Tactile Internet: where do we go from here? (invited paper),” in IEEE/OSA/SPIE Asia Communications and Photonics (ACP) Conf., Hangzhou, China, Oct.2018.

M. Maier, N. Ghazisaidi, and M. Reisslein, “The audacity of fiber-wireless (FiWi) networks (Invited Paper),” in ICST Int. Conf. on Access Networks (AccessNets), Las Vegas, Nevada, Oct.2008, pp. 1–10.

M. Maier and N. Ghazisaidi, FiWi Access Networks, Cambridge, UK: Cambridge University, 2012.

Markendahl, J.

M. A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Markendahl, and M. Dohler, “Business case and technology analysis for 5G low latency applications,” IEEE Access, vol.  5, pp. 5917–5935, 2017.
[Crossref]

Mårtensson, J.

Marzetta, T. L.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol.  52, no. 2, pp. 74–80, Feb.2014.
[Crossref]

Meli, L.

L. Meli, C. Pacchierotti, and D. Prattichizzo, “Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation,” Int. J. Med. Robot. Comput. Assist. Surg., vol.  13, no. 4, pp. e1809, Feb.2017.
[Crossref]

Monti, P.

Oikonomou, K. N.

C. Ranaweera, M. G. C. Resende, K. Reichmann, P. Iannone, P. Henry, B.-J. Kim, P. Magill, K. N. Oikonomou, R. K. Sinha, and S. Woodward, “Design and optimization of fiber optic small-cell backhaul based on an existing fiber-to-the-node residential access network,” IEEE Commun. Mag., vol.  51, no. 9, pp. 62–69, Sept.2013.
[Crossref]

C. S. Ranaweera, P. P. Iannone, K. N. Oikonomou, K. C. Reichmann, and R. K. Sinha, “Design of cost-optimal passive optical networks for small cell backhaul using installed fibers [Invited],” J. Opt. Commun. Netw., vol.  5, no. 10, pp. A230–A239, Oct.2013.
[Crossref]

Oteafy, S.

A. Aijaz, Z. Dawy, N. Pappas, M. Simsek, S. Oteafy, and O. Holland, “Toward a Tactile Internet reference architecture: vision and progress of the IEEE P1918.1 Standard,” arXiv:1807.11915 (2018).

Pacchierotti, C.

L. Meli, C. Pacchierotti, and D. Prattichizzo, “Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation,” Int. J. Med. Robot. Comput. Assist. Surg., vol.  13, no. 4, pp. e1809, Feb.2017.
[Crossref]

Pappas, N.

A. Aijaz, Z. Dawy, N. Pappas, M. Simsek, S. Oteafy, and O. Holland, “Toward a Tactile Internet reference architecture: vision and progress of the IEEE P1918.1 Standard,” arXiv:1807.11915 (2018).

Peck, M. E.

M. E. Peck, “Blockchains: how they work and why they’ll change the world,” IEEE Spectrum, vol.  54, no. 10, pp. 26–35, Oct.2017.
[Crossref]

Pérez, G. O.

Pfeiffer, T.

T. Pfeiffer, “Can PON technologies accelerate 5G deployments?” in Conf. on Optical Network Design and Modelling (ONDM), Workshop on Optical Technologies in the 5G Era, Dublin, Ireland, May2018.

Pham Van, D.

B. P. Rimal, D. Pham Van, and M. Maier, “Mobile-edge computing versus centralized cloud computing over a converged FiWi access network,” IEEE Trans. Netw. Serv. Manage., vol.  14, no. 3, pp. 498–513, Sept.2017.
[Crossref]

B. P. Rimal, D. Pham Van, and M. Maier, “Cloudlet enhanced fiber-wireless access networks for mobile-edge computing,” IEEE Trans. Wireless Commun., vol.  16, no. 6, pp. 3601–3618, June2017.
[Crossref]

B. P. Rimal, D. Pham Van, and M. Maier, “Mobile edge computing empowered fiber-wireless access networks in the 5G era,” IEEE Commun. Mag., vol.  55, no. 2, pp. 192–200, Feb.2017.
[Crossref]

M. Maier, M. Chowdhury, B. P. Rimal, and D. Pham Van, “The tactile internet: vision, recent progress, and open challenges,” IEEE Commun. Mag., vol.  54, no. 5, pp. 138–145, May2016.
[Crossref]

Popovski, P.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol.  52, no. 2, pp. 74–80, Feb.2014.
[Crossref]

Prattichizzo, D.

L. Meli, C. Pacchierotti, and D. Prattichizzo, “Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation,” Int. J. Med. Robot. Comput. Assist. Surg., vol.  13, no. 4, pp. e1809, Feb.2017.
[Crossref]

Proietti, R.

Qin, C.

Rafel, A.

J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov.2009.
[Crossref]

Ranaweera, C.

C. Ranaweera, M. G. C. Resende, K. Reichmann, P. Iannone, P. Henry, B.-J. Kim, P. Magill, K. N. Oikonomou, R. K. Sinha, and S. Woodward, “Design and optimization of fiber optic small-cell backhaul based on an existing fiber-to-the-node residential access network,” IEEE Commun. Mag., vol.  51, no. 9, pp. 62–69, Sept.2013.
[Crossref]

Ranaweera, C. S.

Reichmann, K.

C. Ranaweera, M. G. C. Resende, K. Reichmann, P. Iannone, P. Henry, B.-J. Kim, P. Magill, K. N. Oikonomou, R. K. Sinha, and S. Woodward, “Design and optimization of fiber optic small-cell backhaul based on an existing fiber-to-the-node residential access network,” IEEE Commun. Mag., vol.  51, no. 9, pp. 62–69, Sept.2013.
[Crossref]

Reichmann, K. C.

Reisslein, M.

F. Aurzada, M. Lévesque, M. Maier, and M. Reisslein, “FiWi access networks based on next-generation PON and gigabit-class WLAN technologies: a capacity and delay analysis,” IEEE/ACM Trans. Netw., vol.  22, no. 4, pp. 1176–1189, Aug.2014.
[Crossref]

M. Maier, N. Ghazisaidi, and M. Reisslein, “The audacity of fiber-wireless (FiWi) networks (Invited Paper),” in ICST Int. Conf. on Access Networks (AccessNets), Las Vegas, Nevada, Oct.2008, pp. 1–10.

Resende, M. G. C.

C. Ranaweera, M. G. C. Resende, K. Reichmann, P. Iannone, P. Henry, B.-J. Kim, P. Magill, K. N. Oikonomou, R. K. Sinha, and S. Woodward, “Design and optimization of fiber optic small-cell backhaul based on an existing fiber-to-the-node residential access network,” IEEE Commun. Mag., vol.  51, no. 9, pp. 62–69, Sept.2013.
[Crossref]

Rimal, B. P.

B. P. Rimal, M. Maier, and M. Satyanarayanan, “Experimental testbed for edge computing in fiber-wireless broadband access networks,” IEEE Commun. Mag., vol.  56, no. 8, pp. 160–167, Aug.2018.
[Crossref]

B. P. Rimal, D. Pham Van, and M. Maier, “Mobile-edge computing versus centralized cloud computing over a converged FiWi access network,” IEEE Trans. Netw. Serv. Manage., vol.  14, no. 3, pp. 498–513, Sept.2017.
[Crossref]

B. P. Rimal, D. Pham Van, and M. Maier, “Cloudlet enhanced fiber-wireless access networks for mobile-edge computing,” IEEE Trans. Wireless Commun., vol.  16, no. 6, pp. 3601–3618, June2017.
[Crossref]

B. P. Rimal, D. Pham Van, and M. Maier, “Mobile edge computing empowered fiber-wireless access networks in the 5G era,” IEEE Commun. Mag., vol.  55, no. 2, pp. 192–200, Feb.2017.
[Crossref]

M. Maier, M. Chowdhury, B. P. Rimal, and D. Pham Van, “The tactile internet: vision, recent progress, and open challenges,” IEEE Commun. Mag., vol.  54, no. 5, pp. 138–145, May2016.
[Crossref]

M. Maier and B. P. Rimal, “The audacity of fiber-wireless (FiWi) networks: revisited for clouds and cloudlets (invited paper),” China Commun., vol.  12, no. 8, pp. 33–45, Aug.2015.
[Crossref]

Rodrigues, S.

J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov.2009.
[Crossref]

Ruan, L.

Ruiz, M.

Sabella, D.

T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration,” IEEE Commun. Surv. Tutorials, vol.  19, no. 3, pp. 1657–1681, 2017.
[Crossref]

Sachs, J.

M. A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Markendahl, and M. Dohler, “Business case and technology analysis for 5G low latency applications,” IEEE Access, vol.  5, pp. 5917–5935, 2017.
[Crossref]

M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “5G-enabled Tactile Internet,” IEEE J. Sel. Areas Commun., vol.  34, no. 3, pp. 460–473, Mar.2016.
[Crossref]

Salehi, J. A.

H. Beyranvand, M. Lévesque, M. Maier, J. A. Salehi, C. Verikoukis, and D. Tipper, “Toward 5G: FiWi enhanced LTE-A HetNets with reliable low-latency fiber backhaul sharing and WiFi offloading,” IEEE/ACM Trans. Netw., vol.  25, no. 2, pp. 690–707, Apr.2017.
[Crossref]

Samdanis, K.

T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration,” IEEE Commun. Surv. Tutorials, vol.  19, no. 3, pp. 1657–1681, 2017.
[Crossref]

Satyanarayanan, M.

B. P. Rimal, M. Maier, and M. Satyanarayanan, “Experimental testbed for edge computing in fiber-wireless broadband access networks,” IEEE Commun. Mag., vol.  56, no. 8, pp. 160–167, Aug.2018.
[Crossref]

M. Satyanarayanan, “The emergence of edge computing,” IEEE Comput., vol.  50, no. 1, pp. 30–39, Jan.2017.
[Crossref]

Scalia, L.

T. Biermann, L. Scalia, C. Choi, W. Kellerer, and H. Karl, “How backhaul networks influence the feasibility of coordinated multipoint in cellular networks,” IEEE Commun. Mag., vol.  51, no. 8, pp. 168–176, Aug.2013.
[Crossref]

Schuwerk, C.

X. Xu, C. Schuwerk, B. Cizmeci, and E. Steinbach, “Energy prediction for teleoperation systems that combine the time domain passivity approach with perceptual deadband-based haptic data reduction,” IEEE Trans. Haptics, vol.  9, no. 4, pp. 560–573, Oct.–Dec. 2016.
[Crossref]

Simsek, M.

M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “5G-enabled Tactile Internet,” IEEE J. Sel. Areas Commun., vol.  34, no. 3, pp. 460–473, Mar.2016.
[Crossref]

A. Aijaz, Z. Dawy, N. Pappas, M. Simsek, S. Oteafy, and O. Holland, “Toward a Tactile Internet reference architecture: vision and progress of the IEEE P1918.1 Standard,” arXiv:1807.11915 (2018).

Sinha, R. K.

C. Ranaweera, M. G. C. Resende, K. Reichmann, P. Iannone, P. Henry, B.-J. Kim, P. Magill, K. N. Oikonomou, R. K. Sinha, and S. Woodward, “Design and optimization of fiber optic small-cell backhaul based on an existing fiber-to-the-node residential access network,” IEEE Commun. Mag., vol.  51, no. 9, pp. 62–69, Sept.2013.
[Crossref]

C. S. Ranaweera, P. P. Iannone, K. N. Oikonomou, K. C. Reichmann, and R. K. Sinha, “Design of cost-optimal passive optical networks for small cell backhaul using installed fibers [Invited],” J. Opt. Commun. Netw., vol.  5, no. 10, pp. A230–A239, Oct.2013.
[Crossref]

Skubic, B.

Soong, A. C. K.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanley, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol.  32, no. 6, pp. 1065–1082, June2014.
[Crossref]

Steinbach, E.

K. Antonakoglou, X. Xu, E. Steinbach, T. Mahmoodi, and M. Dohler, “Towards haptic communications over the 5G Tactile Internet,” IEEE Commun. Surv. Tutorials, vol.  20, pp. 3034–3059, June2018.
[Crossref]

X. Xu, C. Schuwerk, B. Cizmeci, and E. Steinbach, “Energy prediction for teleoperation systems that combine the time domain passivity approach with perceptual deadband-based haptic data reduction,” IEEE Trans. Haptics, vol.  9, no. 4, pp. 560–573, Oct.–Dec. 2016.
[Crossref]

E. Steinbach, S. Hirche, M. Ernst, F. Brandi, R. Chaudhari, J. Kammerl, and I. Vittorias, “Haptic communications,” Proc. IEEE, vol.  100, no. 4, pp. 937–956, Apr.2012.
[Crossref]

Stinchcombe, M.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw., vol.  2, no. 5, pp. 359–366, 1989.
[Crossref]

Taleb, T.

T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration,” IEEE Commun. Surv. Tutorials, vol.  19, no. 3, pp. 1657–1681, 2017.
[Crossref]

Tipper, D.

H. Beyranvand, M. Lévesque, M. Maier, J. A. Salehi, C. Verikoukis, and D. Tipper, “Toward 5G: FiWi enhanced LTE-A HetNets with reliable low-latency fiber backhaul sharing and WiFi offloading,” IEEE/ACM Trans. Netw., vol.  25, no. 2, pp. 690–707, Apr.2017.
[Crossref]

Tombaz, S.

Ummy, M.

Velasco, L.

Verikoukis, C.

H. Beyranvand, M. Lévesque, M. Maier, J. A. Salehi, C. Verikoukis, and D. Tipper, “Toward 5G: FiWi enhanced LTE-A HetNets with reliable low-latency fiber backhaul sharing and WiFi offloading,” IEEE/ACM Trans. Netw., vol.  25, no. 2, pp. 690–707, Apr.2017.
[Crossref]

Vittorias, I.

E. Steinbach, S. Hirche, M. Ernst, F. Brandi, R. Chaudhari, J. Kammerl, and I. Vittorias, “Haptic communications,” Proc. IEEE, vol.  100, no. 4, pp. 937–956, Apr.2012.
[Crossref]

Weber, E.

E. Weber, Die Lehre vom Tastsinn und Gemeingefuehl, auf Versuche gegruendet, London, UK: Verlag Friedrich Vieweg und Sohn, 1978.

Weis, E.

White, H.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw., vol.  2, no. 5, pp. 359–366, 1989.
[Crossref]

Wong, E.

Woodward, S.

C. Ranaweera, M. G. C. Resende, K. Reichmann, P. Iannone, P. Henry, B.-J. Kim, P. Magill, K. N. Oikonomou, R. K. Sinha, and S. Woodward, “Design and optimization of fiber optic small-cell backhaul based on an existing fiber-to-the-node residential access network,” IEEE Commun. Mag., vol.  51, no. 9, pp. 62–69, Sept.2013.
[Crossref]

Xu, X.

K. Antonakoglou, X. Xu, E. Steinbach, T. Mahmoodi, and M. Dohler, “Towards haptic communications over the 5G Tactile Internet,” IEEE Commun. Surv. Tutorials, vol.  20, pp. 3034–3059, June2018.
[Crossref]

X. Xu, C. Schuwerk, B. Cizmeci, and E. Steinbach, “Energy prediction for teleoperation systems that combine the time domain passivity approach with perceptual deadband-based haptic data reduction,” IEEE Trans. Haptics, vol.  9, no. 4, pp. 560–573, Oct.–Dec. 2016.
[Crossref]

Yoo, S. J. B.

Zhang, J. C.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanley, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol.  32, no. 6, pp. 1065–1082, June2014.
[Crossref]

Zhou, S.

China Commun. (1)

M. Maier and B. P. Rimal, “The audacity of fiber-wireless (FiWi) networks: revisited for clouds and cloudlets (invited paper),” China Commun., vol.  12, no. 8, pp. 33–45, Aug.2015.
[Crossref]

IEEE Access (2)

M. A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Markendahl, and M. Dohler, “Business case and technology analysis for 5G low latency applications,” IEEE Access, vol.  5, pp. 5917–5935, 2017.
[Crossref]

M. Maier, A. Ebrahimzadeh, and M. Chowdhury, “The Tactile Internet: automation or augmentation of the human?” IEEE Access, vol.  6, pp. 41607–41618, July2018.
[Crossref]

IEEE Commun. Mag. (11)

M. Maier, M. Chowdhury, B. P. Rimal, and D. Pham Van, “The tactile internet: vision, recent progress, and open challenges,” IEEE Commun. Mag., vol.  54, no. 5, pp. 138–145, May2016.
[Crossref]

B. P. Rimal, D. Pham Van, and M. Maier, “Mobile edge computing empowered fiber-wireless access networks in the 5G era,” IEEE Commun. Mag., vol.  55, no. 2, pp. 192–200, Feb.2017.
[Crossref]

J. G. Andrews, “Seven ways that HetNets are a cellular paradigm shift,” IEEE Commun. Mag., vol.  51, no. 3, pp. 136–144, Mar.2013.
[Crossref]

P. Green, “Progress in optical networking,” IEEE Commun. Mag., vol.  39, no. 1, pp. 54–61, Jan.2001.
[Crossref]

J.-I. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol.  47, no. 11, pp. 43–49, Nov.2009.
[Crossref]

T. Biermann, L. Scalia, C. Choi, W. Kellerer, and H. Karl, “How backhaul networks influence the feasibility of coordinated multipoint in cellular networks,” IEEE Commun. Mag., vol.  51, no. 8, pp. 168–176, Aug.2013.
[Crossref]

C. Ranaweera, M. G. C. Resende, K. Reichmann, P. Iannone, P. Henry, B.-J. Kim, P. Magill, K. N. Oikonomou, R. K. Sinha, and S. Woodward, “Design and optimization of fiber optic small-cell backhaul based on an existing fiber-to-the-node residential access network,” IEEE Commun. Mag., vol.  51, no. 9, pp. 62–69, Sept.2013.
[Crossref]

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol.  52, no. 2, pp. 74–80, Feb.2014.
[Crossref]

N. Ghazisaidi and M. Maier, “Hierarchical frame aggregation techniques for hybrid fiber-wireless access networks,” IEEE Commun. Mag., vol.  49, no. 9, pp. 64–73, Sept.2011.
[Crossref]

B. P. Rimal, M. Maier, and M. Satyanarayanan, “Experimental testbed for edge computing in fiber-wireless broadband access networks,” IEEE Commun. Mag., vol.  56, no. 8, pp. 160–167, Aug.2018.
[Crossref]

G. Fettweis and S. Alamouti, “5G: personal mobile Internet beyond what cellular did to telephony,” IEEE Commun. Mag., vol.  52, no. 2, pp. 140–145, Feb.2014.
[Crossref]

IEEE Commun. Surv. Tutorials (2)

T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration,” IEEE Commun. Surv. Tutorials, vol.  19, no. 3, pp. 1657–1681, 2017.
[Crossref]

K. Antonakoglou, X. Xu, E. Steinbach, T. Mahmoodi, and M. Dohler, “Towards haptic communications over the 5G Tactile Internet,” IEEE Commun. Surv. Tutorials, vol.  20, pp. 3034–3059, June2018.
[Crossref]

IEEE Comput. (2)

M. Satyanarayanan, “The emergence of edge computing,” IEEE Comput., vol.  50, no. 1, pp. 30–39, Jan.2017.
[Crossref]

R. Beck, “Beyond bitcoin: the rise of blockchain world,” IEEE Comput., vol.  51, no. 2, pp. 54–58, Feb.2018.
[Crossref]

IEEE J. Sel. Areas Commun. (2)

M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “5G-enabled Tactile Internet,” IEEE J. Sel. Areas Commun., vol.  34, no. 3, pp. 460–473, Mar.2016.
[Crossref]

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanley, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol.  32, no. 6, pp. 1065–1082, June2014.
[Crossref]

IEEE Spectrum (1)

M. E. Peck, “Blockchains: how they work and why they’ll change the world,” IEEE Spectrum, vol.  54, no. 10, pp. 26–35, Oct.2017.
[Crossref]

IEEE Trans. Haptics (1)

X. Xu, C. Schuwerk, B. Cizmeci, and E. Steinbach, “Energy prediction for teleoperation systems that combine the time domain passivity approach with perceptual deadband-based haptic data reduction,” IEEE Trans. Haptics, vol.  9, no. 4, pp. 560–573, Oct.–Dec. 2016.
[Crossref]

IEEE Trans. Netw. Serv. Manage. (1)

B. P. Rimal, D. Pham Van, and M. Maier, “Mobile-edge computing versus centralized cloud computing over a converged FiWi access network,” IEEE Trans. Netw. Serv. Manage., vol.  14, no. 3, pp. 498–513, Sept.2017.
[Crossref]

IEEE Trans. Wireless Commun. (1)

B. P. Rimal, D. Pham Van, and M. Maier, “Cloudlet enhanced fiber-wireless access networks for mobile-edge computing,” IEEE Trans. Wireless Commun., vol.  16, no. 6, pp. 3601–3618, June2017.
[Crossref]

IEEE Veh. Technol. Mag. (1)

G. P. Fettweis, “The tactile internet: applications and challenges,” IEEE Veh. Technol. Mag., vol.  9, no. 1, pp 64–70, Mar.2014.
[Crossref]

IEEE Wireless Commun. (1)

A. Aijaz, M. Dohler, A. H. Aghvami, V. Friderikos, and M. Frodigh, “Realizing the Tactile Internet: haptic communications over next generation 5G cellular networks,” IEEE Wireless Commun., vol.  24, no. 2, pp. 82–89, Apr.2017.
[Crossref]

IEEE/ACM Trans. Netw. (2)

F. Aurzada, M. Lévesque, M. Maier, and M. Reisslein, “FiWi access networks based on next-generation PON and gigabit-class WLAN technologies: a capacity and delay analysis,” IEEE/ACM Trans. Netw., vol.  22, no. 4, pp. 1176–1189, Aug.2014.
[Crossref]

H. Beyranvand, M. Lévesque, M. Maier, J. A. Salehi, C. Verikoukis, and D. Tipper, “Toward 5G: FiWi enhanced LTE-A HetNets with reliable low-latency fiber backhaul sharing and WiFi offloading,” IEEE/ACM Trans. Netw., vol.  25, no. 2, pp. 690–707, Apr.2017.
[Crossref]

Int. J. Med. Robot. Comput. Assist. Surg. (1)

L. Meli, C. Pacchierotti, and D. Prattichizzo, “Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation,” Int. J. Med. Robot. Comput. Assist. Surg., vol.  13, no. 4, pp. e1809, Feb.2017.
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (8)

A. D. Hossain, M. Ummy, A. Hossain, and M. Kouar, “Revisiting FiWi: on the merits of a distributed upstream resource allocation scheme,” J. Opt. Commun. Netw., vol.  9, no. 9, pp. 773–781, Sept.2017.
[Crossref]

B. Skubic, M. Fiorani, S. Tombaz, A. Furuskär, J. Mårtensson, and P. Monti, “Optical transport solutions for 5G fixed wireless access [Invited],” J. Opt. Commun. Netw., vol.  9, no. 9, pp. D10–D18, Sept.2017.
[Crossref]

C. Behrens, S. Krauss, E. Weis, and D. Breuer, “Technologies for convergence of fixed and mobile access: an operator’s perspective [Invited],” J. Opt. Commun. Netw., vol.  10, no. 1, pp. A37–A42, Jan.2018.
[Crossref]

C. S. Ranaweera, P. P. Iannone, K. N. Oikonomou, K. C. Reichmann, and R. K. Sinha, “Design of cost-optimal passive optical networks for small cell backhaul using installed fibers [Invited],” J. Opt. Commun. Netw., vol.  5, no. 10, pp. A230–A239, Oct.2013.
[Crossref]

L. Velasco, A. Castro, A. Asensio, M. Ruiz, G. Liu, C. Qin, R. Proietti, and S. J. B. Yoo, “Meeting the requirements to deploy cloud RAN over optical networks,” J. Opt. Commun. Netw., vol.  9, no. 3, pp. B22–B32, Mar.2017.
[Crossref]

S. Zhou, X. Liu, F. Effenberger, and J. Chao, “Low-latency high-efficiency mobile fronthaul with TDM-PON (mobile PON),” J. Opt. Commun. Netw., vol.  10, no. 1, pp. A20–A26, Jan.2018.
[Crossref]

G. O. Pérez, J. A. Hernández, and D. Larrabeiti, “Fronthaul network modeling and dimensioning meeting ultra-low latency requirements for 5G,” J. Opt. Commun. Netw., vol.  10, no. 6, pp. 573–581, June2018.
[Crossref]

J. Li and J. Chen, “Passive optical network based mobile backhaul enabling ultra-low latency for communications among base stations,” J. Opt. Commun. Netw., vol.  9, no. 10, pp. 855–863, Oct.2017.
[Crossref]

Neural Netw. (1)

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw., vol.  2, no. 5, pp. 359–366, 1989.
[Crossref]

Photonics (1)

M. Maier, “The escape of Sisyphus or what “Post NG-PON2” should do apart from neverending capacity upgrades,” Photonics, vol.  1, no. 1, pp. 47–66, Mar.2014, special issue on All Optical Networks for Communications.
[Crossref]

Proc. IEEE (1)

E. Steinbach, S. Hirche, M. Ernst, F. Brandi, R. Chaudhari, J. Kammerl, and I. Vittorias, “Haptic communications,” Proc. IEEE, vol.  100, no. 4, pp. 937–956, Apr.2012.
[Crossref]

Other (11)

E. Weber, Die Lehre vom Tastsinn und Gemeingefuehl, auf Versuche gegruendet, London, UK: Verlag Friedrich Vieweg und Sohn, 1978.

A. Aijaz, Z. Dawy, N. Pappas, M. Simsek, S. Oteafy, and O. Holland, “Toward a Tactile Internet reference architecture: vision and progress of the IEEE P1918.1 Standard,” arXiv:1807.11915 (2018).

“The tactile internet,” , Aug.2014.

M. Maier and N. Ghazisaidi, FiWi Access Networks, Cambridge, UK: Cambridge University, 2012.

T. Pfeiffer, “Can PON technologies accelerate 5G deployments?” in Conf. on Optical Network Design and Modelling (ONDM), Workshop on Optical Technologies in the 5G Era, Dublin, Ireland, May2018.

“5G wireless fronthaul requirements in a PON context,” , Oct.2018.

H. Kim, “RoF-based optical fronthaul technology for 5G and beyond,” in Optical Fiber Communications Conf. and Exposition (OFC), San Diego, California, Mar.2018, pp. 1–3.

M. Maier, “The Tactile Internet: where do we go from here? (invited paper),” in IEEE/OSA/SPIE Asia Communications and Photonics (ACP) Conf., Hangzhou, China, Oct.2018.

Aptilo Networks, “Why wait for 5G? Carrier Wi-Fi is here today,” Dec.2016 [Online]. Available: www.wifinowevents.com .

V. Buterin, “A next-generation smart contract and decentralized application platform,” Ethereum White Paper [Online]. Available: www.ethereum.org .

M. Maier, N. Ghazisaidi, and M. Reisslein, “The audacity of fiber-wireless (FiWi) networks (Invited Paper),” in ICST Int. Conf. on Access Networks (AccessNets), Las Vegas, Nevada, Oct.2008, pp. 1–10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. Next-generation passive optical network (NG-PON) roadmap as of 2009, illustrating the primary goal of continued capacity upgrades in the past [4]. ©2009 IEEE.
Fig. 2.
Fig. 2. Three lenses of 5G, IoT, and the Tactile Internet: commonalities and differences [29]. © 2016 IEEE.
Fig. 3.
Fig. 3. Teleoperation system based on bidirectional haptic communications between a human operator (HO) and a teleoperator robot (TOR) in a remote task environment.
Fig. 4.
Fig. 4. Experimental 6-DoF teleoperation packet interarrival times: (a) command path and (b) feedback path.
Fig. 5.
Fig. 5. CCDF of fitted PDFs and experimental 6-DoF teleoperation packet interarrival times: (a) command path and (b) feedback path.
Fig. 6.
Fig. 6. Summary of best fitting packet interarrival time distributions for command and feedback paths with and without deadband coding: (a) 6-DoF teleoperation and (b) 1-DoF teleoperation.
Fig. 7.
Fig. 7. Hierarchical frame aggregation involving different aggregation layers (L0–L4) across EPON backhaul and WLAN mesh front end. Adapted from [39]. © 2008 IEEE.
Fig. 8.
Fig. 8. Local and non-local teleoperation in FiWi enhanced LTE-A HetNets with AI-based MEC capabilities.
Fig. 9.
Fig. 9. Edge sample forecast (ESF) module at the edge of a general communication network with arbitrary propagation delays.
Fig. 10.
Fig. 10. Average end-to-end delay of mobile users (MUs) versus mean background traffic rate λBKGD (packets/s) for local and non-local H2H communications with different αPON{1,50,100}.
Fig. 11.
Fig. 11. Average end-to-end delay of human operators (HOs) versus mean background traffic rate λBKGD (packets/s) for local teleoperation with and without deadband coding in the command path for different dc{0,0.01%,0.02%,0.05%} (αPON=100 fixed).
Fig. 12.
Fig. 12. End-to-end delay CDF FDLT(ij)E2E(t) of local teleoperation.
Fig. 13.
Fig. 13. Average end-to-end delay of human operators (HOs) versus backhaul traffic scale factor αPON of fixed subscribers (λBKGD=20packets/s fixed) for non-local teleoperation across different NG-PON backhaul infrastructures.
Fig. 14.
Fig. 14. Comparison of forecasting accuracy between proposed MLP-based and naive ESF schemes for local and non-local teleoperation without deadband coding in the feedback path (df=0).
Fig. 15.
Fig. 15. DAOs versus AI, robots, and traditional organizations: automation and humans involved at their edges and center (source: Ethereum Blog).

Tables (3)

Tables Icon

TABLE I Comparison of Best Fitting PDFs for 6-DoF Teleoperation Packet Interarrival Times

Tables Icon

Algorithm 1. Edge Sample Forecast

Tables Icon

Algorithm 2. SAMPLE_ALIGNER()

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

D*=supζ|F^I(c)(ζ)FI(c)(ζ)|,
Ψ(A,Ξ)=j=1NhcjG(i=1Lci,jA(i))+c0,
πj=(1ω)ωj,
FDQ(t)=P(DQt)=1ωe(1ω)μt,
FDS(t)=P(DSt)=1eμt,
FD(t)=P(Dt)=0tFDS(tu)dFDQ(u).
bi,k=limkP(s(t)=i,b(t)=k),k[0,Wi1],i[0,m],
τ=i=0mbi,0=2(12Pf)q22(1q1)(1Pf)(12Pf)q2[(W0+1)(12Pf)+W0Pf(1(2Pf)m)]2(1q1)(1Pf)(12Pf)+1,
E(DS)=1μ=k=0pek(1pe)[j=0pcj(1pc)·((b=0k+j2min(b,m)W012Es)+jTc+kTe+Ts)],