Abstract

An artificial neural network (ANN) based transfer learning model is built for quality of transmission (QoT) prediction in optical systems feasible with different modulation formats. Knowledge learned from one optical system can be transferred to a similar optical system by adjusting weights in ANN hidden layers with a few additional training samples, where highly related information from both systems is integrated and redundant information is discarded. Homogeneous and heterogeneous ANN structures are implemented to achieve accurate $Q$-factor-based QoT prediction with low root-mean-square error. The transfer learning accuracy under different modulation formats, transmission distances, and fiber types is evaluated. Using transfer learning, the number of retraining samples is reduced from 1000 to as low as 20, and the training time is reduced by up to four times.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Performance studies of evolutionary transfer learning for end-to-end QoT estimation in multi-domain optical networks [Invited]

Che-Yu Liu, Xiaoliang Chen, Roberto Proietti, and S. J. Ben Yoo
J. Opt. Commun. Netw. 13(4) B1-B11 (2021)

Performance comparisons between machine learning and analytical models for quality of transmission estimation in wavelength-division-multiplexed systems [Invited]

Jianing Lu, Gai Zhou, Qirui Fan, Dengke Zeng, Changjian Guo, Linyue Lu, Jianqiang Li, Chongjin Xie, Chao Lu, Faisal Nadeem Khan, and Alan Pak Tao Lau
J. Opt. Commun. Netw. 13(4) B35-B44 (2021)

Machine-learning-based EDFA gain estimation [Invited]

Jiakai Yu, Shengxiang Zhu, Craig L. Gutterman, Gil Zussman, and Daniel C. Kilper
J. Opt. Commun. Netw. 13(4) B83-B91 (2021)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription