Abstract

An artificial neural network (ANN) based transfer learning model is built for quality of transmission (QoT) prediction in optical systems feasible with different modulation formats. Knowledge learned from one optical system can be transferred to a similar optical system by adjusting weights in ANN hidden layers with a few additional training samples, where highly related information from both systems is integrated and redundant information is discarded. Homogeneous and heterogeneous ANN structures are implemented to achieve accurate $Q$-factor-based QoT prediction with low root-mean-square error. The transfer learning accuracy under different modulation formats, transmission distances, and fiber types is evaluated. Using transfer learning, the number of retraining samples is reduced from 1000 to as low as 20, and the training time is reduced by up to four times.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental Demonstration of Machine-Learning-Aided QoT Estimation in Multi-Domain Elastic Optical Networks with Alien Wavelengths

Roberto Proietti, Xiaoliang Chen, Kaiqi Zhang, Gengchen Liu, M. Shamsabardeh, Alberto Castro, Luis Velasco, Zuqing Zhu, and S. J. Ben Yoo
J. Opt. Commun. Netw. 11(1) A1-A10 (2019)

Machine Learning Models for Estimating Quality of Transmission in DWDM Networks

Rui Manuel Morais and João Pedro
J. Opt. Commun. Netw. 10(10) D84-D99 (2018)

Transfer learning assisted deep neural network for OSNR estimation

Le Xia, Jing Zhang, Shaohua Hu, Mingyue Zhu, Yingxiong Song, and Kun Qiu
Opt. Express 27(14) 19398-19406 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription