Abstract

Predeployment of regenerators in a selected subset of network nodes allows service providers to achieve rapid provisioning of traffic demands, high utilization, and reduced network operational costs, while still guaranteeing lightpath quality of transmission. Enabled by bandwidth-variable transceivers in flexible-grid optical networks, optical channel bandwidths are no longer fixed but constantly changing according to real-time communication requirements. Consequently, the data-rate-variable traffic together with other new network features introduced by flexible-grid networks will render the regenerator allocation very difficult due to the complicated network states. In this paper, we investigate how to allocate regenerators robustly in flexible-grid optical networks to combat physical-layer impairments when the data rates of traffic demands are random variables. The Gaussian noise model and a modified statistical network assessment process framework are used to characterize the probabilistic distributions of physical-layer impairments for each demand, based on which a heuristic algorithm is proposed to select a set of regenerator sites with minimum blocking probabilities. Our method achieves the same blocking probabilities with on average 10% less regenerator sites compared with the greedy constrained-routing regenerator allocation method, and obtains blocking probabilities two orders of magnitude lower than that of the routing and reach method with the same number of regenerator sites.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Potentialities and Criticalities of Flexible-Rate Transponders in DWDM Networks: A Statistical Approach

Mattia Cantono, Roberto Gaudino, and Vittorio Curri
J. Opt. Commun. Netw. 8(7) A76-A85 (2016)

Dynamic Routing in Spectrally Spatially Flexible Optical Networks with Back-to-Back Regeneration

Krzysztof Walkowiak, Mirosław Klinkowski, and Piotr Lechowicz
J. Opt. Commun. Netw. 10(5) 523-534 (2018)

Resource Allocation for Flexible-Grid Optical Networks With Nonlinear Channel Model [Invited]

Li Yan, Erik Agrell, Henk Wymeersch, and Maïté Brandt-Pearce
J. Opt. Commun. Netw. 7(11) B101-B108 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription