Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dynamic Slicing Approach for Multi-Tenant 5G Transport Networks [Invited]

Not Accessible

Your library or personal account may give you access

Abstract

Software defined networking allows network providers to share their physical network (PN) among multiple tenants by means of network slicing, where several virtual networks (VNs) are provisioned on top of the physical one. In this scenario, PN resource utilization can be improved by introducing advanced orchestration functionalities that can intelligently assign and redistribute resources among the slices of different tenants according to the temporal variation of the VN resource requirements. This is a concept known as dynamic slicing. This paper presents a solution for the dynamic slicing problem in terms of both mixed integer linear programming formulations and heuristic algorithms. The benefits of dynamic slicing are compared against static slicing, i.e., an approach without intelligent adaptation of the amount of resources allocated to each VN. Simulation results show that dynamic slicing can reduce the VN rejection probability by more than 1 order of magnitude compared to static slicing. This can help network providers accept more VNs into their infrastructure and potentially increase their revenues. The benefits of dynamic slicing come at a cost in terms of service degradation (i.e., when not all the resources required by a VN can be provided), but the paper shows that the service degradation level introduced by the proposed solutions is very small.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

2 January 2018: A correction was made to the copyright.


More Like This
Need for a Transport API in 5G for Global Orchestration of Cloud and Networks Through a Virtualized Infrastructure Manager and Planner [Invited]

Arturo Mayoral, Raul Muñoz, Ricard Vilalta, Ramon Casellas, Ricardo Martínez, and Victor López
J. Opt. Commun. Netw. 9(1) A55-A62 (2017)

Leveraging Mixed-Strategy Gaming to Realize Incentive-Driven VNF Service Chain Provisioning in Broker-Based Elastic Optical Inter-Datacenter Networks

Xiaoliang Chen, Zuqing Zhu, Jiannan Guo, Sheng Kang, Roberto Proietti, Alberto Castro, and S. J. B. Yoo
J. Opt. Commun. Netw. 10(2) A232-A240 (2018)

Integrated SDN/NFV Orchestration for the Dynamic Deployment of Mobile Virtual Backhaul Networks Over a Multilayer (Packet/Optical) Aggregation Infrastructure

Ricardo Martínez, Arturo Mayoral, Ricard Vilalta, Ramon Casellas, Raül Muñoz, Stephan Pachnicke, Thomas Szyrkowiec, and Achim Autenrieth
J. Opt. Commun. Netw. 9(2) A135-A142 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.