Abstract

We propose and demonstrate a self-restorable wavelength-division-multiplexing passive optical network (WDM-PON) with a color-free optical source. When the distribution and feeder fiber links are broken, we can successfully recover the network by using optical switches and/or Ethernet switches. If the fault monitors detect the failures, optical switches change the transmission path and the failures are recovered within 10ms. If we use only Ethernet switches, we can also protect the transmission path failure with the help of the link aggregation control protocol.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Lee, W. V. Sorin, B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol., vol. 24, no. 12, pp. 4568–4583, Dec. 2006.
    [CrossRef]
  2. K. Lee, S. B. Lee, J. H. Lee, Y.-G. Han, S.-G. Mun, S.-M. Lee, C.-H. Lee, “A self-restorable architecture for bidirectional wavelength-division-multiplexed passive optical network with colorless ONUs,” Opt. Express, vol. 15, no. 8, pp. 4863–4868, Apr. 2007.
    [CrossRef] [PubMed]
  3. Z. Wang, X. Sun, C. Lin, C.-K. Chan, L.-K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 717–719, Mar. 2005.
    [CrossRef]
  4. X. Sun, C.-K. Chan, L. K. Chen, “A survivable WDM-PON architecture with centralized alternate-path protection switching for traffic restoration,” IEEE Photon. Technol. Lett., vol. 18, no. 4, pp. 631–633, Feb. 2006.
    [CrossRef]
  5. A. Chowdhury, M.-F. Huang, H.-C. Chien, G. Ellinas, G.-K. Chang, “A self-survivable WDM-PON architecture with centralized wavelength monitoring, protection and restoration for both upstream and downstream links,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optics Engineers Conf., San Diego: Optical Society of America, 2008, paper JThA95.
  6. K. Lee, S.-G. Mun, C.-H. Lee, S.-B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett., vol. 20, no. 9, pp. 679–681, May 2008.
    [CrossRef]
  7. J. Chen, L. Wosinska, S. He, “High utilization of wavelengths and simple interconnection between users in a protection scheme for passive optical networks,” IEEE Photon. Technol. Lett., vol. 20, no. 6, pp. 389–391, Mar. 2008.
    [CrossRef]
  8. H. D. Kim, S.-G. Kang, C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Pérot semiconductor laser,” IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1067–1069, Aug. 2000.
    [CrossRef]
  9. IEEE Standard for Information Technology, IEEE Standard 802.3 ad-2000.
  10. S.-G. Mun, J.-H. Moon, H.-K. Lee, J.-Y. Kim, C.-H. Lee, “A WDM-PON with a 40 Gb∕s(32×1.25 Gb∕s) capacity based on wavelength-locked Fabry-Perot laser diodes,” Opt. Express, vol. 16, no. 15, pp. 11361–11368, 2008.
    [CrossRef] [PubMed]
  11. S. Verbrugge, D. Colle, P. Demeester, R. Huelsermann, M. Jaeger, “General availability model for multilayer transport networks,” in Proc. 5th Int. Workshop on Design of Reliable Communication Networks (DRCN2005), 2005, pp. 85–92.
  12. S. Verbrugge, D. Colle, M. Pickavet, P. Demeester, S. Pasqualini, A. Iselt, A. Kirstädter, R. Hülsermann, F.-J. Westphal, M. Jäger, “Methodology and input availability parameters for calculating OpEx and CapEx costs for realistic network scenarios,” J. Opt. Netw., vol. 5, no. 6, pp. 509–520, June 2006.
    [CrossRef]
  13. J. Chen, L. Wosinska, “Analysis of protection schemes in PON compatible with smooth migration from TDM-PON to hybrid WDM/TDM-PON,” J. Opt. Netw., vol. 6, no. 5, pp. 514–526, May 2007.
    [CrossRef]

2008 (3)

K. Lee, S.-G. Mun, C.-H. Lee, S.-B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett., vol. 20, no. 9, pp. 679–681, May 2008.
[CrossRef]

J. Chen, L. Wosinska, S. He, “High utilization of wavelengths and simple interconnection between users in a protection scheme for passive optical networks,” IEEE Photon. Technol. Lett., vol. 20, no. 6, pp. 389–391, Mar. 2008.
[CrossRef]

S.-G. Mun, J.-H. Moon, H.-K. Lee, J.-Y. Kim, C.-H. Lee, “A WDM-PON with a 40 Gb∕s(32×1.25 Gb∕s) capacity based on wavelength-locked Fabry-Perot laser diodes,” Opt. Express, vol. 16, no. 15, pp. 11361–11368, 2008.
[CrossRef] [PubMed]

2007 (2)

2006 (3)

2005 (1)

Z. Wang, X. Sun, C. Lin, C.-K. Chan, L.-K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 717–719, Mar. 2005.
[CrossRef]

2000 (1)

H. D. Kim, S.-G. Kang, C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Pérot semiconductor laser,” IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1067–1069, Aug. 2000.
[CrossRef]

Chan, C.-K.

X. Sun, C.-K. Chan, L. K. Chen, “A survivable WDM-PON architecture with centralized alternate-path protection switching for traffic restoration,” IEEE Photon. Technol. Lett., vol. 18, no. 4, pp. 631–633, Feb. 2006.
[CrossRef]

Z. Wang, X. Sun, C. Lin, C.-K. Chan, L.-K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 717–719, Mar. 2005.
[CrossRef]

Chang, G.-K.

A. Chowdhury, M.-F. Huang, H.-C. Chien, G. Ellinas, G.-K. Chang, “A self-survivable WDM-PON architecture with centralized wavelength monitoring, protection and restoration for both upstream and downstream links,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optics Engineers Conf., San Diego: Optical Society of America, 2008, paper JThA95.

Chen, J.

J. Chen, L. Wosinska, S. He, “High utilization of wavelengths and simple interconnection between users in a protection scheme for passive optical networks,” IEEE Photon. Technol. Lett., vol. 20, no. 6, pp. 389–391, Mar. 2008.
[CrossRef]

J. Chen, L. Wosinska, “Analysis of protection schemes in PON compatible with smooth migration from TDM-PON to hybrid WDM/TDM-PON,” J. Opt. Netw., vol. 6, no. 5, pp. 514–526, May 2007.
[CrossRef]

Chen, L. K.

X. Sun, C.-K. Chan, L. K. Chen, “A survivable WDM-PON architecture with centralized alternate-path protection switching for traffic restoration,” IEEE Photon. Technol. Lett., vol. 18, no. 4, pp. 631–633, Feb. 2006.
[CrossRef]

Chen, L.-K.

Z. Wang, X. Sun, C. Lin, C.-K. Chan, L.-K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 717–719, Mar. 2005.
[CrossRef]

Chien, H.-C.

A. Chowdhury, M.-F. Huang, H.-C. Chien, G. Ellinas, G.-K. Chang, “A self-survivable WDM-PON architecture with centralized wavelength monitoring, protection and restoration for both upstream and downstream links,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optics Engineers Conf., San Diego: Optical Society of America, 2008, paper JThA95.

Chowdhury, A.

A. Chowdhury, M.-F. Huang, H.-C. Chien, G. Ellinas, G.-K. Chang, “A self-survivable WDM-PON architecture with centralized wavelength monitoring, protection and restoration for both upstream and downstream links,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optics Engineers Conf., San Diego: Optical Society of America, 2008, paper JThA95.

Colle, D.

S. Verbrugge, D. Colle, M. Pickavet, P. Demeester, S. Pasqualini, A. Iselt, A. Kirstädter, R. Hülsermann, F.-J. Westphal, M. Jäger, “Methodology and input availability parameters for calculating OpEx and CapEx costs for realistic network scenarios,” J. Opt. Netw., vol. 5, no. 6, pp. 509–520, June 2006.
[CrossRef]

S. Verbrugge, D. Colle, P. Demeester, R. Huelsermann, M. Jaeger, “General availability model for multilayer transport networks,” in Proc. 5th Int. Workshop on Design of Reliable Communication Networks (DRCN2005), 2005, pp. 85–92.

Demeester, P.

S. Verbrugge, D. Colle, M. Pickavet, P. Demeester, S. Pasqualini, A. Iselt, A. Kirstädter, R. Hülsermann, F.-J. Westphal, M. Jäger, “Methodology and input availability parameters for calculating OpEx and CapEx costs for realistic network scenarios,” J. Opt. Netw., vol. 5, no. 6, pp. 509–520, June 2006.
[CrossRef]

S. Verbrugge, D. Colle, P. Demeester, R. Huelsermann, M. Jaeger, “General availability model for multilayer transport networks,” in Proc. 5th Int. Workshop on Design of Reliable Communication Networks (DRCN2005), 2005, pp. 85–92.

Ellinas, G.

A. Chowdhury, M.-F. Huang, H.-C. Chien, G. Ellinas, G.-K. Chang, “A self-survivable WDM-PON architecture with centralized wavelength monitoring, protection and restoration for both upstream and downstream links,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optics Engineers Conf., San Diego: Optical Society of America, 2008, paper JThA95.

Han, Y.-G.

He, S.

J. Chen, L. Wosinska, S. He, “High utilization of wavelengths and simple interconnection between users in a protection scheme for passive optical networks,” IEEE Photon. Technol. Lett., vol. 20, no. 6, pp. 389–391, Mar. 2008.
[CrossRef]

Huang, M.-F.

A. Chowdhury, M.-F. Huang, H.-C. Chien, G. Ellinas, G.-K. Chang, “A self-survivable WDM-PON architecture with centralized wavelength monitoring, protection and restoration for both upstream and downstream links,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optics Engineers Conf., San Diego: Optical Society of America, 2008, paper JThA95.

Huelsermann, R.

S. Verbrugge, D. Colle, P. Demeester, R. Huelsermann, M. Jaeger, “General availability model for multilayer transport networks,” in Proc. 5th Int. Workshop on Design of Reliable Communication Networks (DRCN2005), 2005, pp. 85–92.

Hülsermann, R.

Iselt, A.

Jaeger, M.

S. Verbrugge, D. Colle, P. Demeester, R. Huelsermann, M. Jaeger, “General availability model for multilayer transport networks,” in Proc. 5th Int. Workshop on Design of Reliable Communication Networks (DRCN2005), 2005, pp. 85–92.

Jäger, M.

Kang, S.-G.

H. D. Kim, S.-G. Kang, C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Pérot semiconductor laser,” IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1067–1069, Aug. 2000.
[CrossRef]

Kim, B. Y.

Kim, H. D.

H. D. Kim, S.-G. Kang, C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Pérot semiconductor laser,” IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1067–1069, Aug. 2000.
[CrossRef]

Kim, J.-Y.

Kirstädter, A.

Lee, C.-H.

Lee, H.-K.

Lee, J. H.

Lee, K.

K. Lee, S.-G. Mun, C.-H. Lee, S.-B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett., vol. 20, no. 9, pp. 679–681, May 2008.
[CrossRef]

K. Lee, S. B. Lee, J. H. Lee, Y.-G. Han, S.-G. Mun, S.-M. Lee, C.-H. Lee, “A self-restorable architecture for bidirectional wavelength-division-multiplexed passive optical network with colorless ONUs,” Opt. Express, vol. 15, no. 8, pp. 4863–4868, Apr. 2007.
[CrossRef] [PubMed]

Lee, S. B.

Lee, S.-B.

K. Lee, S.-G. Mun, C.-H. Lee, S.-B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett., vol. 20, no. 9, pp. 679–681, May 2008.
[CrossRef]

Lee, S.-M.

Lin, C.

Z. Wang, X. Sun, C. Lin, C.-K. Chan, L.-K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 717–719, Mar. 2005.
[CrossRef]

Moon, J.-H.

Mun, S.-G.

Pasqualini, S.

Pickavet, M.

Sorin, W. V.

Sun, X.

X. Sun, C.-K. Chan, L. K. Chen, “A survivable WDM-PON architecture with centralized alternate-path protection switching for traffic restoration,” IEEE Photon. Technol. Lett., vol. 18, no. 4, pp. 631–633, Feb. 2006.
[CrossRef]

Z. Wang, X. Sun, C. Lin, C.-K. Chan, L.-K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 717–719, Mar. 2005.
[CrossRef]

Verbrugge, S.

S. Verbrugge, D. Colle, M. Pickavet, P. Demeester, S. Pasqualini, A. Iselt, A. Kirstädter, R. Hülsermann, F.-J. Westphal, M. Jäger, “Methodology and input availability parameters for calculating OpEx and CapEx costs for realistic network scenarios,” J. Opt. Netw., vol. 5, no. 6, pp. 509–520, June 2006.
[CrossRef]

S. Verbrugge, D. Colle, P. Demeester, R. Huelsermann, M. Jaeger, “General availability model for multilayer transport networks,” in Proc. 5th Int. Workshop on Design of Reliable Communication Networks (DRCN2005), 2005, pp. 85–92.

Wang, Z.

Z. Wang, X. Sun, C. Lin, C.-K. Chan, L.-K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 717–719, Mar. 2005.
[CrossRef]

Westphal, F.-J.

Wosinska, L.

J. Chen, L. Wosinska, S. He, “High utilization of wavelengths and simple interconnection between users in a protection scheme for passive optical networks,” IEEE Photon. Technol. Lett., vol. 20, no. 6, pp. 389–391, Mar. 2008.
[CrossRef]

J. Chen, L. Wosinska, “Analysis of protection schemes in PON compatible with smooth migration from TDM-PON to hybrid WDM/TDM-PON,” J. Opt. Netw., vol. 6, no. 5, pp. 514–526, May 2007.
[CrossRef]

IEEE Photon. Technol. Lett. (5)

K. Lee, S.-G. Mun, C.-H. Lee, S.-B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett., vol. 20, no. 9, pp. 679–681, May 2008.
[CrossRef]

J. Chen, L. Wosinska, S. He, “High utilization of wavelengths and simple interconnection between users in a protection scheme for passive optical networks,” IEEE Photon. Technol. Lett., vol. 20, no. 6, pp. 389–391, Mar. 2008.
[CrossRef]

H. D. Kim, S.-G. Kang, C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Pérot semiconductor laser,” IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1067–1069, Aug. 2000.
[CrossRef]

Z. Wang, X. Sun, C. Lin, C.-K. Chan, L.-K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 717–719, Mar. 2005.
[CrossRef]

X. Sun, C.-K. Chan, L. K. Chen, “A survivable WDM-PON architecture with centralized alternate-path protection switching for traffic restoration,” IEEE Photon. Technol. Lett., vol. 18, no. 4, pp. 631–633, Feb. 2006.
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Netw. (2)

Opt. Express (2)

Other (3)

A. Chowdhury, M.-F. Huang, H.-C. Chien, G. Ellinas, G.-K. Chang, “A self-survivable WDM-PON architecture with centralized wavelength monitoring, protection and restoration for both upstream and downstream links,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optics Engineers Conf., San Diego: Optical Society of America, 2008, paper JThA95.

IEEE Standard for Information Technology, IEEE Standard 802.3 ad-2000.

S. Verbrugge, D. Colle, P. Demeester, R. Huelsermann, M. Jaeger, “General availability model for multilayer transport networks,” in Proc. 5th Int. Workshop on Design of Reliable Communication Networks (DRCN2005), 2005, pp. 85–92.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The proposed self-restorable WDM-PON using 1 × 2 optical switches.

Fig. 2
Fig. 2

Wavelength assignment under (a) normal state and (b) protection state.

Fig. 3
Fig. 3

The proposed self-restorable WDM-PON using Ethernet switches.

Fig. 4
Fig. 4

Measured switching time to restore (a) the feeder fiber failure, (b) the distribution fiber failure (the waiting time is not included.).

Fig. 5
Fig. 5

Measured BER curves of upstream signals.

Fig. 6
Fig. 6

The schematic architectures for calculation of the availability of (a) the WDM-PON and the self-restorable WDM-PON illustrated in (b) Fig. 1 and (c) Fig. 3.

Tables (2)

Tables Icon

Table 1 Collected Unavailability Numbers of the Elements

Tables Icon

Table 2 Number of Elements in Self-Restorable Architectures

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

U = MTTR MTBF ,
A = 1 U ,