Abstract

We propose a maximum a posteriori probability (MAP) turbo equalizer based on the sliding-window multilevel Bahl–Cocke–Jelinek–Raviv algorithm. This scheme is suitable for simultaneous nonlinear and linear impairment mitigation in multilevel coded-modulation schemes with coherent detection. The proposed scheme employs large-girth quasi-cyclic LDPC codes as channel codes. We demonstrate the efficiency of this method in dealing with fiber nonlinearities by performing Monte Carlo simulations. In addition, we provide the experimental results that demonstrate the efficiency of this method in dealing with polarization mode dispersion. We also study the ultimate channel capacity limits, assuming an independent identically distributed source.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription