Abstract

In all-optical networks with no wavelength converters, signals are switched optically inside the nodes and therefore propagate over hundreds or thousands of kilometers with no electrical regeneration. Over such distances, physical impairments, such as intersymbol interference (ISI), amplifier noise, and leaks within nodes (cross-talk), accumulate and can lead to serious signal degradation, resulting in poor quality of transmission (QoT) as measured by signal bit-error rates. The role of routing and wavelength assignment (RWA) algorithms is to accommodate incoming calls in optical networks over a route and a wavelength. RWA algorithms block calls if a continuous wavelength from the source to the destination cannot be found (wavelength blocking) or when the QoT of the call is not acceptable (QoT blocking). Evaluating RWA algorithms via simulations is possible but time consuming, and hence analytical methods are needed. Wavelength blocking has been studied analytically in the past, but QoT blocking has never been analytically modeled to our knowledge. In this paper, we present an analytical method to evaluate blocking probability in all-optical networks, accounting for physical layer impairments. Our physical layer model includes ISI and noise, two static effects that only depend on the network topology, and also cross-talk, which depends on the network state. Simulations on three different topologies with various numbers of channels, representing small- to large-scale networks, show that our technique is suitable for quick and accurate dimensioning of all-optical networks: the accuracy of the blocking rates computed with the analytical method, taking only seconds or minutes to run, is the same as that of simulations, which take hours to run.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Berthold, A. Saleh, L. Blair, J. Simmons, “Optical networking: past, present, and future,” J. Lightwave Technol., vol. 26, no. 9, pp. 1104–1118, May 2008.
    [CrossRef]
  2. J. Simmons, Optical Network Design and Planning. New York, Springer: 2008.
  3. J. Strand, A. Chiu, R. Tkach, “Issues for routing in the optical layer,” IEEE Commun. Mag., vol. 39, no. 2, pp. 81–87, Feb. 2001.
    [CrossRef]
  4. Y. Pointurier, M. Brandt-Pearce, S. Subramaniam, B. Xu, “Cross-layer adaptive routing and wavelength assignment in all-optical networks,” IEEE J. Sel. Areas Commun., vol. 26, pp. 32–44, Aug. 2008.
    [CrossRef]
  5. I. Chlamtac, A. Ganz, G. Karmi, “Lightpath communications: a novel approach to high bandwidth optical WANs,” IEEE Trans. Commun., vol. 40, no. 7, pp. 1171–1182, July 1992.
    [CrossRef]
  6. H. Zang, J. Jue, B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag., vol. 1, no. 1, pp. 47–60, Jan. 2000.
  7. G. Agrawal, Fiber-Optic Communications Systems. New York, Wiley: 2002.
    [CrossRef]
  8. E. Goldstein, L. Eskildsen, “Scaling limitations in transparent optical networks due to low-level crosstalk,” IEEE Photon. Technol. Lett., vol. 7, no. 1, pp. 93–94, Jan. 1995.
    [CrossRef]
  9. A. Birman, “Computing approximate blocking probabilities for a class of all-optical networks,” in Proc. IEEE INFOCOM, vol. 2, 1995, pp. 651–658.
  10. R. Barry, P. Humblet, “Models of blocking probability in all-optical networks with and without wavelength changers,” IEEE J. Sel. Areas Commun., vol. 14, no. 5, pp. 858–867, June 1996.
    [CrossRef]
  11. Y. Zhu, G. Rouskas, H. Perros, “A path decomposition approach for computing blocking probabilities in wavelength-routing networks,” IEEE/ACM Trans. Netw., vol. 8, no. 6, pp. 747–762, Dec. 2000.
    [CrossRef]
  12. K. Lu, G. Xiao, I. Chlamtac, “Analysis of blocking probability for distributed lightpath establishment in WDM optical networks,” IEEE/ACM Trans. Netw., vol. 13, no. 1, pp. 187–197, Feb. 2005.
    [CrossRef]
  13. S. Subramaniam, M. Azizoğlu, A. Somani, “All-optical networks with sparse wavelength conversion,” IEEE/ACM Trans. Netw., vol. 4, no. 4, pp. 544–557, Aug. 1996.
    [CrossRef]
  14. A. Sridharan, K. Sivarajan, “Blocking in all-optical networks,” IEEE/ACM Trans. Netw., vol. 12, no. 2, pp. 384–397, Apr. 2004.
    [CrossRef]
  15. B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Commun., vol. 18, no. 10, pp. 1810–1824, Oct. 2000.
    [CrossRef]
  16. T. Deng, S. Subramaniam, J. Xu, “Crosstalk-aware wavelength assignment in dynamic wavelength-routed optical networks,” in Proc. IEEE Broadnets, 2004, pp. 140–149.
  17. A. Willner, M. Cardakli, O. Adamczyk, Y.-W. Song, D. Gurkan, “Key building blocks for all-optical networks,” IEICE Trans. Commun., vol. E83-B, pp. 2166–2177, Oct. 2000.
  18. Y. Pointurier, M. Brandt-Pearce, “Analytical study of crosstalk propagation in all-optical networks using perturbation theory,” J. Lightwave Technol., vol. 23, no. 12, pp. 1901–1910, Dec. 2005.
    [CrossRef]
  19. S.-P. Chung, A. Kasper, K. Ross, “Computing approximate blocking probabilities for large loss networks with state-dependent routing,” IEEE/ACM Trans. Netw., vol. 1, no. 1, pp. 105–115, Feb. 1993.
    [CrossRef]
  20. Y. Pointurier, M. Brandt-Pearce, S. Subramaniam, “Analysis of blocking probability in noise and crosstalk impaired all-optical networks,” in Proc. IEEE INFOCOM, Anchorage, AK, May 2007, short paper.

2008

J. Berthold, A. Saleh, L. Blair, J. Simmons, “Optical networking: past, present, and future,” J. Lightwave Technol., vol. 26, no. 9, pp. 1104–1118, May 2008.
[CrossRef]

Y. Pointurier, M. Brandt-Pearce, S. Subramaniam, B. Xu, “Cross-layer adaptive routing and wavelength assignment in all-optical networks,” IEEE J. Sel. Areas Commun., vol. 26, pp. 32–44, Aug. 2008.
[CrossRef]

2005

K. Lu, G. Xiao, I. Chlamtac, “Analysis of blocking probability for distributed lightpath establishment in WDM optical networks,” IEEE/ACM Trans. Netw., vol. 13, no. 1, pp. 187–197, Feb. 2005.
[CrossRef]

Y. Pointurier, M. Brandt-Pearce, “Analytical study of crosstalk propagation in all-optical networks using perturbation theory,” J. Lightwave Technol., vol. 23, no. 12, pp. 1901–1910, Dec. 2005.
[CrossRef]

2004

A. Sridharan, K. Sivarajan, “Blocking in all-optical networks,” IEEE/ACM Trans. Netw., vol. 12, no. 2, pp. 384–397, Apr. 2004.
[CrossRef]

2001

J. Strand, A. Chiu, R. Tkach, “Issues for routing in the optical layer,” IEEE Commun. Mag., vol. 39, no. 2, pp. 81–87, Feb. 2001.
[CrossRef]

2000

H. Zang, J. Jue, B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag., vol. 1, no. 1, pp. 47–60, Jan. 2000.

Y. Zhu, G. Rouskas, H. Perros, “A path decomposition approach for computing blocking probabilities in wavelength-routing networks,” IEEE/ACM Trans. Netw., vol. 8, no. 6, pp. 747–762, Dec. 2000.
[CrossRef]

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Commun., vol. 18, no. 10, pp. 1810–1824, Oct. 2000.
[CrossRef]

A. Willner, M. Cardakli, O. Adamczyk, Y.-W. Song, D. Gurkan, “Key building blocks for all-optical networks,” IEICE Trans. Commun., vol. E83-B, pp. 2166–2177, Oct. 2000.

1996

S. Subramaniam, M. Azizoğlu, A. Somani, “All-optical networks with sparse wavelength conversion,” IEEE/ACM Trans. Netw., vol. 4, no. 4, pp. 544–557, Aug. 1996.
[CrossRef]

R. Barry, P. Humblet, “Models of blocking probability in all-optical networks with and without wavelength changers,” IEEE J. Sel. Areas Commun., vol. 14, no. 5, pp. 858–867, June 1996.
[CrossRef]

1995

E. Goldstein, L. Eskildsen, “Scaling limitations in transparent optical networks due to low-level crosstalk,” IEEE Photon. Technol. Lett., vol. 7, no. 1, pp. 93–94, Jan. 1995.
[CrossRef]

1993

S.-P. Chung, A. Kasper, K. Ross, “Computing approximate blocking probabilities for large loss networks with state-dependent routing,” IEEE/ACM Trans. Netw., vol. 1, no. 1, pp. 105–115, Feb. 1993.
[CrossRef]

1992

I. Chlamtac, A. Ganz, G. Karmi, “Lightpath communications: a novel approach to high bandwidth optical WANs,” IEEE Trans. Commun., vol. 40, no. 7, pp. 1171–1182, July 1992.
[CrossRef]

Adamczyk, O.

A. Willner, M. Cardakli, O. Adamczyk, Y.-W. Song, D. Gurkan, “Key building blocks for all-optical networks,” IEICE Trans. Commun., vol. E83-B, pp. 2166–2177, Oct. 2000.

Agrawal, G.

G. Agrawal, Fiber-Optic Communications Systems. New York, Wiley: 2002.
[CrossRef]

Azizoglu, M.

S. Subramaniam, M. Azizoğlu, A. Somani, “All-optical networks with sparse wavelength conversion,” IEEE/ACM Trans. Netw., vol. 4, no. 4, pp. 544–557, Aug. 1996.
[CrossRef]

Barry, R.

R. Barry, P. Humblet, “Models of blocking probability in all-optical networks with and without wavelength changers,” IEEE J. Sel. Areas Commun., vol. 14, no. 5, pp. 858–867, June 1996.
[CrossRef]

Berthold, J.

Birman, A.

A. Birman, “Computing approximate blocking probabilities for a class of all-optical networks,” in Proc. IEEE INFOCOM, vol. 2, 1995, pp. 651–658.

Blair, L.

Brandt-Pearce, M.

Y. Pointurier, M. Brandt-Pearce, S. Subramaniam, B. Xu, “Cross-layer adaptive routing and wavelength assignment in all-optical networks,” IEEE J. Sel. Areas Commun., vol. 26, pp. 32–44, Aug. 2008.
[CrossRef]

Y. Pointurier, M. Brandt-Pearce, “Analytical study of crosstalk propagation in all-optical networks using perturbation theory,” J. Lightwave Technol., vol. 23, no. 12, pp. 1901–1910, Dec. 2005.
[CrossRef]

Y. Pointurier, M. Brandt-Pearce, S. Subramaniam, “Analysis of blocking probability in noise and crosstalk impaired all-optical networks,” in Proc. IEEE INFOCOM, Anchorage, AK, May 2007, short paper.

Cardakli, M.

A. Willner, M. Cardakli, O. Adamczyk, Y.-W. Song, D. Gurkan, “Key building blocks for all-optical networks,” IEICE Trans. Commun., vol. E83-B, pp. 2166–2177, Oct. 2000.

Chiu, A.

J. Strand, A. Chiu, R. Tkach, “Issues for routing in the optical layer,” IEEE Commun. Mag., vol. 39, no. 2, pp. 81–87, Feb. 2001.
[CrossRef]

Chlamtac, I.

K. Lu, G. Xiao, I. Chlamtac, “Analysis of blocking probability for distributed lightpath establishment in WDM optical networks,” IEEE/ACM Trans. Netw., vol. 13, no. 1, pp. 187–197, Feb. 2005.
[CrossRef]

I. Chlamtac, A. Ganz, G. Karmi, “Lightpath communications: a novel approach to high bandwidth optical WANs,” IEEE Trans. Commun., vol. 40, no. 7, pp. 1171–1182, July 1992.
[CrossRef]

Chung, S.-P.

S.-P. Chung, A. Kasper, K. Ross, “Computing approximate blocking probabilities for large loss networks with state-dependent routing,” IEEE/ACM Trans. Netw., vol. 1, no. 1, pp. 105–115, Feb. 1993.
[CrossRef]

Deng, T.

T. Deng, S. Subramaniam, J. Xu, “Crosstalk-aware wavelength assignment in dynamic wavelength-routed optical networks,” in Proc. IEEE Broadnets, 2004, pp. 140–149.

Eskildsen, L.

E. Goldstein, L. Eskildsen, “Scaling limitations in transparent optical networks due to low-level crosstalk,” IEEE Photon. Technol. Lett., vol. 7, no. 1, pp. 93–94, Jan. 1995.
[CrossRef]

Ganz, A.

I. Chlamtac, A. Ganz, G. Karmi, “Lightpath communications: a novel approach to high bandwidth optical WANs,” IEEE Trans. Commun., vol. 40, no. 7, pp. 1171–1182, July 1992.
[CrossRef]

Goldstein, E.

E. Goldstein, L. Eskildsen, “Scaling limitations in transparent optical networks due to low-level crosstalk,” IEEE Photon. Technol. Lett., vol. 7, no. 1, pp. 93–94, Jan. 1995.
[CrossRef]

Gurkan, D.

A. Willner, M. Cardakli, O. Adamczyk, Y.-W. Song, D. Gurkan, “Key building blocks for all-optical networks,” IEICE Trans. Commun., vol. E83-B, pp. 2166–2177, Oct. 2000.

Humblet, P.

R. Barry, P. Humblet, “Models of blocking probability in all-optical networks with and without wavelength changers,” IEEE J. Sel. Areas Commun., vol. 14, no. 5, pp. 858–867, June 1996.
[CrossRef]

Jue, J.

H. Zang, J. Jue, B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag., vol. 1, no. 1, pp. 47–60, Jan. 2000.

Karmi, G.

I. Chlamtac, A. Ganz, G. Karmi, “Lightpath communications: a novel approach to high bandwidth optical WANs,” IEEE Trans. Commun., vol. 40, no. 7, pp. 1171–1182, July 1992.
[CrossRef]

Kasper, A.

S.-P. Chung, A. Kasper, K. Ross, “Computing approximate blocking probabilities for large loss networks with state-dependent routing,” IEEE/ACM Trans. Netw., vol. 1, no. 1, pp. 105–115, Feb. 1993.
[CrossRef]

Lu, K.

K. Lu, G. Xiao, I. Chlamtac, “Analysis of blocking probability for distributed lightpath establishment in WDM optical networks,” IEEE/ACM Trans. Netw., vol. 13, no. 1, pp. 187–197, Feb. 2005.
[CrossRef]

Mukherjee, B.

H. Zang, J. Jue, B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag., vol. 1, no. 1, pp. 47–60, Jan. 2000.

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Commun., vol. 18, no. 10, pp. 1810–1824, Oct. 2000.
[CrossRef]

Perros, H.

Y. Zhu, G. Rouskas, H. Perros, “A path decomposition approach for computing blocking probabilities in wavelength-routing networks,” IEEE/ACM Trans. Netw., vol. 8, no. 6, pp. 747–762, Dec. 2000.
[CrossRef]

Pointurier, Y.

Y. Pointurier, M. Brandt-Pearce, S. Subramaniam, B. Xu, “Cross-layer adaptive routing and wavelength assignment in all-optical networks,” IEEE J. Sel. Areas Commun., vol. 26, pp. 32–44, Aug. 2008.
[CrossRef]

Y. Pointurier, M. Brandt-Pearce, “Analytical study of crosstalk propagation in all-optical networks using perturbation theory,” J. Lightwave Technol., vol. 23, no. 12, pp. 1901–1910, Dec. 2005.
[CrossRef]

Y. Pointurier, M. Brandt-Pearce, S. Subramaniam, “Analysis of blocking probability in noise and crosstalk impaired all-optical networks,” in Proc. IEEE INFOCOM, Anchorage, AK, May 2007, short paper.

Ross, K.

S.-P. Chung, A. Kasper, K. Ross, “Computing approximate blocking probabilities for large loss networks with state-dependent routing,” IEEE/ACM Trans. Netw., vol. 1, no. 1, pp. 105–115, Feb. 1993.
[CrossRef]

Rouskas, G.

Y. Zhu, G. Rouskas, H. Perros, “A path decomposition approach for computing blocking probabilities in wavelength-routing networks,” IEEE/ACM Trans. Netw., vol. 8, no. 6, pp. 747–762, Dec. 2000.
[CrossRef]

Saleh, A.

Simmons, J.

Sivarajan, K.

A. Sridharan, K. Sivarajan, “Blocking in all-optical networks,” IEEE/ACM Trans. Netw., vol. 12, no. 2, pp. 384–397, Apr. 2004.
[CrossRef]

Somani, A.

S. Subramaniam, M. Azizoğlu, A. Somani, “All-optical networks with sparse wavelength conversion,” IEEE/ACM Trans. Netw., vol. 4, no. 4, pp. 544–557, Aug. 1996.
[CrossRef]

Song, Y.-W.

A. Willner, M. Cardakli, O. Adamczyk, Y.-W. Song, D. Gurkan, “Key building blocks for all-optical networks,” IEICE Trans. Commun., vol. E83-B, pp. 2166–2177, Oct. 2000.

Sridharan, A.

A. Sridharan, K. Sivarajan, “Blocking in all-optical networks,” IEEE/ACM Trans. Netw., vol. 12, no. 2, pp. 384–397, Apr. 2004.
[CrossRef]

Strand, J.

J. Strand, A. Chiu, R. Tkach, “Issues for routing in the optical layer,” IEEE Commun. Mag., vol. 39, no. 2, pp. 81–87, Feb. 2001.
[CrossRef]

Subramaniam, S.

Y. Pointurier, M. Brandt-Pearce, S. Subramaniam, B. Xu, “Cross-layer adaptive routing and wavelength assignment in all-optical networks,” IEEE J. Sel. Areas Commun., vol. 26, pp. 32–44, Aug. 2008.
[CrossRef]

S. Subramaniam, M. Azizoğlu, A. Somani, “All-optical networks with sparse wavelength conversion,” IEEE/ACM Trans. Netw., vol. 4, no. 4, pp. 544–557, Aug. 1996.
[CrossRef]

T. Deng, S. Subramaniam, J. Xu, “Crosstalk-aware wavelength assignment in dynamic wavelength-routed optical networks,” in Proc. IEEE Broadnets, 2004, pp. 140–149.

Y. Pointurier, M. Brandt-Pearce, S. Subramaniam, “Analysis of blocking probability in noise and crosstalk impaired all-optical networks,” in Proc. IEEE INFOCOM, Anchorage, AK, May 2007, short paper.

Tkach, R.

J. Strand, A. Chiu, R. Tkach, “Issues for routing in the optical layer,” IEEE Commun. Mag., vol. 39, no. 2, pp. 81–87, Feb. 2001.
[CrossRef]

Willner, A.

A. Willner, M. Cardakli, O. Adamczyk, Y.-W. Song, D. Gurkan, “Key building blocks for all-optical networks,” IEICE Trans. Commun., vol. E83-B, pp. 2166–2177, Oct. 2000.

Xiao, G.

K. Lu, G. Xiao, I. Chlamtac, “Analysis of blocking probability for distributed lightpath establishment in WDM optical networks,” IEEE/ACM Trans. Netw., vol. 13, no. 1, pp. 187–197, Feb. 2005.
[CrossRef]

Xu, B.

Y. Pointurier, M. Brandt-Pearce, S. Subramaniam, B. Xu, “Cross-layer adaptive routing and wavelength assignment in all-optical networks,” IEEE J. Sel. Areas Commun., vol. 26, pp. 32–44, Aug. 2008.
[CrossRef]

Xu, J.

T. Deng, S. Subramaniam, J. Xu, “Crosstalk-aware wavelength assignment in dynamic wavelength-routed optical networks,” in Proc. IEEE Broadnets, 2004, pp. 140–149.

Zang, H.

H. Zang, J. Jue, B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag., vol. 1, no. 1, pp. 47–60, Jan. 2000.

Zhu, Y.

Y. Zhu, G. Rouskas, H. Perros, “A path decomposition approach for computing blocking probabilities in wavelength-routing networks,” IEEE/ACM Trans. Netw., vol. 8, no. 6, pp. 747–762, Dec. 2000.
[CrossRef]

IEEE Commun. Mag.

J. Strand, A. Chiu, R. Tkach, “Issues for routing in the optical layer,” IEEE Commun. Mag., vol. 39, no. 2, pp. 81–87, Feb. 2001.
[CrossRef]

IEEE J. Sel. Areas Commun.

Y. Pointurier, M. Brandt-Pearce, S. Subramaniam, B. Xu, “Cross-layer adaptive routing and wavelength assignment in all-optical networks,” IEEE J. Sel. Areas Commun., vol. 26, pp. 32–44, Aug. 2008.
[CrossRef]

R. Barry, P. Humblet, “Models of blocking probability in all-optical networks with and without wavelength changers,” IEEE J. Sel. Areas Commun., vol. 14, no. 5, pp. 858–867, June 1996.
[CrossRef]

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Commun., vol. 18, no. 10, pp. 1810–1824, Oct. 2000.
[CrossRef]

IEEE Photon. Technol. Lett.

E. Goldstein, L. Eskildsen, “Scaling limitations in transparent optical networks due to low-level crosstalk,” IEEE Photon. Technol. Lett., vol. 7, no. 1, pp. 93–94, Jan. 1995.
[CrossRef]

IEEE Trans. Commun.

I. Chlamtac, A. Ganz, G. Karmi, “Lightpath communications: a novel approach to high bandwidth optical WANs,” IEEE Trans. Commun., vol. 40, no. 7, pp. 1171–1182, July 1992.
[CrossRef]

IEEE/ACM Trans. Netw.

Y. Zhu, G. Rouskas, H. Perros, “A path decomposition approach for computing blocking probabilities in wavelength-routing networks,” IEEE/ACM Trans. Netw., vol. 8, no. 6, pp. 747–762, Dec. 2000.
[CrossRef]

K. Lu, G. Xiao, I. Chlamtac, “Analysis of blocking probability for distributed lightpath establishment in WDM optical networks,” IEEE/ACM Trans. Netw., vol. 13, no. 1, pp. 187–197, Feb. 2005.
[CrossRef]

S. Subramaniam, M. Azizoğlu, A. Somani, “All-optical networks with sparse wavelength conversion,” IEEE/ACM Trans. Netw., vol. 4, no. 4, pp. 544–557, Aug. 1996.
[CrossRef]

A. Sridharan, K. Sivarajan, “Blocking in all-optical networks,” IEEE/ACM Trans. Netw., vol. 12, no. 2, pp. 384–397, Apr. 2004.
[CrossRef]

S.-P. Chung, A. Kasper, K. Ross, “Computing approximate blocking probabilities for large loss networks with state-dependent routing,” IEEE/ACM Trans. Netw., vol. 1, no. 1, pp. 105–115, Feb. 1993.
[CrossRef]

IEICE Trans. Commun.

A. Willner, M. Cardakli, O. Adamczyk, Y.-W. Song, D. Gurkan, “Key building blocks for all-optical networks,” IEICE Trans. Commun., vol. E83-B, pp. 2166–2177, Oct. 2000.

J. Lightwave Technol.

Y. Pointurier, M. Brandt-Pearce, “Analytical study of crosstalk propagation in all-optical networks using perturbation theory,” J. Lightwave Technol., vol. 23, no. 12, pp. 1901–1910, Dec. 2005.
[CrossRef]

J. Berthold, A. Saleh, L. Blair, J. Simmons, “Optical networking: past, present, and future,” J. Lightwave Technol., vol. 26, no. 9, pp. 1104–1118, May 2008.
[CrossRef]

Opt. Networks Mag.

H. Zang, J. Jue, B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag., vol. 1, no. 1, pp. 47–60, Jan. 2000.

Other

G. Agrawal, Fiber-Optic Communications Systems. New York, Wiley: 2002.
[CrossRef]

J. Simmons, Optical Network Design and Planning. New York, Springer: 2008.

A. Birman, “Computing approximate blocking probabilities for a class of all-optical networks,” in Proc. IEEE INFOCOM, vol. 2, 1995, pp. 651–658.

T. Deng, S. Subramaniam, J. Xu, “Crosstalk-aware wavelength assignment in dynamic wavelength-routed optical networks,” in Proc. IEEE Broadnets, 2004, pp. 140–149.

Y. Pointurier, M. Brandt-Pearce, S. Subramaniam, “Analysis of blocking probability in noise and crosstalk impaired all-optical networks,” in Proc. IEEE INFOCOM, Anchorage, AK, May 2007, short paper.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Model of a transmission lightpath (plain line) used to compute the Q factor. Each node can inject one or more cross-talk component (dashed lines), and ASE noise can originate from each amplifier (dotted lines).

Fig. 2
Fig. 2

Iterative algorithm to compute the blocking probability of an all-optical network using the wavelength blocking probability computations algorithm described in [14] (dashed box), which requires the computations of state-dependent arrival rates. Our extensions to compute the blocking probability due to QoT are in the dotted boxes. The edges are labeled by the corresponding equation numbers in the body of this paper, or in [14] when indicated.

Fig. 3
Fig. 3

Mesh of eight nodes. Each link is a span of 70 km of fiber.

Fig. 4
Fig. 4

Down-scaled version of the NSFNET topology (scaling factor: 1 10 ). In the figure, the weights represent the number of 70 km long spans for the links.

Fig. 5
Fig. 5

Blocking probability for the ring of 6 nodes, 32 wavelengths, 30 dB cross-talk; 95% confidence intervals are given for the simulation curve.

Fig. 6
Fig. 6

Blocking probability for the mesh of 8 nodes, 16 wavelengths, 25 dB and 30 dB cross-talk; 95% confidence intervals are given for the simulation curve.

Fig. 7
Fig. 7

Blocking probability for the NSFNET topology, 16 wavelengths, 30 dB cross-talk; 95% confidence intervals are given for the simulation curve.

Fig. 8
Fig. 8

Blocking probability for the NSFNET topology, 8 wavelengths, 30 dB cross-talk; 95% confidence intervals are given for the simulation curve. Underlying wavelength blocking algorithm from [13].

Fig. 9
Fig. 9

Blocking probability for the NSFNET topology, 8 wavelengths, 30 dB cross-talk; 95% confidence intervals are given for the simulation curve. Underlying wavelength blocking algorithm from [14].

Tables (4)

Tables Icon

Table 1 Algorithm 1 Blocking probability computation: main algorithm when no conditional blockings are used by the wavelength blocking computation algorithm.

Tables Icon

Table 2 Algorithm 2 Blocking probability computation: main algorithm when conditional blocking probabilities are used by the wavelength blocking computation algorithm.

Tables Icon

Table 1 Physical Parameters for the Simulated Networks

Tables Icon

Table 2 Gain in Load (With Respect to the 25 d B Cross-Talk Level Case) for the Mesh Network of 8 Nodes for a Target Blocking Probability of 10 3

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Q R = μ 1 , R μ 0 , R σ 0 , R + σ 1 , R = μ 1 , R μ 0 , R σ 0 , R + σ i , R 2 + σ n , R 2 + σ X , R 2 ,
σ X , R 2 = n σ x , R 2 ,
p R = Λ R M R 1 B R C = Λ R 1 B R C ,
U R ( k ) ( C k ) p R k ( 1 p R ) C k , k = 0 , 1 , , C .
U R , R ( k n x t ( R , R ) ) = U R ( k ) .
X T R = U R , R 1 U R , R p .
N R max = ( μ 1 μ 0 Q th σ 0 , R ) 2 σ i , R 2 σ n , R 2 σ x , R 2 .
B R ( q ) = k > N R max X T R ( k ) .
B R = B R ( w ) + ( 1 B R ( w ) ) B R ( q ) .
α j ( m ) = R : j R Λ R ( 1 B R | X j = m ) ,
B R | X j = m = B R | X j = m ( w ) + ( 1 B R | X j = m ( w ) ) B R | X j = m ( q ) .
p R | X j = m = Λ R M R 1 B R | X j = m C = Λ R 1 B R | X j = m C
U R | X j = m ( k ) { ( m k ) ( p R | X j = m ) k ( 1 p R | X j = m ) m k if k = 0 , , m , 0 if k = m + 1 , , C . }
U R , R | X j = m ( k n x t ( R , R ) ) = U R | X j = m ( k ) .
X T R | X j = m = U R , R 1 | X j = m U R , R p | X j = m ,
B R | X j = m ( q ) = k > N R max X T R | X j = m ( k ) .