Abstract

Performance of millimeter-wave (mm-wave) multiband orthogonal frequency division multiplexing (MB-OFDM) ultrawideband (UWB) signal generation using a frequency-quadrupling technique and transmission over fiber is investigated by simulation and experiment, and the error vector magnitude (EVM) is used to evaluate the transmission quality. Frequency hopping within the first three bands of IEEE 802.15.3a has been used in experiments to obtain an MB-OFDM UWB signal. The frequency quadrupling can be achieved by using only one Mach–Zehnder modulator (MZM) and two cascaded MZMs. It is found that using one MZM is better than using two cascaded MZMs in the performance of mm-wave generation. For using one MZM, it is found that transmission through 20 km of fiber degrades the EVM by less than 0.5 dB compared with back-to-back. Also, the EVM is degraded by less than 1 and 0.25 dB for a bias drift of less than 20% and an extinction ratio of more than 10 dB, respectively. Moreover, the EVM of the system using one MZM is improved by more than 2.5 dB compared with the two cascaded MZMs. In addition, it is found that the minimum EVM required of −17 dB can be achieved by using a local oscillator modulation index of ∼63% and 70% at least for using the one MZM and two cascaded MZMs, respectively.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Multi-band OFDM physical layer proposal for IEEE 802.15 task group 3a,” IEEE 802.15 Working Group for WPAN, March 2004.
  2. M. L. Yee, V. H. Pham, Y. X. Guo, L. C. Ong, B. Luo, “Performance evaluation of MB-OFDM ultra-wideband signals over single mode fiber,” in Proc. Int. Conf. on Ultra-Wideband (CUWB), pp. 674–677, Sept. 2007.
  3. A. Pizzinat, B. Charbonnier, M. Moignard, “Analysis of laser induced distortions in ultra wide band MB-OFDM over fiber,” in LEOS Annu. Meeting, pp. 339–340, 2006.
  4. Z. Jia, J. Yu, D. Qian, G. Ellinas, G.-K. Chang, “Experimental demonstration for delivering 1-Gb∕s OFDM signals over 80-km SSMF in 40-GHz radio-over-fiber access systems,” in Optical Fiber Communication Conf. and The Nat. Fiber Optics Engineers Conf., OSA Technical Digest Series (CD), Optical Society of America: Washington, DC, 2008, paper JWA108.
  5. M. Sakib, B. Hraimel, X. Zhang, M. Mohamed, W. Jiang, K. Wu, D. Shen, “Impact of optical transmission on multiband OFDM ultra-wideband wireless system with fiber distribution,” J. Lightwave Technol., vol. 27, no. 18, pp. 4112–4123, Sept. 2009.
  6. “Merged proposal: new PHY layer and enhancement of MAC for mm-wave system proposal,” IEEE 802.15.3c Working Group for WPAN, Nov. 2007.
  7. M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Analysis of frequency quadrupling using a single Mach–Zehnder modulator for millimeter-wave generation and distribution over fiber systems,” Opt. Express, vol. 16, no. 14, pp. 10786–10802, July 2008.
    [CrossRef] [PubMed]
  8. J. Zhang, H. Chen, M. Chen, T. Wang, S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1057–1059, July 2007.
    [CrossRef]
  9. M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Frequency sixupler for millimeter-wave over fiber systems,” Opt. Express, vol. 16, no. 14, pp. 10141–10151, July 2008.
    [CrossRef] [PubMed]
  10. J. O’Reilly, M. Lane, “Remote delivery of video services using millimeter-wave and optics,” J. Lightwave Technol., vol. 12, no. 2, pp. 369–375, Feb. 1994.
    [CrossRef]
  11. Y. Le Guennec, G. Maury, J. P. Yao, B. Cabon, “New optical microwave up-conversion solution in radio-over-fiber networks for 60 GHz wireless applications,” J. Lightwave Technol., vol. 24, no. 3, pp. 1277–1282, March 2006.
    [CrossRef]
  12. M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Efficient photonic generation of millimeter-waves using optical frequency multiplication in radio-over-fiber systems,” in Proc. Microw. Photonics, Oct. 2007, pp. 179–182.
  13. H. Chi, J. Yao, “Frequency quadrupling and upconversion in a radio over fiber link,” J. Lightwave Technol., vol. 26, no. 15, pp. 2706–2711, Aug. 2008.
    [CrossRef]
  14. J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, T. Wang, “Optical millimeterwave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 265–267, Jan. 2006.
    [CrossRef]
  15. M. Larrode, A. Koonen, J. Vegas, A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 241–243, Jan. 2006.
    [CrossRef]
  16. P. Shen, N. J. Gomes, P. A. Davies, W. P. Shillue, P. G. Huggard, B. N. Ellison, “High-purity millimeter-wave photonic local oscillator generation and delivery,” in Proc. Int. Microwave Photonics Topical Meeting, Sept. 10–12, 2003, pp. 189–192.
  17. J. Yu, Z. Jia, T. Wang, G. K. Chang, “Centralized lightwave radio over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1499–1501, Oct. 2007.
    [CrossRef]
  18. G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, S. Paquet, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 10, pp. 3090–3097, Oct. 2005.
    [CrossRef]
  19. M. Garcia Larrode, A. M. J. Koonen, J. J. Vegas Olmos, E. J. M. Verdurmen, “Microwave signal generation and transmission based on optical frequency multiplication with a polarization interferometer,” J. Lightwave Technol., vol. 25, no. 6, pp. 1372–1378, June, 2007.
    [CrossRef]
  20. ECMA-368, High Rate Ultra Wideband PHY and MAC Standard, ECMA International, Geneva, 2nd ed., Dec. 2007.

2008

2007

J. Zhang, H. Chen, M. Chen, T. Wang, S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1057–1059, July 2007.
[CrossRef]

J. Yu, Z. Jia, T. Wang, G. K. Chang, “Centralized lightwave radio over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1499–1501, Oct. 2007.
[CrossRef]

M. Garcia Larrode, A. M. J. Koonen, J. J. Vegas Olmos, E. J. M. Verdurmen, “Microwave signal generation and transmission based on optical frequency multiplication with a polarization interferometer,” J. Lightwave Technol., vol. 25, no. 6, pp. 1372–1378, June, 2007.
[CrossRef]

2006

Y. Le Guennec, G. Maury, J. P. Yao, B. Cabon, “New optical microwave up-conversion solution in radio-over-fiber networks for 60 GHz wireless applications,” J. Lightwave Technol., vol. 24, no. 3, pp. 1277–1282, March 2006.
[CrossRef]

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, T. Wang, “Optical millimeterwave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 265–267, Jan. 2006.
[CrossRef]

M. Larrode, A. Koonen, J. Vegas, A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 241–243, Jan. 2006.
[CrossRef]

2005

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, S. Paquet, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 10, pp. 3090–3097, Oct. 2005.
[CrossRef]

1994

J. O’Reilly, M. Lane, “Remote delivery of video services using millimeter-wave and optics,” J. Lightwave Technol., vol. 12, no. 2, pp. 369–375, Feb. 1994.
[CrossRef]

Bélisle, C.

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, S. Paquet, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 10, pp. 3090–3097, Oct. 2005.
[CrossRef]

Cabon, B.

Chang, G.

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, T. Wang, “Optical millimeterwave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 265–267, Jan. 2006.
[CrossRef]

Chang, G. K.

J. Yu, Z. Jia, T. Wang, G. K. Chang, “Centralized lightwave radio over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1499–1501, Oct. 2007.
[CrossRef]

Chang, G.-K.

Z. Jia, J. Yu, D. Qian, G. Ellinas, G.-K. Chang, “Experimental demonstration for delivering 1-Gb∕s OFDM signals over 80-km SSMF in 40-GHz radio-over-fiber access systems,” in Optical Fiber Communication Conf. and The Nat. Fiber Optics Engineers Conf., OSA Technical Digest Series (CD), Optical Society of America: Washington, DC, 2008, paper JWA108.

Charbonnier, B.

A. Pizzinat, B. Charbonnier, M. Moignard, “Analysis of laser induced distortions in ultra wide band MB-OFDM over fiber,” in LEOS Annu. Meeting, pp. 339–340, 2006.

Chen, H.

J. Zhang, H. Chen, M. Chen, T. Wang, S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1057–1059, July 2007.
[CrossRef]

Chen, M.

J. Zhang, H. Chen, M. Chen, T. Wang, S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1057–1059, July 2007.
[CrossRef]

Chi, H.

Davies, P. A.

P. Shen, N. J. Gomes, P. A. Davies, W. P. Shillue, P. G. Huggard, B. N. Ellison, “High-purity millimeter-wave photonic local oscillator generation and delivery,” in Proc. Int. Microwave Photonics Topical Meeting, Sept. 10–12, 2003, pp. 189–192.

Ellinas, G.

Z. Jia, J. Yu, D. Qian, G. Ellinas, G.-K. Chang, “Experimental demonstration for delivering 1-Gb∕s OFDM signals over 80-km SSMF in 40-GHz radio-over-fiber access systems,” in Optical Fiber Communication Conf. and The Nat. Fiber Optics Engineers Conf., OSA Technical Digest Series (CD), Optical Society of America: Washington, DC, 2008, paper JWA108.

Ellison, B. N.

P. Shen, N. J. Gomes, P. A. Davies, W. P. Shillue, P. G. Huggard, B. N. Ellison, “High-purity millimeter-wave photonic local oscillator generation and delivery,” in Proc. Int. Microwave Photonics Topical Meeting, Sept. 10–12, 2003, pp. 189–192.

Garcia Larrode, M.

Gomes, N. J.

P. Shen, N. J. Gomes, P. A. Davies, W. P. Shillue, P. G. Huggard, B. N. Ellison, “High-purity millimeter-wave photonic local oscillator generation and delivery,” in Proc. Int. Microwave Photonics Topical Meeting, Sept. 10–12, 2003, pp. 189–192.

Guo, Y. X.

M. L. Yee, V. H. Pham, Y. X. Guo, L. C. Ong, B. Luo, “Performance evaluation of MB-OFDM ultra-wideband signals over single mode fiber,” in Proc. Int. Conf. on Ultra-Wideband (CUWB), pp. 674–677, Sept. 2007.

Hraimel, B.

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Frequency sixupler for millimeter-wave over fiber systems,” Opt. Express, vol. 16, no. 14, pp. 10141–10151, July 2008.
[CrossRef] [PubMed]

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Analysis of frequency quadrupling using a single Mach–Zehnder modulator for millimeter-wave generation and distribution over fiber systems,” Opt. Express, vol. 16, no. 14, pp. 10786–10802, July 2008.
[CrossRef] [PubMed]

M. Sakib, B. Hraimel, X. Zhang, M. Mohamed, W. Jiang, K. Wu, D. Shen, “Impact of optical transmission on multiband OFDM ultra-wideband wireless system with fiber distribution,” J. Lightwave Technol., vol. 27, no. 18, pp. 4112–4123, Sept. 2009.

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Efficient photonic generation of millimeter-waves using optical frequency multiplication in radio-over-fiber systems,” in Proc. Microw. Photonics, Oct. 2007, pp. 179–182.

Huggard, P. G.

P. Shen, N. J. Gomes, P. A. Davies, W. P. Shillue, P. G. Huggard, B. N. Ellison, “High-purity millimeter-wave photonic local oscillator generation and delivery,” in Proc. Int. Microwave Photonics Topical Meeting, Sept. 10–12, 2003, pp. 189–192.

Jia, Z.

J. Yu, Z. Jia, T. Wang, G. K. Chang, “Centralized lightwave radio over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1499–1501, Oct. 2007.
[CrossRef]

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, T. Wang, “Optical millimeterwave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 265–267, Jan. 2006.
[CrossRef]

Z. Jia, J. Yu, D. Qian, G. Ellinas, G.-K. Chang, “Experimental demonstration for delivering 1-Gb∕s OFDM signals over 80-km SSMF in 40-GHz radio-over-fiber access systems,” in Optical Fiber Communication Conf. and The Nat. Fiber Optics Engineers Conf., OSA Technical Digest Series (CD), Optical Society of America: Washington, DC, 2008, paper JWA108.

Jiang, W.

M. Sakib, B. Hraimel, X. Zhang, M. Mohamed, W. Jiang, K. Wu, D. Shen, “Impact of optical transmission on multiband OFDM ultra-wideband wireless system with fiber distribution,” J. Lightwave Technol., vol. 27, no. 18, pp. 4112–4123, Sept. 2009.

Koonen, A.

M. Larrode, A. Koonen, J. Vegas, A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 241–243, Jan. 2006.
[CrossRef]

Koonen, A. M. J.

Lane, M.

J. O’Reilly, M. Lane, “Remote delivery of video services using millimeter-wave and optics,” J. Lightwave Technol., vol. 12, no. 2, pp. 369–375, Feb. 1994.
[CrossRef]

Larrode, M.

M. Larrode, A. Koonen, J. Vegas, A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 241–243, Jan. 2006.
[CrossRef]

Le Guennec, Y.

Luo, B.

M. L. Yee, V. H. Pham, Y. X. Guo, L. C. Ong, B. Luo, “Performance evaluation of MB-OFDM ultra-wideband signals over single mode fiber,” in Proc. Int. Conf. on Ultra-Wideband (CUWB), pp. 674–677, Sept. 2007.

Maury, G.

Mohamed, M.

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Frequency sixupler for millimeter-wave over fiber systems,” Opt. Express, vol. 16, no. 14, pp. 10141–10151, July 2008.
[CrossRef] [PubMed]

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Analysis of frequency quadrupling using a single Mach–Zehnder modulator for millimeter-wave generation and distribution over fiber systems,” Opt. Express, vol. 16, no. 14, pp. 10786–10802, July 2008.
[CrossRef] [PubMed]

M. Sakib, B. Hraimel, X. Zhang, M. Mohamed, W. Jiang, K. Wu, D. Shen, “Impact of optical transmission on multiband OFDM ultra-wideband wireless system with fiber distribution,” J. Lightwave Technol., vol. 27, no. 18, pp. 4112–4123, Sept. 2009.

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Efficient photonic generation of millimeter-waves using optical frequency multiplication in radio-over-fiber systems,” in Proc. Microw. Photonics, Oct. 2007, pp. 179–182.

Moignard, M.

A. Pizzinat, B. Charbonnier, M. Moignard, “Analysis of laser induced distortions in ultra wide band MB-OFDM over fiber,” in LEOS Annu. Meeting, pp. 339–340, 2006.

Ng’Oma, A.

M. Larrode, A. Koonen, J. Vegas, A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 241–243, Jan. 2006.
[CrossRef]

O’Reilly, J.

J. O’Reilly, M. Lane, “Remote delivery of video services using millimeter-wave and optics,” J. Lightwave Technol., vol. 12, no. 2, pp. 369–375, Feb. 1994.
[CrossRef]

Ong, L. C.

M. L. Yee, V. H. Pham, Y. X. Guo, L. C. Ong, B. Luo, “Performance evaluation of MB-OFDM ultra-wideband signals over single mode fiber,” in Proc. Int. Conf. on Ultra-Wideband (CUWB), pp. 674–677, Sept. 2007.

Paquet, S.

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, S. Paquet, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 10, pp. 3090–3097, Oct. 2005.
[CrossRef]

Pham, V. H.

M. L. Yee, V. H. Pham, Y. X. Guo, L. C. Ong, B. Luo, “Performance evaluation of MB-OFDM ultra-wideband signals over single mode fiber,” in Proc. Int. Conf. on Ultra-Wideband (CUWB), pp. 674–677, Sept. 2007.

Pizzinat, A.

A. Pizzinat, B. Charbonnier, M. Moignard, “Analysis of laser induced distortions in ultra wide band MB-OFDM over fiber,” in LEOS Annu. Meeting, pp. 339–340, 2006.

Qi, G.

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, S. Paquet, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 10, pp. 3090–3097, Oct. 2005.
[CrossRef]

Qian, D.

Z. Jia, J. Yu, D. Qian, G. Ellinas, G.-K. Chang, “Experimental demonstration for delivering 1-Gb∕s OFDM signals over 80-km SSMF in 40-GHz radio-over-fiber access systems,” in Optical Fiber Communication Conf. and The Nat. Fiber Optics Engineers Conf., OSA Technical Digest Series (CD), Optical Society of America: Washington, DC, 2008, paper JWA108.

Sakib, M.

M. Sakib, B. Hraimel, X. Zhang, M. Mohamed, W. Jiang, K. Wu, D. Shen, “Impact of optical transmission on multiband OFDM ultra-wideband wireless system with fiber distribution,” J. Lightwave Technol., vol. 27, no. 18, pp. 4112–4123, Sept. 2009.

Seregelyi, J.

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, S. Paquet, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 10, pp. 3090–3097, Oct. 2005.
[CrossRef]

Shen, D.

M. Sakib, B. Hraimel, X. Zhang, M. Mohamed, W. Jiang, K. Wu, D. Shen, “Impact of optical transmission on multiband OFDM ultra-wideband wireless system with fiber distribution,” J. Lightwave Technol., vol. 27, no. 18, pp. 4112–4123, Sept. 2009.

Shen, P.

P. Shen, N. J. Gomes, P. A. Davies, W. P. Shillue, P. G. Huggard, B. N. Ellison, “High-purity millimeter-wave photonic local oscillator generation and delivery,” in Proc. Int. Microwave Photonics Topical Meeting, Sept. 10–12, 2003, pp. 189–192.

Shillue, W. P.

P. Shen, N. J. Gomes, P. A. Davies, W. P. Shillue, P. G. Huggard, B. N. Ellison, “High-purity millimeter-wave photonic local oscillator generation and delivery,” in Proc. Int. Microwave Photonics Topical Meeting, Sept. 10–12, 2003, pp. 189–192.

Su, Y.

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, T. Wang, “Optical millimeterwave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 265–267, Jan. 2006.
[CrossRef]

Vegas, J.

M. Larrode, A. Koonen, J. Vegas, A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 241–243, Jan. 2006.
[CrossRef]

Vegas Olmos, J. J.

Verdurmen, E. J. M.

Wang, T.

J. Zhang, H. Chen, M. Chen, T. Wang, S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1057–1059, July 2007.
[CrossRef]

J. Yu, Z. Jia, T. Wang, G. K. Chang, “Centralized lightwave radio over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1499–1501, Oct. 2007.
[CrossRef]

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, T. Wang, “Optical millimeterwave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 265–267, Jan. 2006.
[CrossRef]

Wu, K.

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Analysis of frequency quadrupling using a single Mach–Zehnder modulator for millimeter-wave generation and distribution over fiber systems,” Opt. Express, vol. 16, no. 14, pp. 10786–10802, July 2008.
[CrossRef] [PubMed]

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Frequency sixupler for millimeter-wave over fiber systems,” Opt. Express, vol. 16, no. 14, pp. 10141–10151, July 2008.
[CrossRef] [PubMed]

M. Sakib, B. Hraimel, X. Zhang, M. Mohamed, W. Jiang, K. Wu, D. Shen, “Impact of optical transmission on multiband OFDM ultra-wideband wireless system with fiber distribution,” J. Lightwave Technol., vol. 27, no. 18, pp. 4112–4123, Sept. 2009.

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Efficient photonic generation of millimeter-waves using optical frequency multiplication in radio-over-fiber systems,” in Proc. Microw. Photonics, Oct. 2007, pp. 179–182.

Xie, S.

J. Zhang, H. Chen, M. Chen, T. Wang, S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1057–1059, July 2007.
[CrossRef]

Yao, J.

Yao, J. P.

Y. Le Guennec, G. Maury, J. P. Yao, B. Cabon, “New optical microwave up-conversion solution in radio-over-fiber networks for 60 GHz wireless applications,” J. Lightwave Technol., vol. 24, no. 3, pp. 1277–1282, March 2006.
[CrossRef]

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, S. Paquet, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 10, pp. 3090–3097, Oct. 2005.
[CrossRef]

Yee, M. L.

M. L. Yee, V. H. Pham, Y. X. Guo, L. C. Ong, B. Luo, “Performance evaluation of MB-OFDM ultra-wideband signals over single mode fiber,” in Proc. Int. Conf. on Ultra-Wideband (CUWB), pp. 674–677, Sept. 2007.

Yi, L.

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, T. Wang, “Optical millimeterwave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 265–267, Jan. 2006.
[CrossRef]

Yu, J.

J. Yu, Z. Jia, T. Wang, G. K. Chang, “Centralized lightwave radio over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1499–1501, Oct. 2007.
[CrossRef]

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, T. Wang, “Optical millimeterwave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 265–267, Jan. 2006.
[CrossRef]

Z. Jia, J. Yu, D. Qian, G. Ellinas, G.-K. Chang, “Experimental demonstration for delivering 1-Gb∕s OFDM signals over 80-km SSMF in 40-GHz radio-over-fiber access systems,” in Optical Fiber Communication Conf. and The Nat. Fiber Optics Engineers Conf., OSA Technical Digest Series (CD), Optical Society of America: Washington, DC, 2008, paper JWA108.

Zhang, J.

J. Zhang, H. Chen, M. Chen, T. Wang, S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1057–1059, July 2007.
[CrossRef]

Zhang, X.

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Frequency sixupler for millimeter-wave over fiber systems,” Opt. Express, vol. 16, no. 14, pp. 10141–10151, July 2008.
[CrossRef] [PubMed]

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Analysis of frequency quadrupling using a single Mach–Zehnder modulator for millimeter-wave generation and distribution over fiber systems,” Opt. Express, vol. 16, no. 14, pp. 10786–10802, July 2008.
[CrossRef] [PubMed]

M. Sakib, B. Hraimel, X. Zhang, M. Mohamed, W. Jiang, K. Wu, D. Shen, “Impact of optical transmission on multiband OFDM ultra-wideband wireless system with fiber distribution,” J. Lightwave Technol., vol. 27, no. 18, pp. 4112–4123, Sept. 2009.

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Efficient photonic generation of millimeter-waves using optical frequency multiplication in radio-over-fiber systems,” in Proc. Microw. Photonics, Oct. 2007, pp. 179–182.

IEEE Photon. Technol. Lett.

J. Zhang, H. Chen, M. Chen, T. Wang, S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1057–1059, July 2007.
[CrossRef]

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, T. Wang, “Optical millimeterwave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 265–267, Jan. 2006.
[CrossRef]

M. Larrode, A. Koonen, J. Vegas, A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 241–243, Jan. 2006.
[CrossRef]

J. Yu, Z. Jia, T. Wang, G. K. Chang, “Centralized lightwave radio over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation,” IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1499–1501, Oct. 2007.
[CrossRef]

IEEE Trans. Microwave Theory Tech.

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, S. Paquet, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 10, pp. 3090–3097, Oct. 2005.
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

M. Mohamed, X. Zhang, B. Hraimel, K. Wu, “Efficient photonic generation of millimeter-waves using optical frequency multiplication in radio-over-fiber systems,” in Proc. Microw. Photonics, Oct. 2007, pp. 179–182.

ECMA-368, High Rate Ultra Wideband PHY and MAC Standard, ECMA International, Geneva, 2nd ed., Dec. 2007.

P. Shen, N. J. Gomes, P. A. Davies, W. P. Shillue, P. G. Huggard, B. N. Ellison, “High-purity millimeter-wave photonic local oscillator generation and delivery,” in Proc. Int. Microwave Photonics Topical Meeting, Sept. 10–12, 2003, pp. 189–192.

“Multi-band OFDM physical layer proposal for IEEE 802.15 task group 3a,” IEEE 802.15 Working Group for WPAN, March 2004.

M. L. Yee, V. H. Pham, Y. X. Guo, L. C. Ong, B. Luo, “Performance evaluation of MB-OFDM ultra-wideband signals over single mode fiber,” in Proc. Int. Conf. on Ultra-Wideband (CUWB), pp. 674–677, Sept. 2007.

A. Pizzinat, B. Charbonnier, M. Moignard, “Analysis of laser induced distortions in ultra wide band MB-OFDM over fiber,” in LEOS Annu. Meeting, pp. 339–340, 2006.

Z. Jia, J. Yu, D. Qian, G. Ellinas, G.-K. Chang, “Experimental demonstration for delivering 1-Gb∕s OFDM signals over 80-km SSMF in 40-GHz radio-over-fiber access systems,” in Optical Fiber Communication Conf. and The Nat. Fiber Optics Engineers Conf., OSA Technical Digest Series (CD), Optical Society of America: Washington, DC, 2008, paper JWA108.

M. Sakib, B. Hraimel, X. Zhang, M. Mohamed, W. Jiang, K. Wu, D. Shen, “Impact of optical transmission on multiband OFDM ultra-wideband wireless system with fiber distribution,” J. Lightwave Technol., vol. 27, no. 18, pp. 4112–4123, Sept. 2009.

“Merged proposal: new PHY layer and enhancement of MAC for mm-wave system proposal,” IEEE 802.15.3c Working Group for WPAN, Nov. 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic of a mm-wave MB-OFDM RoF link for mm-wave generation using (a) Technique-I and (b) Technique-II.

Fig. 2
Fig. 2

Simulated EVM versus RF modulation index for back-to-back, 20, and 40 km of fiber transmission. An LO RF modulation index of 70% is used.

Fig. 3
Fig. 3

Simulated EVM versus LO modulation index for mm-wave generation. An RF modulation index of 4% is used.

Fig. 4
Fig. 4

Calculated relative power of the generated mm-wave MB-OFDM UWB signal versus the LO modulation index for Technique-I.

Fig. 5
Fig. 5

Simulated EVM versus LO modulation index when Technique-I or Technique-II is used and after 20 km of fiber transmission. An RF modulation index of 4% is used.

Fig. 6
Fig. 6

EVM versus bias drift of the MZM for mm-wave generation using Technique-I. Transmission over 20 km of SMF is considered. RF and LO modulation indices of 4% and 70% are used, respectively.

Fig. 7
Fig. 7

Simulated EVM versus extinction ratio of the MZM for mm-wave generation using Technique-I. Transmission over 20 km of SMF is considered. RF and LO modulation indices of 4% and 70% are used, respectively.

Fig. 8
Fig. 8

Experimental setup for the mm-wave MB-OFDM UWB over fiber system. Optical mm-wave generation with Technique-I is used (dashed box).

Fig. 9
Fig. 9

Measured first three bands of the MB-OFDM UWB signal in the frequency-time domain, f 1 = 3.432 , f 2 = 3.96 , and f 3 = 4.488 GHz .

Fig. 10
Fig. 10

Measured optical spectrum after transmission over 20 km of fiber.

Fig. 11
Fig. 11

Measured electrical spectrum of the MB-OFDM UWB signal (a) at a mm-wave before electrical filtering and (b) after electrical filtering and downconversion.

Fig. 12
Fig. 12

Measured EVM versus RF modulation index for back-to-back, after 20, and 40 km of fiber transmission. An LO modulation index of 70% is used.

Fig. 13
Fig. 13

Spectral mask test according to the FCC spectrum.

Fig. 14
Fig. 14

Measured constellation of QPSK mm-wave MB-OFDM for (a) back-to-back, (b) after 20, and (c) after 40 km of fiber transmission. RF and LO modulation indices of 4% and 70% are used, respectively.

Fig. 15
Fig. 15

EVM versus LO modulation index for mm-wave generation. Transmission over 20 km of SMF is considered. Dots, measured EVM. Dashed curve, simulated EVM. An RF modulation index of 4% is used.

Fig. 16
Fig. 16

Measured constellation of QPSK mm-wave MB-OFDM for using (a) Technique-II and (b) Technique-I, after 20 km of fiber transmission.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E s ( t ) = 2 P e j ( ω c t + ϕ c ) × [ J 0 ( π m LO 2 ) + 2 J 2 ( π m LO 2 ) cos ( 2 ( ω LO t + ϕ LO ) ) ] × [ 1 + j + j π ( m RF 2 ) U ( t ) e j ( ω RF t + ϕ RF ) ] ,
I ( 4 ω LO ± ω RF ) ( t ) = 4 P R J 2 2 ( π m LO 2 ) cos ( 4 ( ω LO t + ϕ LO ) ) × π m RF U ( t ) cos ( ω RF t + ϕ RF + π 4 ) ,
E s ( t ) 4 2 P e j ( ω c t + ϕ c ) J 1 2 ( π m LO 2 ) sin ( 2 ( ω LO t + ϕ LO ) ) × [ 1 + j + π ( m RF 2 ) U ( t ) e j ( ω RF t + ϕ RF ) ] .
I ( 4 ω LO ± ω RF ) ( t ) = 16 P R J 1 4 ( π m LO 2 ) cos ( 4 ( ω LO t + ϕ LO ) ) × π m RF U ( t ) cos ( ω RF t + ϕ RF + π 4 ) .
E 1 = P 2 ( e j π m LO 2 sin ( ω LO t + ϕ LO ) e j π m LO 2 sin ( ω LO t + ϕ LO ) ) .
E out = P 2 e j ( ω c t + ϕ c ) ( e j π m LO 2 cos ( ω LO t + ϕ LO ) + e j π m LO 2 cos ( ω LO t + ϕ LO ) ) ( e j π m LO 2 sin ( ω LO t + ϕ LO ) e j π m LO 2 sin ( ω LO t + ϕ LO ) ) = j 2 2 P e j ( ω c t + ϕ c ) n 1 = J 2 n 1 1 ( π m LO 2 ) e j ( 2 n 1 1 ) ( ω LO t + ϕ LO ) n 2 = ( 1 ) n 2 + 1 J 2 n 2 1 ( π m LO 2 ) e j ( 2 n 2 1 ) ( ω LO t + ϕ LO ) = 2 j 2 P e j ( ω c t + ϕ c ) N = { n 1 = ( 1 ) n 1 J 2 n 1 1 ( π m LO 2 ) J 2 ( N n 1 ) 1 ( π m LO 2 ) } e j 2 ( N 1 ) ( ω LO t + ϕ LO ) .
E s = 4 2 P e j ( ω c t + ϕ c ) [ J 1 2 ( π m LO 2 ) J 1 ( π m LO 2 ) J 3 ( π m LO 2 ) + J 3 ( π m LO 2 ) J 5 ( π m LO 2 ) J 5 ( π m LO 2 ) J 7 ( π m LO 2 ) + ] × sin ( 2 ( ω LO t + ϕ LO ) ) [ 1 + j + j π m RF 2 U ( t ) e j ( ω RF t + ϕ RF ) ] .
E s ( t ) 4 2 P e j ( ω c t + ϕ c ) J 1 2 ( π m LO 2 ) sin ( 2 ( ω LO t + ϕ LO ) ) × [ 1 + j + π ( m RF 2 ) U ( t ) e j ( ω RF t + ϕ RF ) ] ,
I ( t ) = 1 2 | E s ( t ) | 2 R = 16 P R J 1 4 ( π m LO 2 ) ( 1 cos 4 ( ω LO t + ϕ LO ) ) × [ 1 + π m RF U ( t ) cos ( ω RF t + ϕ RF + π 4 ) ] .
I ( 4 ω LO ± ω RF ) ( t ) = 16 P R J 1 4 ( π m LO 2 ) cos ( 4 ( ω LO t + ϕ LO ) ) × π m RF U ( t ) cos ( ω RF t + ϕ RF + π 4 ) .