Abstract

This paper proposes a real-time allocation scheme for photonic networks that use wavelength division multiplexing (WDM) and optical time division multiplexing (OTDM) technologies in the backbone and ring regional networks, respectively. A frame that is used for transferring data and control information in a ring regional network takes only one round to complete data allocation processing, instead of two rounds as required by the prior reservation scheme, so that data can be transmitted immediately. The objective is to provide max–min fair share in terms of throughput with just one round. If no free space is left on the frame, the proposed scheme allows a group (some) of the newly requested data to replace some of the already allocated data to provide max–min fair share, in terms of throughput. Data replacement and defragmentation are processed in the optical domain. Simulations show that the proposed scheme maintains max–min fair share even in unbalanced traffic scenarios. The complexity of defragmentation depends on the number of delay lines needed to regenerate the original data groups. The maximum number of delay lines is determined.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kim, J. Cho, S. Das, D. Gutierrez, M. Jain, C. F. Su, R. Rabbat, T. Hamada, L. G. Kazovsky, “Optical burst transport: a technology for the WDM metro ring networks,” J. Lightwave Technol., vol. 25, no. 1, pp. 93–102, Jan. 2007.
    [CrossRef]
  2. K. Grobe, J. P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag., vol. 46, no. 1, pp. 26–34, Jan. 2008.
    [CrossRef]
  3. L. R. Nunes, D. Santoso, S. Sugawara, N. Kishi, T. Miki, “A nation-wide photonic network architecture with dynamic bandwidth allocation for packet-based next generation networks,” IEICE Trans. Commun., vol. E86-B, no. 3, March 2003.
  4. Y. Sugimoto, S. Sugawara, N. Kishi, T. Miki, “Priority control for photonic burst networks,” in The 2004 Joint Conf. of the 10th Asia-Pacific Conf. on Communications, 2004 and the 5th Int. Symp. on Multi-Dimensional Mobile Communications Proc., Beijing, China, Aug. 29–Sept. 1, 2004, vol. 1, pp. 386–390.
  5. J. M. Jaffe, “Bottleneck flow control,” IEEE Trans. Commun., vol. 29, no. 7, pp. 954–962, 1981.
    [CrossRef]
  6. M. de Vega Rodrigo, J. Götz, “An analytical study of optical burst switching aggregation strategies,” in Broadnets 2004: 1st Int. Conf. on Broadband Networks, San José, Calif., Oct. 25–29, 2004, pp. 1–13.
  7. S. Uhlig, O. Benoventure, “Understanding the long-term self-similarity of internet traffic,” in Quality of Future Internet Services, vol. 2156/2001 of Lecture Notes in Computer Science, New York, NY: Springer Science + Business Media, 2001, pp. 286–298.
    [CrossRef]
  8. R. Jain, The Art of Computer System Performance Analisis, New York, NY: Wiley, 1991.
  9. R. Jain, “Congestion control and traffic management in ATM networks: recent advances and a survey,” Comput. Netw. ISDN Syst., vol. 28, no. 13, pp. 1723–1738, Oct. 1996.
    [CrossRef]
  10. H. Furukawa, N. Wada, N. Takezawa, K. Nashimoto, T. Miyazaki, “640 (2×32λ×10)  Gbit∕s polarization-multiplexes, wide-colored optical packet switching achieved by polarization-independent high-speed PLZT switch,” in Optical Fiber Communication Conf. and Expo. and The Nat. Fiber Optic Engineers Conf., San Diego, Calif., OSA Technical Digest (CD), Washington, DC: Optical Society of America, Feb. 24, 2008, paper OTuL7.

2008 (1)

K. Grobe, J. P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag., vol. 46, no. 1, pp. 26–34, Jan. 2008.
[CrossRef]

2007 (1)

2003 (1)

L. R. Nunes, D. Santoso, S. Sugawara, N. Kishi, T. Miki, “A nation-wide photonic network architecture with dynamic bandwidth allocation for packet-based next generation networks,” IEICE Trans. Commun., vol. E86-B, no. 3, March 2003.

1996 (1)

R. Jain, “Congestion control and traffic management in ATM networks: recent advances and a survey,” Comput. Netw. ISDN Syst., vol. 28, no. 13, pp. 1723–1738, Oct. 1996.
[CrossRef]

1981 (1)

J. M. Jaffe, “Bottleneck flow control,” IEEE Trans. Commun., vol. 29, no. 7, pp. 954–962, 1981.
[CrossRef]

Benoventure, O.

S. Uhlig, O. Benoventure, “Understanding the long-term self-similarity of internet traffic,” in Quality of Future Internet Services, vol. 2156/2001 of Lecture Notes in Computer Science, New York, NY: Springer Science + Business Media, 2001, pp. 286–298.
[CrossRef]

Cho, J.

Das, S.

de Vega Rodrigo, M.

M. de Vega Rodrigo, J. Götz, “An analytical study of optical burst switching aggregation strategies,” in Broadnets 2004: 1st Int. Conf. on Broadband Networks, San José, Calif., Oct. 25–29, 2004, pp. 1–13.

Elbers, J. P.

K. Grobe, J. P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag., vol. 46, no. 1, pp. 26–34, Jan. 2008.
[CrossRef]

Furukawa, H.

H. Furukawa, N. Wada, N. Takezawa, K. Nashimoto, T. Miyazaki, “640 (2×32λ×10)  Gbit∕s polarization-multiplexes, wide-colored optical packet switching achieved by polarization-independent high-speed PLZT switch,” in Optical Fiber Communication Conf. and Expo. and The Nat. Fiber Optic Engineers Conf., San Diego, Calif., OSA Technical Digest (CD), Washington, DC: Optical Society of America, Feb. 24, 2008, paper OTuL7.

Götz, J.

M. de Vega Rodrigo, J. Götz, “An analytical study of optical burst switching aggregation strategies,” in Broadnets 2004: 1st Int. Conf. on Broadband Networks, San José, Calif., Oct. 25–29, 2004, pp. 1–13.

Grobe, K.

K. Grobe, J. P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag., vol. 46, no. 1, pp. 26–34, Jan. 2008.
[CrossRef]

Gutierrez, D.

Hamada, T.

Jaffe, J. M.

J. M. Jaffe, “Bottleneck flow control,” IEEE Trans. Commun., vol. 29, no. 7, pp. 954–962, 1981.
[CrossRef]

Jain, M.

Jain, R.

R. Jain, “Congestion control and traffic management in ATM networks: recent advances and a survey,” Comput. Netw. ISDN Syst., vol. 28, no. 13, pp. 1723–1738, Oct. 1996.
[CrossRef]

R. Jain, The Art of Computer System Performance Analisis, New York, NY: Wiley, 1991.

Kazovsky, L. G.

Kim, J.

Kishi, N.

L. R. Nunes, D. Santoso, S. Sugawara, N. Kishi, T. Miki, “A nation-wide photonic network architecture with dynamic bandwidth allocation for packet-based next generation networks,” IEICE Trans. Commun., vol. E86-B, no. 3, March 2003.

Y. Sugimoto, S. Sugawara, N. Kishi, T. Miki, “Priority control for photonic burst networks,” in The 2004 Joint Conf. of the 10th Asia-Pacific Conf. on Communications, 2004 and the 5th Int. Symp. on Multi-Dimensional Mobile Communications Proc., Beijing, China, Aug. 29–Sept. 1, 2004, vol. 1, pp. 386–390.

Miki, T.

L. R. Nunes, D. Santoso, S. Sugawara, N. Kishi, T. Miki, “A nation-wide photonic network architecture with dynamic bandwidth allocation for packet-based next generation networks,” IEICE Trans. Commun., vol. E86-B, no. 3, March 2003.

Y. Sugimoto, S. Sugawara, N. Kishi, T. Miki, “Priority control for photonic burst networks,” in The 2004 Joint Conf. of the 10th Asia-Pacific Conf. on Communications, 2004 and the 5th Int. Symp. on Multi-Dimensional Mobile Communications Proc., Beijing, China, Aug. 29–Sept. 1, 2004, vol. 1, pp. 386–390.

Miyazaki, T.

H. Furukawa, N. Wada, N. Takezawa, K. Nashimoto, T. Miyazaki, “640 (2×32λ×10)  Gbit∕s polarization-multiplexes, wide-colored optical packet switching achieved by polarization-independent high-speed PLZT switch,” in Optical Fiber Communication Conf. and Expo. and The Nat. Fiber Optic Engineers Conf., San Diego, Calif., OSA Technical Digest (CD), Washington, DC: Optical Society of America, Feb. 24, 2008, paper OTuL7.

Nashimoto, K.

H. Furukawa, N. Wada, N. Takezawa, K. Nashimoto, T. Miyazaki, “640 (2×32λ×10)  Gbit∕s polarization-multiplexes, wide-colored optical packet switching achieved by polarization-independent high-speed PLZT switch,” in Optical Fiber Communication Conf. and Expo. and The Nat. Fiber Optic Engineers Conf., San Diego, Calif., OSA Technical Digest (CD), Washington, DC: Optical Society of America, Feb. 24, 2008, paper OTuL7.

Nunes, L. R.

L. R. Nunes, D. Santoso, S. Sugawara, N. Kishi, T. Miki, “A nation-wide photonic network architecture with dynamic bandwidth allocation for packet-based next generation networks,” IEICE Trans. Commun., vol. E86-B, no. 3, March 2003.

Rabbat, R.

Santoso, D.

L. R. Nunes, D. Santoso, S. Sugawara, N. Kishi, T. Miki, “A nation-wide photonic network architecture with dynamic bandwidth allocation for packet-based next generation networks,” IEICE Trans. Commun., vol. E86-B, no. 3, March 2003.

Su, C. F.

Sugawara, S.

L. R. Nunes, D. Santoso, S. Sugawara, N. Kishi, T. Miki, “A nation-wide photonic network architecture with dynamic bandwidth allocation for packet-based next generation networks,” IEICE Trans. Commun., vol. E86-B, no. 3, March 2003.

Y. Sugimoto, S. Sugawara, N. Kishi, T. Miki, “Priority control for photonic burst networks,” in The 2004 Joint Conf. of the 10th Asia-Pacific Conf. on Communications, 2004 and the 5th Int. Symp. on Multi-Dimensional Mobile Communications Proc., Beijing, China, Aug. 29–Sept. 1, 2004, vol. 1, pp. 386–390.

Sugimoto, Y.

Y. Sugimoto, S. Sugawara, N. Kishi, T. Miki, “Priority control for photonic burst networks,” in The 2004 Joint Conf. of the 10th Asia-Pacific Conf. on Communications, 2004 and the 5th Int. Symp. on Multi-Dimensional Mobile Communications Proc., Beijing, China, Aug. 29–Sept. 1, 2004, vol. 1, pp. 386–390.

Takezawa, N.

H. Furukawa, N. Wada, N. Takezawa, K. Nashimoto, T. Miyazaki, “640 (2×32λ×10)  Gbit∕s polarization-multiplexes, wide-colored optical packet switching achieved by polarization-independent high-speed PLZT switch,” in Optical Fiber Communication Conf. and Expo. and The Nat. Fiber Optic Engineers Conf., San Diego, Calif., OSA Technical Digest (CD), Washington, DC: Optical Society of America, Feb. 24, 2008, paper OTuL7.

Uhlig, S.

S. Uhlig, O. Benoventure, “Understanding the long-term self-similarity of internet traffic,” in Quality of Future Internet Services, vol. 2156/2001 of Lecture Notes in Computer Science, New York, NY: Springer Science + Business Media, 2001, pp. 286–298.
[CrossRef]

Wada, N.

H. Furukawa, N. Wada, N. Takezawa, K. Nashimoto, T. Miyazaki, “640 (2×32λ×10)  Gbit∕s polarization-multiplexes, wide-colored optical packet switching achieved by polarization-independent high-speed PLZT switch,” in Optical Fiber Communication Conf. and Expo. and The Nat. Fiber Optic Engineers Conf., San Diego, Calif., OSA Technical Digest (CD), Washington, DC: Optical Society of America, Feb. 24, 2008, paper OTuL7.

Comput. Netw. ISDN Syst. (1)

R. Jain, “Congestion control and traffic management in ATM networks: recent advances and a survey,” Comput. Netw. ISDN Syst., vol. 28, no. 13, pp. 1723–1738, Oct. 1996.
[CrossRef]

IEEE Commun. Mag. (1)

K. Grobe, J. P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag., vol. 46, no. 1, pp. 26–34, Jan. 2008.
[CrossRef]

IEEE Trans. Commun. (1)

J. M. Jaffe, “Bottleneck flow control,” IEEE Trans. Commun., vol. 29, no. 7, pp. 954–962, 1981.
[CrossRef]

IEICE Trans. Commun. (1)

L. R. Nunes, D. Santoso, S. Sugawara, N. Kishi, T. Miki, “A nation-wide photonic network architecture with dynamic bandwidth allocation for packet-based next generation networks,” IEICE Trans. Commun., vol. E86-B, no. 3, March 2003.

J. Lightwave Technol. (1)

Other (5)

Y. Sugimoto, S. Sugawara, N. Kishi, T. Miki, “Priority control for photonic burst networks,” in The 2004 Joint Conf. of the 10th Asia-Pacific Conf. on Communications, 2004 and the 5th Int. Symp. on Multi-Dimensional Mobile Communications Proc., Beijing, China, Aug. 29–Sept. 1, 2004, vol. 1, pp. 386–390.

H. Furukawa, N. Wada, N. Takezawa, K. Nashimoto, T. Miyazaki, “640 (2×32λ×10)  Gbit∕s polarization-multiplexes, wide-colored optical packet switching achieved by polarization-independent high-speed PLZT switch,” in Optical Fiber Communication Conf. and Expo. and The Nat. Fiber Optic Engineers Conf., San Diego, Calif., OSA Technical Digest (CD), Washington, DC: Optical Society of America, Feb. 24, 2008, paper OTuL7.

M. de Vega Rodrigo, J. Götz, “An analytical study of optical burst switching aggregation strategies,” in Broadnets 2004: 1st Int. Conf. on Broadband Networks, San José, Calif., Oct. 25–29, 2004, pp. 1–13.

S. Uhlig, O. Benoventure, “Understanding the long-term self-similarity of internet traffic,” in Quality of Future Internet Services, vol. 2156/2001 of Lecture Notes in Computer Science, New York, NY: Springer Science + Business Media, 2001, pp. 286–298.
[CrossRef]

R. Jain, The Art of Computer System Performance Analisis, New York, NY: Wiley, 1991.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

TWT burst photonic network architecture.

Fig. 2
Fig. 2

Allocation in the reservation mode.

Fig. 3
Fig. 3

Allocation in the real-time mode.

Fig. 4
Fig. 4

Header format.

Fig. 5
Fig. 5

Allocation block diagram at each EN.

Fig. 6
Fig. 6

Block diagram of data defragmentation at the RNN.

Fig. 7
Fig. 7

Demonstration of the DR scheme.

Fig. 8
Fig. 8

Throughput rate for three sample arrival traffic patterns.

Fig. 9
Fig. 9

Throughput rate for three random arrival traffic patterns.

Fig. 10
Fig. 10

Block diagram of defragmentation hardware.

Fig. 11
Fig. 11

Data order before defragmentation.

Fig. 12
Fig. 12

Data order after defragmentation with numbered ordering.

Fig. 13
Fig. 13

Data order after defragmentation with appearance ordering.

Fig. 14
Fig. 14

Time offset with numbered and appearance ordering.

Fig. 15
Fig. 15

Maximum delay in numbered ordering.

Fig. 16
Fig. 16

Maximum delay in appearance ordering.

Fig. 17
Fig. 17

Comparison of delay.

Tables (1)

Tables Icon

Table 1 Comparison of Data Replacement in the Real-Time Mode and the Reservation Mode

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

t m , k = u m , k v m , k .
t m , k = i = 2 n j = 1 i 1 d i , j i = n m n k 1 d n i , k j = k + 1 n 1 i = 1 n j d n i + 1 , j i = 2 m 1 j = 1 i 1 d i , j i = 1 k 1 d m , i
t m , k = i = 2 n j = 1 i 1 d i , j i = n m n k 1 d n i , k j = k + 1 n 1 i = 1 n j d n i + 1 , j i = 1 n m j = 1 n i d n i + 1 , j i = 1 k 1 d m , i
D max = max 1 m n , 1 k n 1 ( t m , k ) .
d i , j 0 ,
d i , 1 1.
d 1 , 1 + i = 2 n j = 1 i 1 d i , j F .
u m , k = ( d 1 , 1 + i = 2 n j = 1 i 1 d i , j ) i = n m n k 1 d n i , k j = k + 1 n 1 i = 1 n j d n i + 1 , j ,
u 1 , 1 = 0.
u n , k u k , k 1 = d k , k 1 .
j = k n 1 i = 1 n j d n i + 1 , j i = 0 n k 1 d n i , k j = k + 1 n 1 i = 1 n j d n i + 1 , j = 0 ,
u m , k u m + 1 , k = d m + 1 , k ,
i = n m 1 n k 1 d n i , k i = n m n k 1 d n i , k = d m + 1 , k ,
v 1 , 1 = 0 ,
v m , k = ( d 1 , 1 + i = 2 m 1 j = 1 i 1 d i , j ) + i = 1 k 1 d m , i ,
v m , k v m , k 1 = d m , k 1 ,
i = 1 k 1 d m , i i = 1 k = 2 d m , i = d m , k 1 ,
v m , i v m 1 , m 2 = d m 1 , m 2 ,
i = 2 m 1 j = 1 i 1 d i , j i = 2 m 2 j = 1 i 1 d i , j i = 1 m 3 d m 1 , i = d m 1 , m 2 ,
v 2 , 1 = d 1 , 1 .
F i = 2 n j = 1 i 1 d i , j = d 1 , 1 .
v 1 , 1 = 0 ,
v m , k = d 1 , 1 + i = 1 n m j = 1 n i d n i + 1 , j + i = 1 k 1 d m , i ,
v n , 1 = d 1 , 1 .
F i = 2 n j = 1 i 1 d i , j = d 1 , 1 .
v m , 1 v m + 1 , m = d m + 1 , m ,
i = 1 n m j = 1 n i d n i + 1 , j i = 1 n m 1 j = 1 n i d n i + 1 , j i = 1 m 1 d m + 1 , i = d m + 1 , m ,
v m , k v m , k 1 = d m , k 1 ,
i = 1 k 1 d m , i i = 1 k 2 d m , i = d m , k 1 ,