Abstract

A binary polarization shift-keying scheme with two circle polarization states, circle polarization shift keying (CPolSK), is proposed and discussed. The propagation of the circle-polarized Gaussian Schell model beam is studied based on the cross-spectral density matrix. The results show that the state of polarization remains unchanged and the degree of polarization slightly increases upon propagation in a turbulent atmosphere. The analysis of the bit-error-rate performance shows that the CPolSK system has about a 3 dB lower requirement in signal-to-noise ratio than the on–off keying system. The modulation scheme will be helpful for practical free-space optical communication systems in the future.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Alan, J. James, J. Sluss, H. R. Hazem, G. L. Peter, “Free-space optical wavelength diversity scheme for fog mitigation in a ground-to-unmanned-aerial-vehicle communications link,” Opt. Eng. (Bellingham), vol. 45, pp. 086001–12, 2006.
    [CrossRef]
  2. M. Uysal, L. Jing, Y. Meng, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE. Trans. Wireless Commun., vol. 5, pp. 1229–1233, 2006.
    [CrossRef]
  3. L. C. Andrews, R. L. Phillips, C. Y. Hopen, Laser Beam Scintillation With Applications. Bellingham, Washington: SPIE Press, 2001.
    [CrossRef]
  4. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol., vol. 24, pp. 4750–4762, 2006.
    [CrossRef]
  5. M. Lazzaroni, F. E. Zocchi, “Optical coupling from plane wave to step-index single-mode fiber,” Opt. Commun., vol. 237, pp. 37–43, 2004.
    [CrossRef]
  6. R. K. Tyson, “Bit-error rate for free-space adaptive optics laser communications,” J. Opt. Soc. Am. A, vol. 19, pp. 753–758, 2002.
    [CrossRef]
  7. S. Arnon, N. S. Kopeika, “Adaptive optical transmitter and receiver for space communication through thin clouds,” Appl. Opt., vol. 36, pp. 1987–1993, 1997.
    [CrossRef] [PubMed]
  8. W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” Opto-electronics (London), vol. 2, pp. 16–23, 2008.
  9. H. Hemmati, M. W. Wright, B. Sanii, N. A. Page, G. G. Ortiz, A. Biswas, K. E. Wilson, “Multigigabit data-rate optical communication depicting LEO-to-GEO and GEO-to-ground links,” presented at Free-Space Laser Communication Technologies XIV, San Jose, CA, USA, 2002.
  10. S. Trisno, I. I. Smolyaninov, S. D. Milner, C. C. Davis, “Delayed diversity for fade resistance in optical wireless communications through turbulent media,” presented at Optical Transmission Systems and Equipment for WDM Networking III, Philadelphia, PA, USA, 2004.
  11. H. Izadpanah, T. El Batt, V. Kukshya, F. Dolezal, B. K. Ryu, “High-availability free space optical and RF hybrid wireless networks,” IEEE. Wireless Commun., vol. 10, pp. 45–53, 2003.
    [CrossRef]
  12. S. Benedetto, P. Poggiolini, “Highly bandwidth efficient transmission through continuous polarisation modulation,” Electron. Lett., vol. 26, pp. 1392–1394, 1990.
    [CrossRef]
  13. S. Trisno, C. C. Davis, “Performance of free space optical communication systems using polarization shift keying modulation,” presented at Free-Space Laser Communications VI, San Diego, CA, USA, 2006.
  14. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A, vol. 312, pp. 263–267, 2003.
    [CrossRef]
  15. O. Korotkova, M. Salem, E. Wolf, “The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun., vol. 233, pp. 225–230, 2004.
    [CrossRef]
  16. M. Salem, O. Korotkova, A. Dogariu, E. Wolf, “Polarization changes in partially coherent electromagnetic beams propagating through turbulent atmosphere,” Waves Random Media, vol. 14, pp. 513–523, 2004.
    [CrossRef]
  17. H. Roychowdhury, S. A. Ponomarenko, E. Wolf, “Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere,” J. Mod. Opt., vol. 52, pp. 1611–1618, 2005.
    [CrossRef]
  18. Y. Cai, Q. Lin, H. T. Eyyuboglu, Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express, vol. 16, pp. 7665–7673, 2008.
    [CrossRef] [PubMed]
  19. H. T. Eyyuboglu, Y. Baykal, Y. Cai, “Degree of polarization for partially coherent general beams in turbulent atmosphere,” Appl. Phys. B, 89, pp. 91–97, 2007.
    [CrossRef]
  20. J. H. Shu, Z. Y. Chen, J. X. Pu, “Polarization changes of partially coherent electromagnetic vortex beams propagating in turbulent atmosphere,” Chin. Opt. Lett., vol. 26, pp. 024207–4, 2009.
    [CrossRef]
  21. H. Roychowdhury, O. Korotkova, “Realizability conditions for electromagnetic Gaussian Schell-model sources,” Opt. Commun., vol. 249, pp. 379–385, 2005.
    [CrossRef]

2009

J. H. Shu, Z. Y. Chen, J. X. Pu, “Polarization changes of partially coherent electromagnetic vortex beams propagating in turbulent atmosphere,” Chin. Opt. Lett., vol. 26, pp. 024207–4, 2009.
[CrossRef]

2008

Y. Cai, Q. Lin, H. T. Eyyuboglu, Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express, vol. 16, pp. 7665–7673, 2008.
[CrossRef] [PubMed]

W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” Opto-electronics (London), vol. 2, pp. 16–23, 2008.

2007

H. T. Eyyuboglu, Y. Baykal, Y. Cai, “Degree of polarization for partially coherent general beams in turbulent atmosphere,” Appl. Phys. B, 89, pp. 91–97, 2007.
[CrossRef]

2006

H. Alan, J. James, J. Sluss, H. R. Hazem, G. L. Peter, “Free-space optical wavelength diversity scheme for fog mitigation in a ground-to-unmanned-aerial-vehicle communications link,” Opt. Eng. (Bellingham), vol. 45, pp. 086001–12, 2006.
[CrossRef]

M. Uysal, L. Jing, Y. Meng, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE. Trans. Wireless Commun., vol. 5, pp. 1229–1233, 2006.
[CrossRef]

V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol., vol. 24, pp. 4750–4762, 2006.
[CrossRef]

2005

H. Roychowdhury, S. A. Ponomarenko, E. Wolf, “Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere,” J. Mod. Opt., vol. 52, pp. 1611–1618, 2005.
[CrossRef]

H. Roychowdhury, O. Korotkova, “Realizability conditions for electromagnetic Gaussian Schell-model sources,” Opt. Commun., vol. 249, pp. 379–385, 2005.
[CrossRef]

2004

M. Lazzaroni, F. E. Zocchi, “Optical coupling from plane wave to step-index single-mode fiber,” Opt. Commun., vol. 237, pp. 37–43, 2004.
[CrossRef]

O. Korotkova, M. Salem, E. Wolf, “The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun., vol. 233, pp. 225–230, 2004.
[CrossRef]

M. Salem, O. Korotkova, A. Dogariu, E. Wolf, “Polarization changes in partially coherent electromagnetic beams propagating through turbulent atmosphere,” Waves Random Media, vol. 14, pp. 513–523, 2004.
[CrossRef]

2003

H. Izadpanah, T. El Batt, V. Kukshya, F. Dolezal, B. K. Ryu, “High-availability free space optical and RF hybrid wireless networks,” IEEE. Wireless Commun., vol. 10, pp. 45–53, 2003.
[CrossRef]

E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A, vol. 312, pp. 263–267, 2003.
[CrossRef]

2002

1997

1990

S. Benedetto, P. Poggiolini, “Highly bandwidth efficient transmission through continuous polarisation modulation,” Electron. Lett., vol. 26, pp. 1392–1394, 1990.
[CrossRef]

Alan, H.

H. Alan, J. James, J. Sluss, H. R. Hazem, G. L. Peter, “Free-space optical wavelength diversity scheme for fog mitigation in a ground-to-unmanned-aerial-vehicle communications link,” Opt. Eng. (Bellingham), vol. 45, pp. 086001–12, 2006.
[CrossRef]

Allen, J. I. H.

W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” Opto-electronics (London), vol. 2, pp. 16–23, 2008.

Andrews, L. C.

L. C. Andrews, R. L. Phillips, C. Y. Hopen, Laser Beam Scintillation With Applications. Bellingham, Washington: SPIE Press, 2001.
[CrossRef]

Arnon, S.

Baykal, Y.

Y. Cai, Q. Lin, H. T. Eyyuboglu, Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express, vol. 16, pp. 7665–7673, 2008.
[CrossRef] [PubMed]

H. T. Eyyuboglu, Y. Baykal, Y. Cai, “Degree of polarization for partially coherent general beams in turbulent atmosphere,” Appl. Phys. B, 89, pp. 91–97, 2007.
[CrossRef]

Benedetto, S.

S. Benedetto, P. Poggiolini, “Highly bandwidth efficient transmission through continuous polarisation modulation,” Electron. Lett., vol. 26, pp. 1392–1394, 1990.
[CrossRef]

Biswas, A.

H. Hemmati, M. W. Wright, B. Sanii, N. A. Page, G. G. Ortiz, A. Biswas, K. E. Wilson, “Multigigabit data-rate optical communication depicting LEO-to-GEO and GEO-to-ground links,” presented at Free-Space Laser Communication Technologies XIV, San Jose, CA, USA, 2002.

Cai, Y.

Y. Cai, Q. Lin, H. T. Eyyuboglu, Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express, vol. 16, pp. 7665–7673, 2008.
[CrossRef] [PubMed]

H. T. Eyyuboglu, Y. Baykal, Y. Cai, “Degree of polarization for partially coherent general beams in turbulent atmosphere,” Appl. Phys. B, 89, pp. 91–97, 2007.
[CrossRef]

Chan, V. W. S.

Chen, Z. Y.

J. H. Shu, Z. Y. Chen, J. X. Pu, “Polarization changes of partially coherent electromagnetic vortex beams propagating in turbulent atmosphere,” Chin. Opt. Lett., vol. 26, pp. 024207–4, 2009.
[CrossRef]

Davis, C. C.

S. Trisno, C. C. Davis, “Performance of free space optical communication systems using polarization shift keying modulation,” presented at Free-Space Laser Communications VI, San Diego, CA, USA, 2006.

S. Trisno, I. I. Smolyaninov, S. D. Milner, C. C. Davis, “Delayed diversity for fade resistance in optical wireless communications through turbulent media,” presented at Optical Transmission Systems and Equipment for WDM Networking III, Philadelphia, PA, USA, 2004.

Dogariu, A.

M. Salem, O. Korotkova, A. Dogariu, E. Wolf, “Polarization changes in partially coherent electromagnetic beams propagating through turbulent atmosphere,” Waves Random Media, vol. 14, pp. 513–523, 2004.
[CrossRef]

Dolezal, F.

H. Izadpanah, T. El Batt, V. Kukshya, F. Dolezal, B. K. Ryu, “High-availability free space optical and RF hybrid wireless networks,” IEEE. Wireless Commun., vol. 10, pp. 45–53, 2003.
[CrossRef]

El Batt, T.

H. Izadpanah, T. El Batt, V. Kukshya, F. Dolezal, B. K. Ryu, “High-availability free space optical and RF hybrid wireless networks,” IEEE. Wireless Commun., vol. 10, pp. 45–53, 2003.
[CrossRef]

Eyyuboglu, H. T.

Y. Cai, Q. Lin, H. T. Eyyuboglu, Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express, vol. 16, pp. 7665–7673, 2008.
[CrossRef] [PubMed]

H. T. Eyyuboglu, Y. Baykal, Y. Cai, “Degree of polarization for partially coherent general beams in turbulent atmosphere,” Appl. Phys. B, 89, pp. 91–97, 2007.
[CrossRef]

Gao, S.

W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” Opto-electronics (London), vol. 2, pp. 16–23, 2008.

Ghassemlooy, Z.

W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” Opto-electronics (London), vol. 2, pp. 16–23, 2008.

Hazem, H. R.

H. Alan, J. James, J. Sluss, H. R. Hazem, G. L. Peter, “Free-space optical wavelength diversity scheme for fog mitigation in a ground-to-unmanned-aerial-vehicle communications link,” Opt. Eng. (Bellingham), vol. 45, pp. 086001–12, 2006.
[CrossRef]

Hemmati, H.

H. Hemmati, M. W. Wright, B. Sanii, N. A. Page, G. G. Ortiz, A. Biswas, K. E. Wilson, “Multigigabit data-rate optical communication depicting LEO-to-GEO and GEO-to-ground links,” presented at Free-Space Laser Communication Technologies XIV, San Jose, CA, USA, 2002.

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, C. Y. Hopen, Laser Beam Scintillation With Applications. Bellingham, Washington: SPIE Press, 2001.
[CrossRef]

Izadpanah, H.

H. Izadpanah, T. El Batt, V. Kukshya, F. Dolezal, B. K. Ryu, “High-availability free space optical and RF hybrid wireless networks,” IEEE. Wireless Commun., vol. 10, pp. 45–53, 2003.
[CrossRef]

James, J.

H. Alan, J. James, J. Sluss, H. R. Hazem, G. L. Peter, “Free-space optical wavelength diversity scheme for fog mitigation in a ground-to-unmanned-aerial-vehicle communications link,” Opt. Eng. (Bellingham), vol. 45, pp. 086001–12, 2006.
[CrossRef]

Jing, L.

M. Uysal, L. Jing, Y. Meng, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE. Trans. Wireless Commun., vol. 5, pp. 1229–1233, 2006.
[CrossRef]

Kopeika, N. S.

Korotkova, O.

H. Roychowdhury, O. Korotkova, “Realizability conditions for electromagnetic Gaussian Schell-model sources,” Opt. Commun., vol. 249, pp. 379–385, 2005.
[CrossRef]

M. Salem, O. Korotkova, A. Dogariu, E. Wolf, “Polarization changes in partially coherent electromagnetic beams propagating through turbulent atmosphere,” Waves Random Media, vol. 14, pp. 513–523, 2004.
[CrossRef]

O. Korotkova, M. Salem, E. Wolf, “The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun., vol. 233, pp. 225–230, 2004.
[CrossRef]

Kukshya, V.

H. Izadpanah, T. El Batt, V. Kukshya, F. Dolezal, B. K. Ryu, “High-availability free space optical and RF hybrid wireless networks,” IEEE. Wireless Commun., vol. 10, pp. 45–53, 2003.
[CrossRef]

Lazzaroni, M.

M. Lazzaroni, F. E. Zocchi, “Optical coupling from plane wave to step-index single-mode fiber,” Opt. Commun., vol. 237, pp. 37–43, 2004.
[CrossRef]

Leitgeb, E.

W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” Opto-electronics (London), vol. 2, pp. 16–23, 2008.

Lin, Q.

Meng, Y.

M. Uysal, L. Jing, Y. Meng, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE. Trans. Wireless Commun., vol. 5, pp. 1229–1233, 2006.
[CrossRef]

Milner, S. D.

S. Trisno, I. I. Smolyaninov, S. D. Milner, C. C. Davis, “Delayed diversity for fade resistance in optical wireless communications through turbulent media,” presented at Optical Transmission Systems and Equipment for WDM Networking III, Philadelphia, PA, USA, 2004.

Ortiz, G. G.

H. Hemmati, M. W. Wright, B. Sanii, N. A. Page, G. G. Ortiz, A. Biswas, K. E. Wilson, “Multigigabit data-rate optical communication depicting LEO-to-GEO and GEO-to-ground links,” presented at Free-Space Laser Communication Technologies XIV, San Jose, CA, USA, 2002.

Page, N. A.

H. Hemmati, M. W. Wright, B. Sanii, N. A. Page, G. G. Ortiz, A. Biswas, K. E. Wilson, “Multigigabit data-rate optical communication depicting LEO-to-GEO and GEO-to-ground links,” presented at Free-Space Laser Communication Technologies XIV, San Jose, CA, USA, 2002.

Peter, G. L.

H. Alan, J. James, J. Sluss, H. R. Hazem, G. L. Peter, “Free-space optical wavelength diversity scheme for fog mitigation in a ground-to-unmanned-aerial-vehicle communications link,” Opt. Eng. (Bellingham), vol. 45, pp. 086001–12, 2006.
[CrossRef]

Phillips, R. L.

L. C. Andrews, R. L. Phillips, C. Y. Hopen, Laser Beam Scintillation With Applications. Bellingham, Washington: SPIE Press, 2001.
[CrossRef]

Poggiolini, P.

S. Benedetto, P. Poggiolini, “Highly bandwidth efficient transmission through continuous polarisation modulation,” Electron. Lett., vol. 26, pp. 1392–1394, 1990.
[CrossRef]

Ponomarenko, S. A.

H. Roychowdhury, S. A. Ponomarenko, E. Wolf, “Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere,” J. Mod. Opt., vol. 52, pp. 1611–1618, 2005.
[CrossRef]

Popoola, W. O.

W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” Opto-electronics (London), vol. 2, pp. 16–23, 2008.

Pu, J. X.

J. H. Shu, Z. Y. Chen, J. X. Pu, “Polarization changes of partially coherent electromagnetic vortex beams propagating in turbulent atmosphere,” Chin. Opt. Lett., vol. 26, pp. 024207–4, 2009.
[CrossRef]

Roychowdhury, H.

H. Roychowdhury, O. Korotkova, “Realizability conditions for electromagnetic Gaussian Schell-model sources,” Opt. Commun., vol. 249, pp. 379–385, 2005.
[CrossRef]

H. Roychowdhury, S. A. Ponomarenko, E. Wolf, “Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere,” J. Mod. Opt., vol. 52, pp. 1611–1618, 2005.
[CrossRef]

Ryu, B. K.

H. Izadpanah, T. El Batt, V. Kukshya, F. Dolezal, B. K. Ryu, “High-availability free space optical and RF hybrid wireless networks,” IEEE. Wireless Commun., vol. 10, pp. 45–53, 2003.
[CrossRef]

Salem, M.

M. Salem, O. Korotkova, A. Dogariu, E. Wolf, “Polarization changes in partially coherent electromagnetic beams propagating through turbulent atmosphere,” Waves Random Media, vol. 14, pp. 513–523, 2004.
[CrossRef]

O. Korotkova, M. Salem, E. Wolf, “The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun., vol. 233, pp. 225–230, 2004.
[CrossRef]

Sanii, B.

H. Hemmati, M. W. Wright, B. Sanii, N. A. Page, G. G. Ortiz, A. Biswas, K. E. Wilson, “Multigigabit data-rate optical communication depicting LEO-to-GEO and GEO-to-ground links,” presented at Free-Space Laser Communication Technologies XIV, San Jose, CA, USA, 2002.

Shu, J. H.

J. H. Shu, Z. Y. Chen, J. X. Pu, “Polarization changes of partially coherent electromagnetic vortex beams propagating in turbulent atmosphere,” Chin. Opt. Lett., vol. 26, pp. 024207–4, 2009.
[CrossRef]

Sluss, J.

H. Alan, J. James, J. Sluss, H. R. Hazem, G. L. Peter, “Free-space optical wavelength diversity scheme for fog mitigation in a ground-to-unmanned-aerial-vehicle communications link,” Opt. Eng. (Bellingham), vol. 45, pp. 086001–12, 2006.
[CrossRef]

Smolyaninov, I. I.

S. Trisno, I. I. Smolyaninov, S. D. Milner, C. C. Davis, “Delayed diversity for fade resistance in optical wireless communications through turbulent media,” presented at Optical Transmission Systems and Equipment for WDM Networking III, Philadelphia, PA, USA, 2004.

Trisno, S.

S. Trisno, I. I. Smolyaninov, S. D. Milner, C. C. Davis, “Delayed diversity for fade resistance in optical wireless communications through turbulent media,” presented at Optical Transmission Systems and Equipment for WDM Networking III, Philadelphia, PA, USA, 2004.

S. Trisno, C. C. Davis, “Performance of free space optical communication systems using polarization shift keying modulation,” presented at Free-Space Laser Communications VI, San Diego, CA, USA, 2006.

Tyson, R. K.

Uysal, M.

M. Uysal, L. Jing, Y. Meng, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE. Trans. Wireless Commun., vol. 5, pp. 1229–1233, 2006.
[CrossRef]

Wilson, K. E.

H. Hemmati, M. W. Wright, B. Sanii, N. A. Page, G. G. Ortiz, A. Biswas, K. E. Wilson, “Multigigabit data-rate optical communication depicting LEO-to-GEO and GEO-to-ground links,” presented at Free-Space Laser Communication Technologies XIV, San Jose, CA, USA, 2002.

Wolf, E.

H. Roychowdhury, S. A. Ponomarenko, E. Wolf, “Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere,” J. Mod. Opt., vol. 52, pp. 1611–1618, 2005.
[CrossRef]

M. Salem, O. Korotkova, A. Dogariu, E. Wolf, “Polarization changes in partially coherent electromagnetic beams propagating through turbulent atmosphere,” Waves Random Media, vol. 14, pp. 513–523, 2004.
[CrossRef]

O. Korotkova, M. Salem, E. Wolf, “The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun., vol. 233, pp. 225–230, 2004.
[CrossRef]

E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A, vol. 312, pp. 263–267, 2003.
[CrossRef]

Wright, M. W.

H. Hemmati, M. W. Wright, B. Sanii, N. A. Page, G. G. Ortiz, A. Biswas, K. E. Wilson, “Multigigabit data-rate optical communication depicting LEO-to-GEO and GEO-to-ground links,” presented at Free-Space Laser Communication Technologies XIV, San Jose, CA, USA, 2002.

Zocchi, F. E.

M. Lazzaroni, F. E. Zocchi, “Optical coupling from plane wave to step-index single-mode fiber,” Opt. Commun., vol. 237, pp. 37–43, 2004.
[CrossRef]

Appl. Opt.

Appl. Phys. B

H. T. Eyyuboglu, Y. Baykal, Y. Cai, “Degree of polarization for partially coherent general beams in turbulent atmosphere,” Appl. Phys. B, 89, pp. 91–97, 2007.
[CrossRef]

Chin. Opt. Lett.

J. H. Shu, Z. Y. Chen, J. X. Pu, “Polarization changes of partially coherent electromagnetic vortex beams propagating in turbulent atmosphere,” Chin. Opt. Lett., vol. 26, pp. 024207–4, 2009.
[CrossRef]

Electron. Lett.

S. Benedetto, P. Poggiolini, “Highly bandwidth efficient transmission through continuous polarisation modulation,” Electron. Lett., vol. 26, pp. 1392–1394, 1990.
[CrossRef]

IEEE. Trans. Wireless Commun.

M. Uysal, L. Jing, Y. Meng, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE. Trans. Wireless Commun., vol. 5, pp. 1229–1233, 2006.
[CrossRef]

IEEE. Wireless Commun.

H. Izadpanah, T. El Batt, V. Kukshya, F. Dolezal, B. K. Ryu, “High-availability free space optical and RF hybrid wireless networks,” IEEE. Wireless Commun., vol. 10, pp. 45–53, 2003.
[CrossRef]

J. Lightwave Technol.

J. Mod. Opt.

H. Roychowdhury, S. A. Ponomarenko, E. Wolf, “Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere,” J. Mod. Opt., vol. 52, pp. 1611–1618, 2005.
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

O. Korotkova, M. Salem, E. Wolf, “The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun., vol. 233, pp. 225–230, 2004.
[CrossRef]

M. Lazzaroni, F. E. Zocchi, “Optical coupling from plane wave to step-index single-mode fiber,” Opt. Commun., vol. 237, pp. 37–43, 2004.
[CrossRef]

H. Roychowdhury, O. Korotkova, “Realizability conditions for electromagnetic Gaussian Schell-model sources,” Opt. Commun., vol. 249, pp. 379–385, 2005.
[CrossRef]

Opt. Eng. (Bellingham)

H. Alan, J. James, J. Sluss, H. R. Hazem, G. L. Peter, “Free-space optical wavelength diversity scheme for fog mitigation in a ground-to-unmanned-aerial-vehicle communications link,” Opt. Eng. (Bellingham), vol. 45, pp. 086001–12, 2006.
[CrossRef]

Opt. Express

Opto-electronics (London)

W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” Opto-electronics (London), vol. 2, pp. 16–23, 2008.

Phys. Lett. A

E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A, vol. 312, pp. 263–267, 2003.
[CrossRef]

Waves Random Media

M. Salem, O. Korotkova, A. Dogariu, E. Wolf, “Polarization changes in partially coherent electromagnetic beams propagating through turbulent atmosphere,” Waves Random Media, vol. 14, pp. 513–523, 2004.
[CrossRef]

Other

S. Trisno, C. C. Davis, “Performance of free space optical communication systems using polarization shift keying modulation,” presented at Free-Space Laser Communications VI, San Diego, CA, USA, 2006.

H. Hemmati, M. W. Wright, B. Sanii, N. A. Page, G. G. Ortiz, A. Biswas, K. E. Wilson, “Multigigabit data-rate optical communication depicting LEO-to-GEO and GEO-to-ground links,” presented at Free-Space Laser Communication Technologies XIV, San Jose, CA, USA, 2002.

S. Trisno, I. I. Smolyaninov, S. D. Milner, C. C. Davis, “Delayed diversity for fade resistance in optical wireless communications through turbulent media,” presented at Optical Transmission Systems and Equipment for WDM Networking III, Philadelphia, PA, USA, 2004.

L. C. Andrews, R. L. Phillips, C. Y. Hopen, Laser Beam Scintillation With Applications. Bellingham, Washington: SPIE Press, 2001.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Timing sequence diagrams of OOK and CPolSK.

Fig. 2
Fig. 2

Comparison of the OOK and CPolSK modulation formats in Stokes space: (a) OOK, (b) CPolSK.

Fig. 3
Fig. 3

Diagram of the CPolSK communication system with direct detection. (The black arrows denote the optical signals and the blue arrows denote the electric signals.)

Fig. 4
Fig. 4

Change of the DOP along the propagation distance. The parameters of the source are λ = 1550 nm , A x 2 = A y 2 = 0.5 , σ = 5 cm , B x y = 0.99 i , δ x x = δ y y = 0.2 mm , δ x y = 0.2005 mm . The parameters characterizing the atmosphere are chosen to be C n 2 = 10 13 m 2 3 , l 0 = 5 mm .

Fig. 5
Fig. 5

Uncoded BER performance for OOK and CPolSK modulated FSO systems under various intensity fluctuations. The parameters of the source are chosen as in Fig. 4.

Equations (44)

Equations on this page are rendered with MathJax. Learn more.

W ( ρ 1 , ρ 2 , z ; ω ) [ W i j ( ρ 1 , ρ 2 , z ; ω ) ] = [ E i * ( ρ 1 , z ; ω ) E j ( ρ 2 , z ; ω ) ] ,
( i = x , y ; j = x , y ) ,
P ( ρ , z ; ω ) = 1 4 Det W ( ρ , ρ , z ; ω ) [ Tr W ( ρ , ρ , z ; ω ) ] 2 ,
s 0 ( ρ , z ; ω ) = W x x ( ρ , ρ , z ; ω ) + W y y ( ρ , ρ , z ; ω ) ,
s 1 ( ρ , z ; ω ) = W x x ( ρ , ρ , z ; ω ) W y y ( ρ , ρ , z ; ω ) ,
s 2 ( ρ , z ; ω ) = W x y ( ρ , ρ , z ; ω ) + W y x ( ρ , ρ , z ; ω ) ,
s 3 ( ρ , z ; ω ) = i [ W y x ( ρ , ρ , z ; ω ) W x y ( ρ , ρ , z ; ω ) ] .
s i ( ρ , z ; ω ) = s i ( ρ , z ; ω ) s 0 ( ρ , z ; ω ) , ( i = 1 , 2 , 3 ) .
W i j ( ρ 1 , ρ 2 , z = 0 ; ω ) = A i A j B i j × exp [ ( ρ 1 2 4 σ i 2 + ρ 2 2 4 σ j 2 ) ] × exp [ ( ρ 2 ρ 1 ) 2 2 δ i j ] .
B i j = 1 when i = j ,
| B i j | 1 when i j ,
B i j = B j i * ,
δ i j = δ j i .
s 1 ( ρ , z = 0 ; ω ) = A x 2 A y 2 A x 2 + A y 2 ,
s 2 ( ρ , z = 0 ; ω ) = 2 A x A y Re [ B x y ] A x 2 + A y 2 ,
s 3 ( ρ , z = 0 ; ω ) = 2 A x A y Im [ B y x ] A x 2 + A y 2 ,
P ( ρ , z = 0 ; ω ) = ( A x 2 A y 2 ) 2 + 4 | B x y | 2 A x 2 A y 2 ( A x 2 + A y 2 ) 2 ,
s 1 ( ρ , z = 0 ; ω ) = 0 ,
s 2 ( ρ , z = 0 ; ω ) = 0 .
A x = A y ,
Re [ B x y ] = 0 ,
s 1 ( ρ , z = 0 ; ω ) = 0 ,
s 2 ( ρ , z = 0 ; ω ) = 0 ,
s 3 ( ρ , z = 0 ; ω ) = Im [ B x y ] ,
P ( ρ , z = 0 ; ω ) = | B x y | = Im [ B x y ] .
W i j ( ρ , ρ , z ; ω ) = A i A j B i j Δ i j 2 ( z ) exp [ ρ 2 2 σ 2 Δ i j 2 ( z ) ] ,
Δ i j 2 ( z ) = 1 + α i j z 2 + T z m ,
α i j = 1 ( k σ ) 2 ( 1 4 σ 2 + 1 δ i j ) .
T = 1.093 C n 2 l 0 1 3 σ 2 , m = 3 .
s 1 ( ρ , z ; ω ) = 0 ,
s 2 ( ρ , z ; ω ) = 0 ,
s 3 ( ρ , z ; ω ) = Im [ B x y ] Δ x x 2 Δ x y 2 exp [ ρ 2 2 σ 2 ( 1 Δ x x 2 1 Δ x y 2 ) ] ,
P ( ρ , z ; ω ) = | B x y | Δ x x 2 Δ x y 2 exp [ ρ 2 2 σ 2 ( 1 Δ x x 2 1 Δ x y 2 ) ] .
B x y = i .
max { δ x x , δ y y } δ x y min { δ x x | B x y | , δ y y | B x y | } ,
δ x x = δ y y = δ x y .
Δ P = P ( z ) P ( 0 ) P ( 0 ) = 0.005 .
p I ( u ) = 1 u σ ln 2 π exp [ 1 2 σ ln 2 ( ln u + 1 2 σ ln 2 ) 2 ] .
P e OOK ( u ) = 1 2 erfc ( u SNR 2 2 ) ,
SNR = i s σ n .
BER OOK = 0 p I ( u ) P e OOK ( u ) d u .
i = i D 1 i D 0 = { ϵ i s + i n digital 1 ϵ i s + i n digital 0 } ,
P e CPOL ( i S ) = 1 2 erfc ( ϵ i S 2 σ n ) = 1 2 erfc ( ϵ u SNR 2 σ n ) .
BER CPOL = 0 p I ( u ) P e CPOL ( u ) d u .