Abstract

The design of fabrics for terabit packet switches and routers needs to consider the limitations imposed by electronic technologies. In particular, attention has to be paid to information density and to power consumption and dissipation, as well as to power supply and footprint requirements. Optical technologies can overcome some of these limitations. We analyze the use of optical fabrics to interconnect line cards in terabit packet switches and routers. For this purpose, single-plane and multiplane optical interconnection architectures are proposed that exploit wavelength agility at line cards to implement the required switching functionality. The physical-layer scalability and feasibility of these architectures are studied by using realistic models, mostly based on the characteristics of commercially available optoelectronic devices. As a result, the considered architectures can be characterized in terms of power budget and signal-to-noise ratio, enabling the computation of the maximum achievable port count and aggregate switching capacity. Our results show that aggregate capacities of the order of a few terabits per second are possible in very simple optical switching fabrics and that the multiplane architectures permit a complexity trade-off between the wavelength and space domains, making the overall design more feasible.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription