Abstract

Increase in data transmission and processing speed unavoidably leads to high requirements on power supply. Especially in the case of high-capacity electronic routers, the question of power consumption will be the major issue and probably the most important limiting factor for the future. This paper analyzes the role of bufferless optical packet switches (OPSs) realized in semiconductor optical amplifier (SOA) technology in reducing average power consumption. An analytical model is proposed to provide an expression for the average power consumption of bufferless OPSs as a function of both the offered traffic and the main parameters characterizing the power consumption of the space switching modules (SSMs) and wavelength converters (WCs) needed to realize the bufferless OPSs. The effectiveness of WC sharing, which reduces the average power consumed by WCs, is evaluated in the case in which the Tucker’s model for the evaluation of the power consumed by the SSMs and WCs is used. The obtained results show that, due to the high power consumed by the switching elements, switches with shared WCs may require average power consumption higher than switches in which WC sharing is not performed. In particular, only when the offered traffic is low and high-energy-consumption WCs are used, is the WCs sharing effective. When cross-gain modulation WCs are employed, the sharing technique allows for a reduction of average power consumption from 50% to 10% when the offered traffic is varying from 0.1 to 0.9. To obtain more realistic power consumption of the bufferless OPSs, we have introduced in our analytical model some power consumption values evaluated and experimentally validated for the SOAs produced by some manufacture’s and needed to realize the SSMs and WCs. In this case we compare the power consumed of the bufferless OPSs to that of a Cisco GSR 12008 router equipped with ten slots that can accommodate up to 4Gbs per slot and designed for operation in a network core. We take into account for comparison the power consumption normalized to the offered total input bit rate.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, S. Wright, “Power awareness in network design and routing,” in IEEE INFOCOM 2008, Phoenix, Arizona, Apr. 15–17, 2008, pp. 457–465.
  2. S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, D. Wetherall, “Reducing network energy consumption via sleeping and rate-adaptation,” in 5th USENIX Symp. on Networked Systems Design and Implementation, San Francisco, California, Apr. 16–18, 2008, pp. 323–336.
  3. M. Gupta, S. Singh, “Greening of the Internet,” in ACM SIGCOMM 2003, Karlsruche, Germany, Aug. 25–29, 2003.
  4. M. Gupta, S. Grover, S. Singh, “A feasibility study for power management in LAN switches,” in 12th IEEE Int. Conf. on Network Protocols (ICNP 2004), Berlin, Germany, Oct. 5–8, 2004, pp. 361–371.
  5. D. Blumenthal, P. Prucnal, J. Sauer, “Photonic packet switches: architectures and experimental implementations,” Proc. IEEE, vol. 82, no. 11, pp. 84–94, Feb. 2000.
  6. R. S. Tucker, W. Zhong, “Photonic packet switching: an overview,” IEICE Trans. Commun., vol. E82-B, no. 2, pp. 254–264, 1999.
  7. S. Yao, B. Mukherjee, S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag., vol. 38, no. 2, pp. 84–94, Feb. 2000.
    [CrossRef]
  8. D. K. Hunter, I. Andonovic, “Approaches to optical Internet packet switching,” IEEE Commun. Mag., vol. 38, no. 9, pp. 116–122, Sept. 2000.
    [CrossRef]
  9. D. Chiaroni, “Packet switching matrix: a key element for the backbone and the metro,” IEEE J. Sel. Areas Commun., vol. 21, no. 7, pp. 1018–1025, Sept. 2003.
    [CrossRef]
  10. A. Aleksic, “Power consumption issues in future high-performance switches and routers,” in ICTON 2008, Athens, Greece, June 22–26, 2008, pp. 134–138.
  11. R. W. Boyd, M. S. Bigelow, N. Lepeshkin, A. Schweinsberg, P. Zeron, “Fundamentals and applications of slow light in semiconductor in room temperature solids,” in Annu. Meeting IEEE Lasers and Electro-Optics Society (LEOS), Philadelphia, Pennsylvania, Oct. 25–28, 2004, pp. 45–48.
  12. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, S. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature, vol. 438, no. 7065, pp. 65–69, 2005.
    [CrossRef] [PubMed]
  13. J. B. Khurbin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B, vol. 22, no. 5, pp. 1062–1074, May 2005.
    [CrossRef]
  14. R. S. Tucker, P. C. Ku, C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol., vol. 23, no. 12, pp. 4046–4066, Dec. 2005.
    [CrossRef]
  15. R. S. Tucker, “Optically-amplified slow-light buffers for high-capacity optical routers,” in 5th Int. Conf. on Optical Internet (COIN), Jeju, South Korea, July 9–13, 2006, pp. 17–19.
  16. R. S. Tucker, “The role of optics and electronics in high-capacity routers,” J. Lightwave Technol., vol. 24, no. 12, pp. 4655–4673, Dec. 2006.
    [CrossRef]
  17. R. S. Tucker, “How to build a petabit-per-second optical router,” in Annu. Meeting IEEE Lasers and Electro-Optics Society (LEOS), Montreal, Canada, Oct. 29–Nov. 2, 2006, pp. 486–487.
  18. J. Baliga, R. Ayre, K. Hinton, R. S. Tucker, “Photonic switching and the energy bottleneck,” in Photonics in Switching, San Francisco, California, Aug. 19–22, 2007, pp. 125–126.
  19. R. S. Tucker, K. Hinton, G. Raskutti, “Energy consumption limits in high-speed optical and electronic signal processing,” Electron. Lett., vol. 43, no. 17, pp. 906–908, Aug. 2007.
    [CrossRef]
  20. R. S. Tucker, “Energy consumption in digital optical ics with plasmon waveguide interconnects,” IEEE Photon. Technol. Lett., vol. 19, no. 24, pp. 2036–2038, Dec. 2007.
    [CrossRef]
  21. S. L. Danielsen, C. Joergensen, B. Mikkelsen, K. E. Stubkyaer, “Optical packet switched network layer without optical buffers,” IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 896–898, June 1998.
    [CrossRef]
  22. S. L. Danielsen, C. Jorgensen, B. Mikkelsen, K. E. Stubbkyaer, “Analysis of a WDM packet switch with improved performance under bursty traffic conditions due to tuneable wavelength converters,” J. Lightwave Technol., vol. 16, no. 5, pp. 729–735, May 1998.
    [CrossRef]
  23. A. Zalesky, R. S. Tucker, “Dynamically concatenated wavelength converters,” IEEE Photon. Technol. Lett., vol. 18, no. 2, pp. 352–354, Jan. 2006.
    [CrossRef]
  24. J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Four-wave-mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett., vol. 6, no. 8, pp. 984–987, Aug. 1994.
    [CrossRef]
  25. C. Joergensen, T. Durhuus, C. Braagaard, B. Mikkelsen, K. E. Stubkjaer, “4 Gb∕s optical wavelength conversion using semiconductor optical amplifier,” IEEE Photon. Technol. Lett., vol. 5, no. 6, pp. 657–670, June 1993.
    [CrossRef]
  26. B. Mikkelsen, T. Durhuus, C. Joergensen, R. J. S. Pedersen, C. Braagaard, K. E. Stubkjaer, “Polarization insensitive wavelength conversion of 10 Gbit/s signals with SOAs in a Michelson interferometer,” Electron. Lett., vol. 30, no. 3, pp. 260–261, Feb. 1994.
    [CrossRef]
  27. J. M. H. Elmirghani, H. T. Mouftah, “All-optical wavelength conversion technologies and applications in DWDM,” IEEE Commun. Mag., vol. 38, no. 3, pp. 86–92, March 2000.
    [CrossRef]
  28. V. Eramo, M. Listanti, “Packet loss in a bufferless wdm switch employing shared tuneable wavelength converters,” J. Lightwave Technol., vol. 18, no. 12, pp. 1818–1833, Dec. 2000.
    [CrossRef]
  29. V. Eramo, M. Listanti, P. Pacifici, “A comparison study on the wavelength converters number needed in synchronous and asynchronous all-optical switching architectures,” J. Lightwave Technol., vol. 21, no. 2, pp. 340–355, Feb. 2003.
    [CrossRef]
  30. V. Eramo, M. Listanti,“Comparison of unicast/multicast optical packet switching architectures using wavelength conversion,” Opt. Networks Mag., vol. 3, pp. 63–75, March–Apr. 2002.
  31. C. Raffaelli, M. Savi, “Performance modeling of synchronous buffer-less optical packet switch with partial wavelength conversion,” in IEEE ICC 2006, Istanbul, Turkey, June 2006, pp. 22–28.
  32. C. Raffaelli, M. Savi, A. Stavdas, “Peformance of scheduling algorithms in multi-stage optical packet switches with sparse wavelength converters,” in IEEE Globecom 2006, San Francisco, California, Dec. 2006.
  33. C. Raffaelli, M. Savi, A. Stavdas, “Sharing wavelength converters in multistage optical packet switches,” in High Performance Switching and Routing, Poznan, Poland, June 2006, pp. 15–20.
  34. N. Akar, E. Karasan, K. Dogan, “Wavelength converter sharing in asynchronous optical packet/burst switching: an exact blocking analysis for markovian arrivals,” IEEE J. Sel. Areas Commun., vol. 24, no. 12, pp. 69–80, Dec. 2006.
    [CrossRef]
  35. K. Hinton, G. Rakutti, P. Farrel, R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron., vol. 14, no. 3, pp. 938–945, May/June 2008.
    [CrossRef]
  36. J. Sakaguchi, F. Salleras, K. Nishimura, Y. Ueno, “Frequency-dependent electric dc power consumption model including quantum-conversion efficiencies in ultrafast all-optical semiconductor gates around 160 Gb∕s,” Opt. Express, vol. 15, no. 22, pp. 14887–14900, Feb. 2004.
    [CrossRef]
  37. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics, Hoboken, NJ: Wiley, 1991.
    [CrossRef]
  38. V. Eramo, M. Listanti, C. Nuzman, P. Whiting, “Optical switch dimensioning and the classical occupancy problem,” Int. J. Commun. Syst., vol. 15, no. 2, pp. 127–141, March–Apr. 2002.
    [CrossRef]
  39. W. Feller, An Introduction to Probability Theory and Its Applications, New York: Wiley, vol. 1, 1968.

2008

K. Hinton, G. Rakutti, P. Farrel, R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron., vol. 14, no. 3, pp. 938–945, May/June 2008.
[CrossRef]

2007

R. S. Tucker, K. Hinton, G. Raskutti, “Energy consumption limits in high-speed optical and electronic signal processing,” Electron. Lett., vol. 43, no. 17, pp. 906–908, Aug. 2007.
[CrossRef]

R. S. Tucker, “Energy consumption in digital optical ics with plasmon waveguide interconnects,” IEEE Photon. Technol. Lett., vol. 19, no. 24, pp. 2036–2038, Dec. 2007.
[CrossRef]

2006

A. Zalesky, R. S. Tucker, “Dynamically concatenated wavelength converters,” IEEE Photon. Technol. Lett., vol. 18, no. 2, pp. 352–354, Jan. 2006.
[CrossRef]

R. S. Tucker, “The role of optics and electronics in high-capacity routers,” J. Lightwave Technol., vol. 24, no. 12, pp. 4655–4673, Dec. 2006.
[CrossRef]

N. Akar, E. Karasan, K. Dogan, “Wavelength converter sharing in asynchronous optical packet/burst switching: an exact blocking analysis for markovian arrivals,” IEEE J. Sel. Areas Commun., vol. 24, no. 12, pp. 69–80, Dec. 2006.
[CrossRef]

2005

2004

2003

2002

V. Eramo, M. Listanti,“Comparison of unicast/multicast optical packet switching architectures using wavelength conversion,” Opt. Networks Mag., vol. 3, pp. 63–75, March–Apr. 2002.

V. Eramo, M. Listanti, C. Nuzman, P. Whiting, “Optical switch dimensioning and the classical occupancy problem,” Int. J. Commun. Syst., vol. 15, no. 2, pp. 127–141, March–Apr. 2002.
[CrossRef]

2000

D. Blumenthal, P. Prucnal, J. Sauer, “Photonic packet switches: architectures and experimental implementations,” Proc. IEEE, vol. 82, no. 11, pp. 84–94, Feb. 2000.

S. Yao, B. Mukherjee, S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag., vol. 38, no. 2, pp. 84–94, Feb. 2000.
[CrossRef]

D. K. Hunter, I. Andonovic, “Approaches to optical Internet packet switching,” IEEE Commun. Mag., vol. 38, no. 9, pp. 116–122, Sept. 2000.
[CrossRef]

J. M. H. Elmirghani, H. T. Mouftah, “All-optical wavelength conversion technologies and applications in DWDM,” IEEE Commun. Mag., vol. 38, no. 3, pp. 86–92, March 2000.
[CrossRef]

V. Eramo, M. Listanti, “Packet loss in a bufferless wdm switch employing shared tuneable wavelength converters,” J. Lightwave Technol., vol. 18, no. 12, pp. 1818–1833, Dec. 2000.
[CrossRef]

1999

R. S. Tucker, W. Zhong, “Photonic packet switching: an overview,” IEICE Trans. Commun., vol. E82-B, no. 2, pp. 254–264, 1999.

1998

S. L. Danielsen, C. Joergensen, B. Mikkelsen, K. E. Stubkyaer, “Optical packet switched network layer without optical buffers,” IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 896–898, June 1998.
[CrossRef]

S. L. Danielsen, C. Jorgensen, B. Mikkelsen, K. E. Stubbkyaer, “Analysis of a WDM packet switch with improved performance under bursty traffic conditions due to tuneable wavelength converters,” J. Lightwave Technol., vol. 16, no. 5, pp. 729–735, May 1998.
[CrossRef]

1994

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Four-wave-mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett., vol. 6, no. 8, pp. 984–987, Aug. 1994.
[CrossRef]

B. Mikkelsen, T. Durhuus, C. Joergensen, R. J. S. Pedersen, C. Braagaard, K. E. Stubkjaer, “Polarization insensitive wavelength conversion of 10 Gbit/s signals with SOAs in a Michelson interferometer,” Electron. Lett., vol. 30, no. 3, pp. 260–261, Feb. 1994.
[CrossRef]

1993

C. Joergensen, T. Durhuus, C. Braagaard, B. Mikkelsen, K. E. Stubkjaer, “4 Gb∕s optical wavelength conversion using semiconductor optical amplifier,” IEEE Photon. Technol. Lett., vol. 5, no. 6, pp. 657–670, June 1993.
[CrossRef]

Akar, N.

N. Akar, E. Karasan, K. Dogan, “Wavelength converter sharing in asynchronous optical packet/burst switching: an exact blocking analysis for markovian arrivals,” IEEE J. Sel. Areas Commun., vol. 24, no. 12, pp. 69–80, Dec. 2006.
[CrossRef]

Aleksic, A.

A. Aleksic, “Power consumption issues in future high-performance switches and routers,” in ICTON 2008, Athens, Greece, June 22–26, 2008, pp. 134–138.

Andonovic, I.

D. K. Hunter, I. Andonovic, “Approaches to optical Internet packet switching,” IEEE Commun. Mag., vol. 38, no. 9, pp. 116–122, Sept. 2000.
[CrossRef]

Ayre, R.

J. Baliga, R. Ayre, K. Hinton, R. S. Tucker, “Photonic switching and the energy bottleneck,” in Photonics in Switching, San Francisco, California, Aug. 19–22, 2007, pp. 125–126.

Baliga, J.

J. Baliga, R. Ayre, K. Hinton, R. S. Tucker, “Photonic switching and the energy bottleneck,” in Photonics in Switching, San Francisco, California, Aug. 19–22, 2007, pp. 125–126.

Barford, P.

J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, S. Wright, “Power awareness in network design and routing,” in IEEE INFOCOM 2008, Phoenix, Arizona, Apr. 15–17, 2008, pp. 457–465.

Bigelow, M. S.

R. W. Boyd, M. S. Bigelow, N. Lepeshkin, A. Schweinsberg, P. Zeron, “Fundamentals and applications of slow light in semiconductor in room temperature solids,” in Annu. Meeting IEEE Lasers and Electro-Optics Society (LEOS), Philadelphia, Pennsylvania, Oct. 25–28, 2004, pp. 45–48.

Blumenthal, D.

D. Blumenthal, P. Prucnal, J. Sauer, “Photonic packet switches: architectures and experimental implementations,” Proc. IEEE, vol. 82, no. 11, pp. 84–94, Feb. 2000.

Boyd, R. W.

R. W. Boyd, M. S. Bigelow, N. Lepeshkin, A. Schweinsberg, P. Zeron, “Fundamentals and applications of slow light in semiconductor in room temperature solids,” in Annu. Meeting IEEE Lasers and Electro-Optics Society (LEOS), Philadelphia, Pennsylvania, Oct. 25–28, 2004, pp. 45–48.

Braagaard, C.

B. Mikkelsen, T. Durhuus, C. Joergensen, R. J. S. Pedersen, C. Braagaard, K. E. Stubkjaer, “Polarization insensitive wavelength conversion of 10 Gbit/s signals with SOAs in a Michelson interferometer,” Electron. Lett., vol. 30, no. 3, pp. 260–261, Feb. 1994.
[CrossRef]

C. Joergensen, T. Durhuus, C. Braagaard, B. Mikkelsen, K. E. Stubkjaer, “4 Gb∕s optical wavelength conversion using semiconductor optical amplifier,” IEEE Photon. Technol. Lett., vol. 5, no. 6, pp. 657–670, June 1993.
[CrossRef]

Chabarek, J.

J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, S. Wright, “Power awareness in network design and routing,” in IEEE INFOCOM 2008, Phoenix, Arizona, Apr. 15–17, 2008, pp. 457–465.

Chang-Hasnain, C. J.

Chiaroni, D.

D. Chiaroni, “Packet switching matrix: a key element for the backbone and the metro,” IEEE J. Sel. Areas Commun., vol. 21, no. 7, pp. 1018–1025, Sept. 2003.
[CrossRef]

Danielsen, S. L.

S. L. Danielsen, C. Joergensen, B. Mikkelsen, K. E. Stubkyaer, “Optical packet switched network layer without optical buffers,” IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 896–898, June 1998.
[CrossRef]

S. L. Danielsen, C. Jorgensen, B. Mikkelsen, K. E. Stubbkyaer, “Analysis of a WDM packet switch with improved performance under bursty traffic conditions due to tuneable wavelength converters,” J. Lightwave Technol., vol. 16, no. 5, pp. 729–735, May 1998.
[CrossRef]

Dixit, S.

S. Yao, B. Mukherjee, S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag., vol. 38, no. 2, pp. 84–94, Feb. 2000.
[CrossRef]

Dogan, K.

N. Akar, E. Karasan, K. Dogan, “Wavelength converter sharing in asynchronous optical packet/burst switching: an exact blocking analysis for markovian arrivals,” IEEE J. Sel. Areas Commun., vol. 24, no. 12, pp. 69–80, Dec. 2006.
[CrossRef]

Durhuus, T.

B. Mikkelsen, T. Durhuus, C. Joergensen, R. J. S. Pedersen, C. Braagaard, K. E. Stubkjaer, “Polarization insensitive wavelength conversion of 10 Gbit/s signals with SOAs in a Michelson interferometer,” Electron. Lett., vol. 30, no. 3, pp. 260–261, Feb. 1994.
[CrossRef]

C. Joergensen, T. Durhuus, C. Braagaard, B. Mikkelsen, K. E. Stubkjaer, “4 Gb∕s optical wavelength conversion using semiconductor optical amplifier,” IEEE Photon. Technol. Lett., vol. 5, no. 6, pp. 657–670, June 1993.
[CrossRef]

Elmirghani, J. M. H.

J. M. H. Elmirghani, H. T. Mouftah, “All-optical wavelength conversion technologies and applications in DWDM,” IEEE Commun. Mag., vol. 38, no. 3, pp. 86–92, March 2000.
[CrossRef]

Eramo, V.

V. Eramo, M. Listanti, P. Pacifici, “A comparison study on the wavelength converters number needed in synchronous and asynchronous all-optical switching architectures,” J. Lightwave Technol., vol. 21, no. 2, pp. 340–355, Feb. 2003.
[CrossRef]

V. Eramo, M. Listanti,“Comparison of unicast/multicast optical packet switching architectures using wavelength conversion,” Opt. Networks Mag., vol. 3, pp. 63–75, March–Apr. 2002.

V. Eramo, M. Listanti, C. Nuzman, P. Whiting, “Optical switch dimensioning and the classical occupancy problem,” Int. J. Commun. Syst., vol. 15, no. 2, pp. 127–141, March–Apr. 2002.
[CrossRef]

V. Eramo, M. Listanti, “Packet loss in a bufferless wdm switch employing shared tuneable wavelength converters,” J. Lightwave Technol., vol. 18, no. 12, pp. 1818–1833, Dec. 2000.
[CrossRef]

Estan, C.

J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, S. Wright, “Power awareness in network design and routing,” in IEEE INFOCOM 2008, Phoenix, Arizona, Apr. 15–17, 2008, pp. 457–465.

Farrel, P.

K. Hinton, G. Rakutti, P. Farrel, R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron., vol. 14, no. 3, pp. 938–945, May/June 2008.
[CrossRef]

Feller, W.

W. Feller, An Introduction to Probability Theory and Its Applications, New York: Wiley, vol. 1, 1968.

Grover, S.

M. Gupta, S. Grover, S. Singh, “A feasibility study for power management in LAN switches,” in 12th IEEE Int. Conf. on Network Protocols (ICNP 2004), Berlin, Germany, Oct. 5–8, 2004, pp. 361–371.

Gupta, M.

M. Gupta, S. Grover, S. Singh, “A feasibility study for power management in LAN switches,” in 12th IEEE Int. Conf. on Network Protocols (ICNP 2004), Berlin, Germany, Oct. 5–8, 2004, pp. 361–371.

M. Gupta, S. Singh, “Greening of the Internet,” in ACM SIGCOMM 2003, Karlsruche, Germany, Aug. 25–29, 2003.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, S. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature, vol. 438, no. 7065, pp. 65–69, 2005.
[CrossRef] [PubMed]

Hinton, K.

K. Hinton, G. Rakutti, P. Farrel, R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron., vol. 14, no. 3, pp. 938–945, May/June 2008.
[CrossRef]

R. S. Tucker, K. Hinton, G. Raskutti, “Energy consumption limits in high-speed optical and electronic signal processing,” Electron. Lett., vol. 43, no. 17, pp. 906–908, Aug. 2007.
[CrossRef]

J. Baliga, R. Ayre, K. Hinton, R. S. Tucker, “Photonic switching and the energy bottleneck,” in Photonics in Switching, San Francisco, California, Aug. 19–22, 2007, pp. 125–126.

Hunter, D. K.

D. K. Hunter, I. Andonovic, “Approaches to optical Internet packet switching,” IEEE Commun. Mag., vol. 38, no. 9, pp. 116–122, Sept. 2000.
[CrossRef]

Iannaccone, G.

S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, D. Wetherall, “Reducing network energy consumption via sleeping and rate-adaptation,” in 5th USENIX Symp. on Networked Systems Design and Implementation, San Francisco, California, Apr. 16–18, 2008, pp. 323–336.

Joergensen, C.

S. L. Danielsen, C. Joergensen, B. Mikkelsen, K. E. Stubkyaer, “Optical packet switched network layer without optical buffers,” IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 896–898, June 1998.
[CrossRef]

B. Mikkelsen, T. Durhuus, C. Joergensen, R. J. S. Pedersen, C. Braagaard, K. E. Stubkjaer, “Polarization insensitive wavelength conversion of 10 Gbit/s signals with SOAs in a Michelson interferometer,” Electron. Lett., vol. 30, no. 3, pp. 260–261, Feb. 1994.
[CrossRef]

C. Joergensen, T. Durhuus, C. Braagaard, B. Mikkelsen, K. E. Stubkjaer, “4 Gb∕s optical wavelength conversion using semiconductor optical amplifier,” IEEE Photon. Technol. Lett., vol. 5, no. 6, pp. 657–670, June 1993.
[CrossRef]

Jorgensen, C.

Karasan, E.

N. Akar, E. Karasan, K. Dogan, “Wavelength converter sharing in asynchronous optical packet/burst switching: an exact blocking analysis for markovian arrivals,” IEEE J. Sel. Areas Commun., vol. 24, no. 12, pp. 69–80, Dec. 2006.
[CrossRef]

Khurbin, J. B.

Ku, P. C.

Lepeshkin, N.

R. W. Boyd, M. S. Bigelow, N. Lepeshkin, A. Schweinsberg, P. Zeron, “Fundamentals and applications of slow light in semiconductor in room temperature solids,” in Annu. Meeting IEEE Lasers and Electro-Optics Society (LEOS), Philadelphia, Pennsylvania, Oct. 25–28, 2004, pp. 45–48.

Listanti, M.

V. Eramo, M. Listanti, P. Pacifici, “A comparison study on the wavelength converters number needed in synchronous and asynchronous all-optical switching architectures,” J. Lightwave Technol., vol. 21, no. 2, pp. 340–355, Feb. 2003.
[CrossRef]

V. Eramo, M. Listanti,“Comparison of unicast/multicast optical packet switching architectures using wavelength conversion,” Opt. Networks Mag., vol. 3, pp. 63–75, March–Apr. 2002.

V. Eramo, M. Listanti, C. Nuzman, P. Whiting, “Optical switch dimensioning and the classical occupancy problem,” Int. J. Commun. Syst., vol. 15, no. 2, pp. 127–141, March–Apr. 2002.
[CrossRef]

V. Eramo, M. Listanti, “Packet loss in a bufferless wdm switch employing shared tuneable wavelength converters,” J. Lightwave Technol., vol. 18, no. 12, pp. 1818–1833, Dec. 2000.
[CrossRef]

McNab, S.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, S. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature, vol. 438, no. 7065, pp. 65–69, 2005.
[CrossRef] [PubMed]

Mikkelsen, B.

S. L. Danielsen, C. Jorgensen, B. Mikkelsen, K. E. Stubbkyaer, “Analysis of a WDM packet switch with improved performance under bursty traffic conditions due to tuneable wavelength converters,” J. Lightwave Technol., vol. 16, no. 5, pp. 729–735, May 1998.
[CrossRef]

S. L. Danielsen, C. Joergensen, B. Mikkelsen, K. E. Stubkyaer, “Optical packet switched network layer without optical buffers,” IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 896–898, June 1998.
[CrossRef]

B. Mikkelsen, T. Durhuus, C. Joergensen, R. J. S. Pedersen, C. Braagaard, K. E. Stubkjaer, “Polarization insensitive wavelength conversion of 10 Gbit/s signals with SOAs in a Michelson interferometer,” Electron. Lett., vol. 30, no. 3, pp. 260–261, Feb. 1994.
[CrossRef]

C. Joergensen, T. Durhuus, C. Braagaard, B. Mikkelsen, K. E. Stubkjaer, “4 Gb∕s optical wavelength conversion using semiconductor optical amplifier,” IEEE Photon. Technol. Lett., vol. 5, no. 6, pp. 657–670, June 1993.
[CrossRef]

Miller, B. I.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Four-wave-mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett., vol. 6, no. 8, pp. 984–987, Aug. 1994.
[CrossRef]

Mouftah, H. T.

J. M. H. Elmirghani, H. T. Mouftah, “All-optical wavelength conversion technologies and applications in DWDM,” IEEE Commun. Mag., vol. 38, no. 3, pp. 86–92, March 2000.
[CrossRef]

Mukherjee, B.

S. Yao, B. Mukherjee, S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag., vol. 38, no. 2, pp. 84–94, Feb. 2000.
[CrossRef]

Nedevschi, S.

S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, D. Wetherall, “Reducing network energy consumption via sleeping and rate-adaptation,” in 5th USENIX Symp. on Networked Systems Design and Implementation, San Francisco, California, Apr. 16–18, 2008, pp. 323–336.

Newkirk, M. A.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Four-wave-mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett., vol. 6, no. 8, pp. 984–987, Aug. 1994.
[CrossRef]

Nishimura, K.

Nuzman, C.

V. Eramo, M. Listanti, C. Nuzman, P. Whiting, “Optical switch dimensioning and the classical occupancy problem,” Int. J. Commun. Syst., vol. 15, no. 2, pp. 127–141, March–Apr. 2002.
[CrossRef]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, S. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature, vol. 438, no. 7065, pp. 65–69, 2005.
[CrossRef] [PubMed]

Pacifici, P.

Park, N.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Four-wave-mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett., vol. 6, no. 8, pp. 984–987, Aug. 1994.
[CrossRef]

Pedersen, R. J. S.

B. Mikkelsen, T. Durhuus, C. Joergensen, R. J. S. Pedersen, C. Braagaard, K. E. Stubkjaer, “Polarization insensitive wavelength conversion of 10 Gbit/s signals with SOAs in a Michelson interferometer,” Electron. Lett., vol. 30, no. 3, pp. 260–261, Feb. 1994.
[CrossRef]

Popa, L.

S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, D. Wetherall, “Reducing network energy consumption via sleeping and rate-adaptation,” in 5th USENIX Symp. on Networked Systems Design and Implementation, San Francisco, California, Apr. 16–18, 2008, pp. 323–336.

Prucnal, P.

D. Blumenthal, P. Prucnal, J. Sauer, “Photonic packet switches: architectures and experimental implementations,” Proc. IEEE, vol. 82, no. 11, pp. 84–94, Feb. 2000.

Raffaelli, C.

C. Raffaelli, M. Savi, “Performance modeling of synchronous buffer-less optical packet switch with partial wavelength conversion,” in IEEE ICC 2006, Istanbul, Turkey, June 2006, pp. 22–28.

C. Raffaelli, M. Savi, A. Stavdas, “Peformance of scheduling algorithms in multi-stage optical packet switches with sparse wavelength converters,” in IEEE Globecom 2006, San Francisco, California, Dec. 2006.

C. Raffaelli, M. Savi, A. Stavdas, “Sharing wavelength converters in multistage optical packet switches,” in High Performance Switching and Routing, Poznan, Poland, June 2006, pp. 15–20.

Rakutti, G.

K. Hinton, G. Rakutti, P. Farrel, R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron., vol. 14, no. 3, pp. 938–945, May/June 2008.
[CrossRef]

Raskutti, G.

R. S. Tucker, K. Hinton, G. Raskutti, “Energy consumption limits in high-speed optical and electronic signal processing,” Electron. Lett., vol. 43, no. 17, pp. 906–908, Aug. 2007.
[CrossRef]

Ratnasamy, S.

S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, D. Wetherall, “Reducing network energy consumption via sleeping and rate-adaptation,” in 5th USENIX Symp. on Networked Systems Design and Implementation, San Francisco, California, Apr. 16–18, 2008, pp. 323–336.

Sakaguchi, J.

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics, Hoboken, NJ: Wiley, 1991.
[CrossRef]

Salleras, F.

Sauer, J.

D. Blumenthal, P. Prucnal, J. Sauer, “Photonic packet switches: architectures and experimental implementations,” Proc. IEEE, vol. 82, no. 11, pp. 84–94, Feb. 2000.

Savi, M.

C. Raffaelli, M. Savi, A. Stavdas, “Sharing wavelength converters in multistage optical packet switches,” in High Performance Switching and Routing, Poznan, Poland, June 2006, pp. 15–20.

C. Raffaelli, M. Savi, A. Stavdas, “Peformance of scheduling algorithms in multi-stage optical packet switches with sparse wavelength converters,” in IEEE Globecom 2006, San Francisco, California, Dec. 2006.

C. Raffaelli, M. Savi, “Performance modeling of synchronous buffer-less optical packet switch with partial wavelength conversion,” in IEEE ICC 2006, Istanbul, Turkey, June 2006, pp. 22–28.

Schweinsberg, A.

R. W. Boyd, M. S. Bigelow, N. Lepeshkin, A. Schweinsberg, P. Zeron, “Fundamentals and applications of slow light in semiconductor in room temperature solids,” in Annu. Meeting IEEE Lasers and Electro-Optics Society (LEOS), Philadelphia, Pennsylvania, Oct. 25–28, 2004, pp. 45–48.

Singh, S.

M. Gupta, S. Grover, S. Singh, “A feasibility study for power management in LAN switches,” in 12th IEEE Int. Conf. on Network Protocols (ICNP 2004), Berlin, Germany, Oct. 5–8, 2004, pp. 361–371.

M. Gupta, S. Singh, “Greening of the Internet,” in ACM SIGCOMM 2003, Karlsruche, Germany, Aug. 25–29, 2003.

Sommers, J.

J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, S. Wright, “Power awareness in network design and routing,” in IEEE INFOCOM 2008, Phoenix, Arizona, Apr. 15–17, 2008, pp. 457–465.

Stavdas, A.

C. Raffaelli, M. Savi, A. Stavdas, “Peformance of scheduling algorithms in multi-stage optical packet switches with sparse wavelength converters,” in IEEE Globecom 2006, San Francisco, California, Dec. 2006.

C. Raffaelli, M. Savi, A. Stavdas, “Sharing wavelength converters in multistage optical packet switches,” in High Performance Switching and Routing, Poznan, Poland, June 2006, pp. 15–20.

Stubbkyaer, K. E.

Stubkjaer, K. E.

B. Mikkelsen, T. Durhuus, C. Joergensen, R. J. S. Pedersen, C. Braagaard, K. E. Stubkjaer, “Polarization insensitive wavelength conversion of 10 Gbit/s signals with SOAs in a Michelson interferometer,” Electron. Lett., vol. 30, no. 3, pp. 260–261, Feb. 1994.
[CrossRef]

C. Joergensen, T. Durhuus, C. Braagaard, B. Mikkelsen, K. E. Stubkjaer, “4 Gb∕s optical wavelength conversion using semiconductor optical amplifier,” IEEE Photon. Technol. Lett., vol. 5, no. 6, pp. 657–670, June 1993.
[CrossRef]

Stubkyaer, K. E.

S. L. Danielsen, C. Joergensen, B. Mikkelsen, K. E. Stubkyaer, “Optical packet switched network layer without optical buffers,” IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 896–898, June 1998.
[CrossRef]

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics, Hoboken, NJ: Wiley, 1991.
[CrossRef]

Tsiang, D.

J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, S. Wright, “Power awareness in network design and routing,” in IEEE INFOCOM 2008, Phoenix, Arizona, Apr. 15–17, 2008, pp. 457–465.

Tucker, R. S.

K. Hinton, G. Rakutti, P. Farrel, R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron., vol. 14, no. 3, pp. 938–945, May/June 2008.
[CrossRef]

R. S. Tucker, “Energy consumption in digital optical ics with plasmon waveguide interconnects,” IEEE Photon. Technol. Lett., vol. 19, no. 24, pp. 2036–2038, Dec. 2007.
[CrossRef]

R. S. Tucker, K. Hinton, G. Raskutti, “Energy consumption limits in high-speed optical and electronic signal processing,” Electron. Lett., vol. 43, no. 17, pp. 906–908, Aug. 2007.
[CrossRef]

R. S. Tucker, “The role of optics and electronics in high-capacity routers,” J. Lightwave Technol., vol. 24, no. 12, pp. 4655–4673, Dec. 2006.
[CrossRef]

A. Zalesky, R. S. Tucker, “Dynamically concatenated wavelength converters,” IEEE Photon. Technol. Lett., vol. 18, no. 2, pp. 352–354, Jan. 2006.
[CrossRef]

R. S. Tucker, P. C. Ku, C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol., vol. 23, no. 12, pp. 4046–4066, Dec. 2005.
[CrossRef]

R. S. Tucker, W. Zhong, “Photonic packet switching: an overview,” IEICE Trans. Commun., vol. E82-B, no. 2, pp. 254–264, 1999.

R. S. Tucker, “Optically-amplified slow-light buffers for high-capacity optical routers,” in 5th Int. Conf. on Optical Internet (COIN), Jeju, South Korea, July 9–13, 2006, pp. 17–19.

R. S. Tucker, “How to build a petabit-per-second optical router,” in Annu. Meeting IEEE Lasers and Electro-Optics Society (LEOS), Montreal, Canada, Oct. 29–Nov. 2, 2006, pp. 486–487.

J. Baliga, R. Ayre, K. Hinton, R. S. Tucker, “Photonic switching and the energy bottleneck,” in Photonics in Switching, San Francisco, California, Aug. 19–22, 2007, pp. 125–126.

Ueno, Y.

Vahala, K. J.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Four-wave-mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett., vol. 6, no. 8, pp. 984–987, Aug. 1994.
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, S. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature, vol. 438, no. 7065, pp. 65–69, 2005.
[CrossRef] [PubMed]

Wetherall, D.

S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, D. Wetherall, “Reducing network energy consumption via sleeping and rate-adaptation,” in 5th USENIX Symp. on Networked Systems Design and Implementation, San Francisco, California, Apr. 16–18, 2008, pp. 323–336.

Whiting, P.

V. Eramo, M. Listanti, C. Nuzman, P. Whiting, “Optical switch dimensioning and the classical occupancy problem,” Int. J. Commun. Syst., vol. 15, no. 2, pp. 127–141, March–Apr. 2002.
[CrossRef]

Wright, S.

J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, S. Wright, “Power awareness in network design and routing,” in IEEE INFOCOM 2008, Phoenix, Arizona, Apr. 15–17, 2008, pp. 457–465.

Yao, S.

S. Yao, B. Mukherjee, S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag., vol. 38, no. 2, pp. 84–94, Feb. 2000.
[CrossRef]

Zalesky, A.

A. Zalesky, R. S. Tucker, “Dynamically concatenated wavelength converters,” IEEE Photon. Technol. Lett., vol. 18, no. 2, pp. 352–354, Jan. 2006.
[CrossRef]

Zeron, P.

R. W. Boyd, M. S. Bigelow, N. Lepeshkin, A. Schweinsberg, P. Zeron, “Fundamentals and applications of slow light in semiconductor in room temperature solids,” in Annu. Meeting IEEE Lasers and Electro-Optics Society (LEOS), Philadelphia, Pennsylvania, Oct. 25–28, 2004, pp. 45–48.

Zhong, W.

R. S. Tucker, W. Zhong, “Photonic packet switching: an overview,” IEICE Trans. Commun., vol. E82-B, no. 2, pp. 254–264, 1999.

Zhou, J.

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Four-wave-mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett., vol. 6, no. 8, pp. 984–987, Aug. 1994.
[CrossRef]

Electron. Lett.

B. Mikkelsen, T. Durhuus, C. Joergensen, R. J. S. Pedersen, C. Braagaard, K. E. Stubkjaer, “Polarization insensitive wavelength conversion of 10 Gbit/s signals with SOAs in a Michelson interferometer,” Electron. Lett., vol. 30, no. 3, pp. 260–261, Feb. 1994.
[CrossRef]

R. S. Tucker, K. Hinton, G. Raskutti, “Energy consumption limits in high-speed optical and electronic signal processing,” Electron. Lett., vol. 43, no. 17, pp. 906–908, Aug. 2007.
[CrossRef]

IEEE Commun. Mag.

J. M. H. Elmirghani, H. T. Mouftah, “All-optical wavelength conversion technologies and applications in DWDM,” IEEE Commun. Mag., vol. 38, no. 3, pp. 86–92, March 2000.
[CrossRef]

S. Yao, B. Mukherjee, S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag., vol. 38, no. 2, pp. 84–94, Feb. 2000.
[CrossRef]

D. K. Hunter, I. Andonovic, “Approaches to optical Internet packet switching,” IEEE Commun. Mag., vol. 38, no. 9, pp. 116–122, Sept. 2000.
[CrossRef]

IEEE J. Sel. Areas Commun.

D. Chiaroni, “Packet switching matrix: a key element for the backbone and the metro,” IEEE J. Sel. Areas Commun., vol. 21, no. 7, pp. 1018–1025, Sept. 2003.
[CrossRef]

N. Akar, E. Karasan, K. Dogan, “Wavelength converter sharing in asynchronous optical packet/burst switching: an exact blocking analysis for markovian arrivals,” IEEE J. Sel. Areas Commun., vol. 24, no. 12, pp. 69–80, Dec. 2006.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Hinton, G. Rakutti, P. Farrel, R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron., vol. 14, no. 3, pp. 938–945, May/June 2008.
[CrossRef]

IEEE Photon. Technol. Lett.

R. S. Tucker, “Energy consumption in digital optical ics with plasmon waveguide interconnects,” IEEE Photon. Technol. Lett., vol. 19, no. 24, pp. 2036–2038, Dec. 2007.
[CrossRef]

S. L. Danielsen, C. Joergensen, B. Mikkelsen, K. E. Stubkyaer, “Optical packet switched network layer without optical buffers,” IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 896–898, June 1998.
[CrossRef]

A. Zalesky, R. S. Tucker, “Dynamically concatenated wavelength converters,” IEEE Photon. Technol. Lett., vol. 18, no. 2, pp. 352–354, Jan. 2006.
[CrossRef]

J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Four-wave-mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett., vol. 6, no. 8, pp. 984–987, Aug. 1994.
[CrossRef]

C. Joergensen, T. Durhuus, C. Braagaard, B. Mikkelsen, K. E. Stubkjaer, “4 Gb∕s optical wavelength conversion using semiconductor optical amplifier,” IEEE Photon. Technol. Lett., vol. 5, no. 6, pp. 657–670, June 1993.
[CrossRef]

IEICE Trans. Commun.

R. S. Tucker, W. Zhong, “Photonic packet switching: an overview,” IEICE Trans. Commun., vol. E82-B, no. 2, pp. 254–264, 1999.

Int. J. Commun. Syst.

V. Eramo, M. Listanti, C. Nuzman, P. Whiting, “Optical switch dimensioning and the classical occupancy problem,” Int. J. Commun. Syst., vol. 15, no. 2, pp. 127–141, March–Apr. 2002.
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nature

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, S. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature, vol. 438, no. 7065, pp. 65–69, 2005.
[CrossRef] [PubMed]

Opt. Express

Opt. Networks Mag.

V. Eramo, M. Listanti,“Comparison of unicast/multicast optical packet switching architectures using wavelength conversion,” Opt. Networks Mag., vol. 3, pp. 63–75, March–Apr. 2002.

Proc. IEEE

D. Blumenthal, P. Prucnal, J. Sauer, “Photonic packet switches: architectures and experimental implementations,” Proc. IEEE, vol. 82, no. 11, pp. 84–94, Feb. 2000.

Other

R. S. Tucker, “How to build a petabit-per-second optical router,” in Annu. Meeting IEEE Lasers and Electro-Optics Society (LEOS), Montreal, Canada, Oct. 29–Nov. 2, 2006, pp. 486–487.

J. Baliga, R. Ayre, K. Hinton, R. S. Tucker, “Photonic switching and the energy bottleneck,” in Photonics in Switching, San Francisco, California, Aug. 19–22, 2007, pp. 125–126.

R. S. Tucker, “Optically-amplified slow-light buffers for high-capacity optical routers,” in 5th Int. Conf. on Optical Internet (COIN), Jeju, South Korea, July 9–13, 2006, pp. 17–19.

A. Aleksic, “Power consumption issues in future high-performance switches and routers,” in ICTON 2008, Athens, Greece, June 22–26, 2008, pp. 134–138.

R. W. Boyd, M. S. Bigelow, N. Lepeshkin, A. Schweinsberg, P. Zeron, “Fundamentals and applications of slow light in semiconductor in room temperature solids,” in Annu. Meeting IEEE Lasers and Electro-Optics Society (LEOS), Philadelphia, Pennsylvania, Oct. 25–28, 2004, pp. 45–48.

J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, S. Wright, “Power awareness in network design and routing,” in IEEE INFOCOM 2008, Phoenix, Arizona, Apr. 15–17, 2008, pp. 457–465.

S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, D. Wetherall, “Reducing network energy consumption via sleeping and rate-adaptation,” in 5th USENIX Symp. on Networked Systems Design and Implementation, San Francisco, California, Apr. 16–18, 2008, pp. 323–336.

M. Gupta, S. Singh, “Greening of the Internet,” in ACM SIGCOMM 2003, Karlsruche, Germany, Aug. 25–29, 2003.

M. Gupta, S. Grover, S. Singh, “A feasibility study for power management in LAN switches,” in 12th IEEE Int. Conf. on Network Protocols (ICNP 2004), Berlin, Germany, Oct. 5–8, 2004, pp. 361–371.

C. Raffaelli, M. Savi, “Performance modeling of synchronous buffer-less optical packet switch with partial wavelength conversion,” in IEEE ICC 2006, Istanbul, Turkey, June 2006, pp. 22–28.

C. Raffaelli, M. Savi, A. Stavdas, “Peformance of scheduling algorithms in multi-stage optical packet switches with sparse wavelength converters,” in IEEE Globecom 2006, San Francisco, California, Dec. 2006.

C. Raffaelli, M. Savi, A. Stavdas, “Sharing wavelength converters in multistage optical packet switches,” in High Performance Switching and Routing, Poznan, Poland, June 2006, pp. 15–20.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics, Hoboken, NJ: Wiley, 1991.
[CrossRef]

W. Feller, An Introduction to Probability Theory and Its Applications, New York: Wiley, vol. 1, 1968.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

SPC optical packet switch.

Fig. 2
Fig. 2

SPN optical packet switch.

Fig. 3
Fig. 3

Implementation of a 1 × K SSM by means of a splitter and SOAs.

Fig. 4
Fig. 4

Implementation of a K × 1 SSM by means of a coupler and an SOA.

Fig. 5
Fig. 5

Comparison between the analytical and simulation results for the average number of converted packets in an SPN optical packet switch when N = 8 , p = 0.4 , and M = 64 , 96 , 128 .

Fig. 6
Fig. 6

Comparison between the analytical and simulation results for the average number of converted packets in an SPN optical packet switch when N = 8 , p = 0.8 , and M = 64 , 96 , 128 .

Fig. 7
Fig. 7

Average power consumption (PowCon) and PLP as a function of the number r of WCs in an SPN switch. The switch and traffic parameters are N = 8 , M = 32 , and p varying from 0.4 to 0.8. The switch is equipped with wavelength converters using the CGM technique.

Fig. 8
Fig. 8

Average power consumption (PowCon) and PLP as a function of the number r of WCs in an SPN switch. The switch and traffic parameters are N = 8 , M = 64 , and p varying from 0.4 to 0.8. The switch is equipped with wavelength converters using the CGM technique.

Fig. 9
Fig. 9

Average power consumption powWC, pow-1st-SSM, pow-2nd-SSM, pow-3rd-SSM, and pow-4th-SSM of the WC, first SSM, second SSM, third SSM, and fourth SSM stages, respectively, as a function of the number r of WCs in an SPN switch. The switch and traffic parameters are N = 8 , M = 32 , and p = 0.8 . The switch is equipped with wavelength converters using the CGM technique.

Fig. 10
Fig. 10

Average power consumption powWC, pow-1st-SSM, pow-2nd-SSM, pow-3rd-SSM, and pow-4th-SSM of the WC, first SSM, second SSM, third SSM, and fourth SSM stages, respectively, as a function of the number r of WCs in an SPN switch. The switch and traffic parameters are N = 8 , M = 64 , and p = 0.8 . The switch is equipped with wavelength converters using the CGM technique.

Fig. 11
Fig. 11

Average power consumption in SPC and SPN switches as a function of the offered traffic p per IWC/OWC. The switch and traffic parameters are N = 8 , M = 32 . The CGM, CPM, and FWM techniques in SOAs to realize the wavelength converters are compared. The SPN switch is equipped with the minimum number r th of WCs needed to reach the saturation packet loss probability.

Fig. 12
Fig. 12

Average power consumption in SPC and SPN switches as a function of the offered traffic p per IWC/OWC. The switch and traffic parameters are N = 8 , M = 64 . The CGM, CPM, and FWM techniques in SOAs to realize the wavelength converters are compared. The SPN switch is equipped with the minimum number r th of WCs needed to reach the saturation packet loss probability.

Fig. 13
Fig. 13

Percentage reduction of average power consumption in an SPN switch with respect to an SPC switch as a function of the offered traffic p per IWC/OWC. The switch and traffic parameters are N = 8 , M = 32 . The CGM, CPM, and FWM techniques in SOAs to realize the wavelength converters are compared. The SPN switch is equipped with the minimum number r th of WCs needed to reach the saturation packet loss probability.

Fig. 14
Fig. 14

Percentage reduction of average power consumption in an SPN switch with respect to an SPC switch as a function of the offered traffic p per IWC/OWC. The switch and traffic parameters are N = 8 , M = 64 . The CGM, CPM, and FWM techniques in SOAs to realize the wavelength converters are compared. The SPN switch is equipped with the minimum number r th of WCs needed to reach the saturation packet loss probability.

Fig. 15
Fig. 15

Average power consumption contributions in SPC and SPN switches as a function of the offered traffic p when N = 8 and M = 64 . The SPN switch is equipped with the minimum number r th of WCs needed to reach the saturation packet loss probability. Powtot denotes the total power consumption. powWC and powSSM represent the power contribution in the WC and SSM stages, respectively.

Fig. 16
Fig. 16

Average power consumption versus the offered traffic for N = 8 and M = 32 . The OS is equipped with an SOA realized from two manufactures (A and B). The main parameters are reported in Table 2, and the power consumptions are evaluated in [36]. The bit rate on each input wavelength channel is chosen equal to b = 5 , 40 , 160 Gb s .

Fig. 17
Fig. 17

Normalized average power consumption (W/Gb/s) versus offered traffic for OSs and a Cisco 12008 electronic switch (ES). The switch parameters are N = 8 and M = 32 . The OS is equipped with an SOA realized from two manufactures (A and B). The bit rate on each input wavelength channel is chosen equal to b = 5 , 40 , 160 Gb s . For Cisco 12008 we report the total NAPC, the SF-LC NAPC and the SF NAPC.

Tables (2)

Tables Icon

Table 1 Constants Used in Calculation of Power Requirements of Photonic Signal Processing Techniques

Tables Icon

Table 2 Main Parameters for the A#1 and B#1 Commercial SOAs [36]

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

P SSM , con 1 × K = P SSM in + P SSM al , K i = 1 K P SSM , i out ,
P SSM , i out = { 0 if i j P SSM in if i = j } .
P SSM , con 1 × K , on = P SSM al , K .
P SSM , con 1 × K , off = P SSM in .
P SSM , con K × 1 = i = 1 K P SSM , i in + P SSM al , K P SSM out ,
P SSM , con K × 1 , on = P SSM al , K ,
P SSM , con K × 1 , off = 0 .
E [ N p SPC ] = N i = N M + 1 N M ( i N M ) ( N M i ) ( p N ) i ( 1 p N ) N M i .
E [ N a SPC ] = E [ N o ] E [ N p SPC ] = p N M N i = 0 N M ( i N M ) ( N M i ) ( p N ) i ( 1 p N ) N M i .
E [ N f SPC ] = N [ 1 ( 1 p N ) N M ] .
P SPC con = P SPC con , WC + P SPC con , 1 SSM + P SPC con , 2 SSM ,
P SPC con , WC = E [ N o ] P WC con .
P SPC con , 1 SSM = E [ N a SPC ] P SSM , con 1 × N , on + E [ N p SPC ] P SSM , con 1 × N , off .
P SPC con , 2 SSM = E [ N f SPC ] P SSM , con N M × 1 , on .
P SPC con = E [ N o ] P WC con + E [ N a SPC ] P SSM , con 1 × N , on + E [ N f SPC ] P SSM , con N M × 1 , on + E [ N p SPC ] P SSM , con 1 × N , off .
P SPN con = P SPN con , WC + P SPN con , 1 SSM + P SPN con , 2 SSM + P SPN con , 3 SSM + P SPN con , 4 SSM ,
P SPN con , 1 SSM = E [ N a SPN ] P SSM , con 1 × ( N + r ) , on + E [ N p SPN ] P SSM , con 1 × ( N + r ) , off .
P SPN con , 2 SSM = E [ N f SPN ] P SSM , con ( N M + r ) × 1 , on .
P SPN con , WC = E [ N a , c SPN ] P WC con ,
P SPN con , 3 SSM = E [ N a , c SPN ] P SSM , con N M × 1 , on ,
P SPN con , 4 SSM = E [ N a , c SPN ] P SSM , con 1 × N , on .
P SPN con = E [ N a SPN ] P SSM , con 1 × ( N + r ) , on + E [ N p SPN ] P SSM , con 1 × ( N + r ) , off + E [ N f SPN ] P SSM , con ( N M + r ) × 1 , on + E [ N a , c SPN ] ( P WC con + P SSM , con N M × 1 , on + P SSM , con 1 × N , on ) .
P SSM al , K = V b i b = V b ( 1 + 1 Γ α SOA L ln K ) i t ,
i t = q w d L N o τ ,
i t ( amperes ) = 100 L ( meters ) .
P SSM al , K = V b i b = V b ( 1 + 1 Γ α SOA L ln K ) 100 L .
P WC con = 100 L V b + 100 β V b Γ α SOA + 10 V b β P s Γ α SOA + 10 β P s Γ α SOA V b ,
E [ N p SPN ] = E [ N p , wl SPN ] + E [ N p , cl SPN ] ,
E [ N p , wl SPN ] = N E [ N p , wl , OF SPN ] = N i = N M + 1 N M ( i N M ) ( N M i ) ( p N ) i ( 1 p N ) N M i .
E [ N p , cl SPN ] = k = r + 1 N M ( k r ) p W ( k ) ,
W λ = R λ ( N N λ ) ,
p W λ ( h ) = i = 0 N Pr ( N λ = h + N i R λ = i ) ( N i ) p i ( 1 p ) N i .
Pr ( N λ = h R λ = i ) = ( N h ) ν = 0 N h ( 1 ) ν ( N h ν ) ( 1 h + ν N ) i .
E [ N a SPN ] = E [ N o ] E [ N p SPN ] = p N M E [ N p SPN ] .
E [ N a , c SPN ] = E [ N a SPN ] E [ N a , d SPN ] .
E [ N a , d SPN ] = N M [ 1 ( 1 p N ) N M ] .