Abstract

Optical code mutiple access (OCDMA) networks are subject to several limitations, such as multiple access interference (MAI), as well as the noise of the optical components. In this work we propose an interference cancellation technique using the bias mitigation and linear estimators in parallel interference cancellation (PIC) receivers. In order to make the analysis more tractable, the proposed technique is described for a synchronous multiuser communication scenario with multiple access interference in an additive white Gaussian noise (AWGN) channel. Estimates for the error probabilities of the proposed OCDMA detector are derived using the Gaussian approximation for interference terms. Some analytical and numerical results for our system are given and compared with those for other receivers with the same order of complexity.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Okassa-M’foubat, I. Dayoub, R. Mvone, J. M. Rouvaen, “Influence of bias compensation on the parallel interference cancellation in DS-CDMA optical networks,” in IEEE Globecom, 2007, pp. 2434–2438.
  2. H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science, vol. 289, pp. 281–283, 2000.
    [CrossRef] [PubMed]
  3. J. J. Chen, G. C. Yang, “CDMA fiber-optic systems with optical hard limiters,” J. Lightwave Technol., vol. 19, pp. 950–958, 2001.
    [CrossRef]
  4. M. Brandt-Pearce, B. Aazhang, “Performance analysis of single-user and multi-user detectors for optical code division multiple access communication,” IEEE Trans. Commun., vol. 43, pp. 435–444, 1995.
    [CrossRef]
  5. T. Ohtsuki, “Channel interference cancellation using electro-optic switches and optical hard-limiters for direct detection optical CDMA systems,” J. Lightwave Technol., vol. 16, pp. 520–526, 1998.
    [CrossRef]
  6. A. S. Motahari, N. Nasiri-Kamari, “Multi user detection for optical CDMA networks based on expectation-maximization algorithm,” IEEE Trans. Commun., vol. 52, pp. 652–660, 2004.
    [CrossRef]
  7. U. Madhow, M. Honig, “MMSE interference supression for direct sequence spread sprectrum CDMA,” IEEE Trans. Commun., vol. 42, pp. 3117–3188, 1994.
    [CrossRef]
  8. R. Lupas, S. Verdu, “Linear multiuser detectors for synchronous code division multiple access channels,” IEEE Trans. Inf. Theory, vol. 35, pp. 123–136, 1989.
    [CrossRef]
  9. N. S. Correal, R. M. Buehrer, B. D. Woener, “Improved CDMA performance through bias reduction for parallel interference cancellation,” in IEEE Int. Symp. on Personal Indoor and Mobile Radio Communications, 1997, pp. 565–569.
  10. D. V. Sawarte, M. B. Purseley, “Cross-correlation properties of pseudorandom and related sequences,” IEEE Proc., vol. 68, pp. 593–619, 1980.
    [CrossRef]
  11. J. A. Salehi, C. A. Brackett, “Code division multiple access techniques in optical fiber networks, Part II,” IEEE Trans. Commun., vol. 37, pp. 824–842, 1989.
    [CrossRef]
  12. A. A. Shaar, P. A. Davies, “Prime sequences: quasi-optimal sequence for or channel code division multiplexing,” Electron. Lett., vol. 19, pp. 888–889, 1981.
    [CrossRef]
  13. W. C. Kwong, P. A. Prucnal, “Optical orthogonal codes comparison of asynchronous and synchronous code division multiple access techniques in optical for fiber-optic,” IEEE Trans. Commun., vol. 39, pp. 1625–1634, 1991.
    [CrossRef]
  14. Y. Shiura, H. Yashima, “An analysis of the cross-correlation properties of primes code and bit error rate in an optical CDMA system,” Electron. Commun. Jpn., Part 2: Electron., vol. 83, pp. 94–103, 2000.
    [CrossRef]
  15. M. Lourdiane, P. Gallion, R. Vallet, “Direct-sequence code division multiple access: from radio communications to optical networks,” Ann. Telecommun., vol. 58, pp. 1873–1897, 2003.
  16. S. Zappa, S. Tisa, S. Cova, R. Roncella, “Pushing technologies: single-photon avalanche diode arrays,” in SPIE Int. Symp. on Astronomical Telescopes & Instrumentation, Glasgow, 2004, p. 549.
  17. X. Wang, “Analysis of beat noise in coherent and incoherent time-spreading OCDMA,” J. Lightwave Technol., vol. 22, pp. 2226–2235, 2004.
    [CrossRef]
  18. N. Correal, B. D. Woerner, “A DSP-based DS-CDMA multi-user receiver employing partial interference cancellation,” IEEE Trans. Commun., vol. 46, pp. 613–630, 1999.
  19. T. K. Tang, K. B. Letaief, “Bit-error rate computation of optical CDMA communication systems by large deviations theory,” IEEE Trans. Commun., vol. 47, pp. 1422–1428, 1998.
    [CrossRef]
  20. C. Gourseaud-Brugeaud, C. Aupetit-Berthelemot, “Parallel multiple interference cancellation in optical DS-CDMA,” Ann. Telecommun., vol. 59, pp. 1053–1068, 2004.
  21. W. C. Kwong, P. Perrier, P. Prucnal, “Performance comparison of asynchronous and synchronous code division multiple-access techniques for fiber-optic local area networks,” IEEE Trans. Commun., vol. 39, pp. 1625–1634, 1991.
    [CrossRef]
  22. S. Yotte, M. Rochette, L. A. Rusch, “Experimental verification and capacity prediction of FE-OCDMA using superimposing FBG,” J. Lightwave Technol., vol. 23, pp. 725–731, 2005.
  23. H. Shalaby, “Complexities, probabilities, and capacities of optical OOK-CDMA communications,” IEEE Trans. Commun., vol. 50, pp. 2009–2017, 2002.
    [CrossRef]

2005

S. Yotte, M. Rochette, L. A. Rusch, “Experimental verification and capacity prediction of FE-OCDMA using superimposing FBG,” J. Lightwave Technol., vol. 23, pp. 725–731, 2005.

2004

A. S. Motahari, N. Nasiri-Kamari, “Multi user detection for optical CDMA networks based on expectation-maximization algorithm,” IEEE Trans. Commun., vol. 52, pp. 652–660, 2004.
[CrossRef]

C. Gourseaud-Brugeaud, C. Aupetit-Berthelemot, “Parallel multiple interference cancellation in optical DS-CDMA,” Ann. Telecommun., vol. 59, pp. 1053–1068, 2004.

X. Wang, “Analysis of beat noise in coherent and incoherent time-spreading OCDMA,” J. Lightwave Technol., vol. 22, pp. 2226–2235, 2004.
[CrossRef]

2003

M. Lourdiane, P. Gallion, R. Vallet, “Direct-sequence code division multiple access: from radio communications to optical networks,” Ann. Telecommun., vol. 58, pp. 1873–1897, 2003.

2002

H. Shalaby, “Complexities, probabilities, and capacities of optical OOK-CDMA communications,” IEEE Trans. Commun., vol. 50, pp. 2009–2017, 2002.
[CrossRef]

2001

2000

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science, vol. 289, pp. 281–283, 2000.
[CrossRef] [PubMed]

Y. Shiura, H. Yashima, “An analysis of the cross-correlation properties of primes code and bit error rate in an optical CDMA system,” Electron. Commun. Jpn., Part 2: Electron., vol. 83, pp. 94–103, 2000.
[CrossRef]

1999

N. Correal, B. D. Woerner, “A DSP-based DS-CDMA multi-user receiver employing partial interference cancellation,” IEEE Trans. Commun., vol. 46, pp. 613–630, 1999.

1998

T. K. Tang, K. B. Letaief, “Bit-error rate computation of optical CDMA communication systems by large deviations theory,” IEEE Trans. Commun., vol. 47, pp. 1422–1428, 1998.
[CrossRef]

T. Ohtsuki, “Channel interference cancellation using electro-optic switches and optical hard-limiters for direct detection optical CDMA systems,” J. Lightwave Technol., vol. 16, pp. 520–526, 1998.
[CrossRef]

1995

M. Brandt-Pearce, B. Aazhang, “Performance analysis of single-user and multi-user detectors for optical code division multiple access communication,” IEEE Trans. Commun., vol. 43, pp. 435–444, 1995.
[CrossRef]

1994

U. Madhow, M. Honig, “MMSE interference supression for direct sequence spread sprectrum CDMA,” IEEE Trans. Commun., vol. 42, pp. 3117–3188, 1994.
[CrossRef]

1991

W. C. Kwong, P. A. Prucnal, “Optical orthogonal codes comparison of asynchronous and synchronous code division multiple access techniques in optical for fiber-optic,” IEEE Trans. Commun., vol. 39, pp. 1625–1634, 1991.
[CrossRef]

W. C. Kwong, P. Perrier, P. Prucnal, “Performance comparison of asynchronous and synchronous code division multiple-access techniques for fiber-optic local area networks,” IEEE Trans. Commun., vol. 39, pp. 1625–1634, 1991.
[CrossRef]

1989

J. A. Salehi, C. A. Brackett, “Code division multiple access techniques in optical fiber networks, Part II,” IEEE Trans. Commun., vol. 37, pp. 824–842, 1989.
[CrossRef]

R. Lupas, S. Verdu, “Linear multiuser detectors for synchronous code division multiple access channels,” IEEE Trans. Inf. Theory, vol. 35, pp. 123–136, 1989.
[CrossRef]

1981

A. A. Shaar, P. A. Davies, “Prime sequences: quasi-optimal sequence for or channel code division multiplexing,” Electron. Lett., vol. 19, pp. 888–889, 1981.
[CrossRef]

1980

D. V. Sawarte, M. B. Purseley, “Cross-correlation properties of pseudorandom and related sequences,” IEEE Proc., vol. 68, pp. 593–619, 1980.
[CrossRef]

Aazhang, B.

M. Brandt-Pearce, B. Aazhang, “Performance analysis of single-user and multi-user detectors for optical code division multiple access communication,” IEEE Trans. Commun., vol. 43, pp. 435–444, 1995.
[CrossRef]

Aupetit-Berthelemot, C.

C. Gourseaud-Brugeaud, C. Aupetit-Berthelemot, “Parallel multiple interference cancellation in optical DS-CDMA,” Ann. Telecommun., vol. 59, pp. 1053–1068, 2004.

Brackett, C. A.

J. A. Salehi, C. A. Brackett, “Code division multiple access techniques in optical fiber networks, Part II,” IEEE Trans. Commun., vol. 37, pp. 824–842, 1989.
[CrossRef]

Brandt-Pearce, M.

M. Brandt-Pearce, B. Aazhang, “Performance analysis of single-user and multi-user detectors for optical code division multiple access communication,” IEEE Trans. Commun., vol. 43, pp. 435–444, 1995.
[CrossRef]

Buehrer, R. M.

N. S. Correal, R. M. Buehrer, B. D. Woener, “Improved CDMA performance through bias reduction for parallel interference cancellation,” in IEEE Int. Symp. on Personal Indoor and Mobile Radio Communications, 1997, pp. 565–569.

Chen, J. J.

Correal, N.

N. Correal, B. D. Woerner, “A DSP-based DS-CDMA multi-user receiver employing partial interference cancellation,” IEEE Trans. Commun., vol. 46, pp. 613–630, 1999.

Correal, N. S.

N. S. Correal, R. M. Buehrer, B. D. Woener, “Improved CDMA performance through bias reduction for parallel interference cancellation,” in IEEE Int. Symp. on Personal Indoor and Mobile Radio Communications, 1997, pp. 565–569.

Cova, S.

S. Zappa, S. Tisa, S. Cova, R. Roncella, “Pushing technologies: single-photon avalanche diode arrays,” in SPIE Int. Symp. on Astronomical Telescopes & Instrumentation, Glasgow, 2004, p. 549.

Davies, P. A.

A. A. Shaar, P. A. Davies, “Prime sequences: quasi-optimal sequence for or channel code division multiplexing,” Electron. Lett., vol. 19, pp. 888–889, 1981.
[CrossRef]

Dayoub, I.

A. Okassa-M’foubat, I. Dayoub, R. Mvone, J. M. Rouvaen, “Influence of bias compensation on the parallel interference cancellation in DS-CDMA optical networks,” in IEEE Globecom, 2007, pp. 2434–2438.

Gallion, P.

M. Lourdiane, P. Gallion, R. Vallet, “Direct-sequence code division multiple access: from radio communications to optical networks,” Ann. Telecommun., vol. 58, pp. 1873–1897, 2003.

Gourseaud-Brugeaud, C.

C. Gourseaud-Brugeaud, C. Aupetit-Berthelemot, “Parallel multiple interference cancellation in optical DS-CDMA,” Ann. Telecommun., vol. 59, pp. 1053–1068, 2004.

Honig, M.

U. Madhow, M. Honig, “MMSE interference supression for direct sequence spread sprectrum CDMA,” IEEE Trans. Commun., vol. 42, pp. 3117–3188, 1994.
[CrossRef]

Kwong, W. C.

W. C. Kwong, P. Perrier, P. Prucnal, “Performance comparison of asynchronous and synchronous code division multiple-access techniques for fiber-optic local area networks,” IEEE Trans. Commun., vol. 39, pp. 1625–1634, 1991.
[CrossRef]

W. C. Kwong, P. A. Prucnal, “Optical orthogonal codes comparison of asynchronous and synchronous code division multiple access techniques in optical for fiber-optic,” IEEE Trans. Commun., vol. 39, pp. 1625–1634, 1991.
[CrossRef]

Letaief, K. B.

T. K. Tang, K. B. Letaief, “Bit-error rate computation of optical CDMA communication systems by large deviations theory,” IEEE Trans. Commun., vol. 47, pp. 1422–1428, 1998.
[CrossRef]

Lourdiane, M.

M. Lourdiane, P. Gallion, R. Vallet, “Direct-sequence code division multiple access: from radio communications to optical networks,” Ann. Telecommun., vol. 58, pp. 1873–1897, 2003.

Lupas, R.

R. Lupas, S. Verdu, “Linear multiuser detectors for synchronous code division multiple access channels,” IEEE Trans. Inf. Theory, vol. 35, pp. 123–136, 1989.
[CrossRef]

Madhow, U.

U. Madhow, M. Honig, “MMSE interference supression for direct sequence spread sprectrum CDMA,” IEEE Trans. Commun., vol. 42, pp. 3117–3188, 1994.
[CrossRef]

Motahari, A. S.

A. S. Motahari, N. Nasiri-Kamari, “Multi user detection for optical CDMA networks based on expectation-maximization algorithm,” IEEE Trans. Commun., vol. 52, pp. 652–660, 2004.
[CrossRef]

Mvone, R.

A. Okassa-M’foubat, I. Dayoub, R. Mvone, J. M. Rouvaen, “Influence of bias compensation on the parallel interference cancellation in DS-CDMA optical networks,” in IEEE Globecom, 2007, pp. 2434–2438.

Nasiri-Kamari, N.

A. S. Motahari, N. Nasiri-Kamari, “Multi user detection for optical CDMA networks based on expectation-maximization algorithm,” IEEE Trans. Commun., vol. 52, pp. 652–660, 2004.
[CrossRef]

Ohtsuki, T.

Okassa-M’foubat, A.

A. Okassa-M’foubat, I. Dayoub, R. Mvone, J. M. Rouvaen, “Influence of bias compensation on the parallel interference cancellation in DS-CDMA optical networks,” in IEEE Globecom, 2007, pp. 2434–2438.

Perrier, P.

W. C. Kwong, P. Perrier, P. Prucnal, “Performance comparison of asynchronous and synchronous code division multiple-access techniques for fiber-optic local area networks,” IEEE Trans. Commun., vol. 39, pp. 1625–1634, 1991.
[CrossRef]

Prucnal, P.

W. C. Kwong, P. Perrier, P. Prucnal, “Performance comparison of asynchronous and synchronous code division multiple-access techniques for fiber-optic local area networks,” IEEE Trans. Commun., vol. 39, pp. 1625–1634, 1991.
[CrossRef]

Prucnal, P. A.

W. C. Kwong, P. A. Prucnal, “Optical orthogonal codes comparison of asynchronous and synchronous code division multiple access techniques in optical for fiber-optic,” IEEE Trans. Commun., vol. 39, pp. 1625–1634, 1991.
[CrossRef]

Purseley, M. B.

D. V. Sawarte, M. B. Purseley, “Cross-correlation properties of pseudorandom and related sequences,” IEEE Proc., vol. 68, pp. 593–619, 1980.
[CrossRef]

Rochette, M.

S. Yotte, M. Rochette, L. A. Rusch, “Experimental verification and capacity prediction of FE-OCDMA using superimposing FBG,” J. Lightwave Technol., vol. 23, pp. 725–731, 2005.

Roncella, R.

S. Zappa, S. Tisa, S. Cova, R. Roncella, “Pushing technologies: single-photon avalanche diode arrays,” in SPIE Int. Symp. on Astronomical Telescopes & Instrumentation, Glasgow, 2004, p. 549.

Rouvaen, J. M.

A. Okassa-M’foubat, I. Dayoub, R. Mvone, J. M. Rouvaen, “Influence of bias compensation on the parallel interference cancellation in DS-CDMA optical networks,” in IEEE Globecom, 2007, pp. 2434–2438.

Rusch, L. A.

S. Yotte, M. Rochette, L. A. Rusch, “Experimental verification and capacity prediction of FE-OCDMA using superimposing FBG,” J. Lightwave Technol., vol. 23, pp. 725–731, 2005.

Salehi, J. A.

J. A. Salehi, C. A. Brackett, “Code division multiple access techniques in optical fiber networks, Part II,” IEEE Trans. Commun., vol. 37, pp. 824–842, 1989.
[CrossRef]

Sawarte, D. V.

D. V. Sawarte, M. B. Purseley, “Cross-correlation properties of pseudorandom and related sequences,” IEEE Proc., vol. 68, pp. 593–619, 1980.
[CrossRef]

Shaar, A. A.

A. A. Shaar, P. A. Davies, “Prime sequences: quasi-optimal sequence for or channel code division multiplexing,” Electron. Lett., vol. 19, pp. 888–889, 1981.
[CrossRef]

Shalaby, H.

H. Shalaby, “Complexities, probabilities, and capacities of optical OOK-CDMA communications,” IEEE Trans. Commun., vol. 50, pp. 2009–2017, 2002.
[CrossRef]

Shiura, Y.

Y. Shiura, H. Yashima, “An analysis of the cross-correlation properties of primes code and bit error rate in an optical CDMA system,” Electron. Commun. Jpn., Part 2: Electron., vol. 83, pp. 94–103, 2000.
[CrossRef]

Stuart, H. R.

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science, vol. 289, pp. 281–283, 2000.
[CrossRef] [PubMed]

Tang, T. K.

T. K. Tang, K. B. Letaief, “Bit-error rate computation of optical CDMA communication systems by large deviations theory,” IEEE Trans. Commun., vol. 47, pp. 1422–1428, 1998.
[CrossRef]

Tisa, S.

S. Zappa, S. Tisa, S. Cova, R. Roncella, “Pushing technologies: single-photon avalanche diode arrays,” in SPIE Int. Symp. on Astronomical Telescopes & Instrumentation, Glasgow, 2004, p. 549.

Vallet, R.

M. Lourdiane, P. Gallion, R. Vallet, “Direct-sequence code division multiple access: from radio communications to optical networks,” Ann. Telecommun., vol. 58, pp. 1873–1897, 2003.

Verdu, S.

R. Lupas, S. Verdu, “Linear multiuser detectors for synchronous code division multiple access channels,” IEEE Trans. Inf. Theory, vol. 35, pp. 123–136, 1989.
[CrossRef]

Wang, X.

Woener, B. D.

N. S. Correal, R. M. Buehrer, B. D. Woener, “Improved CDMA performance through bias reduction for parallel interference cancellation,” in IEEE Int. Symp. on Personal Indoor and Mobile Radio Communications, 1997, pp. 565–569.

Woerner, B. D.

N. Correal, B. D. Woerner, “A DSP-based DS-CDMA multi-user receiver employing partial interference cancellation,” IEEE Trans. Commun., vol. 46, pp. 613–630, 1999.

Yang, G. C.

Yashima, H.

Y. Shiura, H. Yashima, “An analysis of the cross-correlation properties of primes code and bit error rate in an optical CDMA system,” Electron. Commun. Jpn., Part 2: Electron., vol. 83, pp. 94–103, 2000.
[CrossRef]

Yotte, S.

S. Yotte, M. Rochette, L. A. Rusch, “Experimental verification and capacity prediction of FE-OCDMA using superimposing FBG,” J. Lightwave Technol., vol. 23, pp. 725–731, 2005.

Zappa, S.

S. Zappa, S. Tisa, S. Cova, R. Roncella, “Pushing technologies: single-photon avalanche diode arrays,” in SPIE Int. Symp. on Astronomical Telescopes & Instrumentation, Glasgow, 2004, p. 549.

Ann. Telecommun.

M. Lourdiane, P. Gallion, R. Vallet, “Direct-sequence code division multiple access: from radio communications to optical networks,” Ann. Telecommun., vol. 58, pp. 1873–1897, 2003.

C. Gourseaud-Brugeaud, C. Aupetit-Berthelemot, “Parallel multiple interference cancellation in optical DS-CDMA,” Ann. Telecommun., vol. 59, pp. 1053–1068, 2004.

Electron. Commun. Jpn., Part 2: Electron.

Y. Shiura, H. Yashima, “An analysis of the cross-correlation properties of primes code and bit error rate in an optical CDMA system,” Electron. Commun. Jpn., Part 2: Electron., vol. 83, pp. 94–103, 2000.
[CrossRef]

Electron. Lett.

A. A. Shaar, P. A. Davies, “Prime sequences: quasi-optimal sequence for or channel code division multiplexing,” Electron. Lett., vol. 19, pp. 888–889, 1981.
[CrossRef]

IEEE Proc.

D. V. Sawarte, M. B. Purseley, “Cross-correlation properties of pseudorandom and related sequences,” IEEE Proc., vol. 68, pp. 593–619, 1980.
[CrossRef]

IEEE Trans. Commun.

J. A. Salehi, C. A. Brackett, “Code division multiple access techniques in optical fiber networks, Part II,” IEEE Trans. Commun., vol. 37, pp. 824–842, 1989.
[CrossRef]

W. C. Kwong, P. A. Prucnal, “Optical orthogonal codes comparison of asynchronous and synchronous code division multiple access techniques in optical for fiber-optic,” IEEE Trans. Commun., vol. 39, pp. 1625–1634, 1991.
[CrossRef]

A. S. Motahari, N. Nasiri-Kamari, “Multi user detection for optical CDMA networks based on expectation-maximization algorithm,” IEEE Trans. Commun., vol. 52, pp. 652–660, 2004.
[CrossRef]

U. Madhow, M. Honig, “MMSE interference supression for direct sequence spread sprectrum CDMA,” IEEE Trans. Commun., vol. 42, pp. 3117–3188, 1994.
[CrossRef]

W. C. Kwong, P. Perrier, P. Prucnal, “Performance comparison of asynchronous and synchronous code division multiple-access techniques for fiber-optic local area networks,” IEEE Trans. Commun., vol. 39, pp. 1625–1634, 1991.
[CrossRef]

M. Brandt-Pearce, B. Aazhang, “Performance analysis of single-user and multi-user detectors for optical code division multiple access communication,” IEEE Trans. Commun., vol. 43, pp. 435–444, 1995.
[CrossRef]

N. Correal, B. D. Woerner, “A DSP-based DS-CDMA multi-user receiver employing partial interference cancellation,” IEEE Trans. Commun., vol. 46, pp. 613–630, 1999.

T. K. Tang, K. B. Letaief, “Bit-error rate computation of optical CDMA communication systems by large deviations theory,” IEEE Trans. Commun., vol. 47, pp. 1422–1428, 1998.
[CrossRef]

H. Shalaby, “Complexities, probabilities, and capacities of optical OOK-CDMA communications,” IEEE Trans. Commun., vol. 50, pp. 2009–2017, 2002.
[CrossRef]

IEEE Trans. Inf. Theory

R. Lupas, S. Verdu, “Linear multiuser detectors for synchronous code division multiple access channels,” IEEE Trans. Inf. Theory, vol. 35, pp. 123–136, 1989.
[CrossRef]

J. Lightwave Technol.

Science

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science, vol. 289, pp. 281–283, 2000.
[CrossRef] [PubMed]

Other

S. Zappa, S. Tisa, S. Cova, R. Roncella, “Pushing technologies: single-photon avalanche diode arrays,” in SPIE Int. Symp. on Astronomical Telescopes & Instrumentation, Glasgow, 2004, p. 549.

A. Okassa-M’foubat, I. Dayoub, R. Mvone, J. M. Rouvaen, “Influence of bias compensation on the parallel interference cancellation in DS-CDMA optical networks,” in IEEE Globecom, 2007, pp. 2434–2438.

N. S. Correal, R. M. Buehrer, B. D. Woener, “Improved CDMA performance through bias reduction for parallel interference cancellation,” in IEEE Int. Symp. on Personal Indoor and Mobile Radio Communications, 1997, pp. 565–569.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Discrete model of an optical CDMA transmission system.

Fig. 2
Fig. 2

Diagram of LPIC detector.

Fig. 3
Fig. 3

Monte Carlo simulation results of LPIC detector performance compared with the conventional receiver in terms of BER versus number of users, with SNR = 25 dB .

Fig. 4
Fig. 4

Block diagram of a compensated LPIC.

Fig. 5
Fig. 5

Monte Carlo simulation results of mean μ b 1 compared with the analytical approximation versus α values, for N = 15 and β = 1 .

Fig. 6
Fig. 6

Monte Carlo simulation results of standard deviation σ 0 compared with the analytical approximation versus α values, for N = 15 and β = 1 .

Fig. 7
Fig. 7

Monte Carlo simulation results of standard deviation σ 1 compared with the analytical approximation versus α values, for N = 15 and β = 1 .

Fig. 8
Fig. 8

Monte Carlo simulation results of the BER performance versus α values and threshold values, for N = 15 and β = 1 .

Fig. 9
Fig. 9

Monte Carlo simulation results of the BER performance versus β values and threshold values, for N = 15 and α = 1 .

Fig. 10
Fig. 10

Monte Carlo simulation results of the BER performance for different α values, with SNR = 10 dB , N = 15 , and β = 1 .

Fig. 11
Fig. 11

BER for different SNR values, with ( α , β ) optimized and N = 15 .

Tables (3)

Tables Icon

Table 1 Optical Code Characteristics and Coefficient ρ Values

Tables Icon

Table 2 Code Length, F values for a BER < 10 9 and SNR = 25 dB

Tables Icon

Table 3 SNR (dB) Values for a BER < 10 9 and N = 30 Users

Equations (56)

Equations on this page are rendered with MathJax. Learn more.

Γ k , k ( l ) = i = 0 F 1 c k ( i ) c k ( i + l ) { = w l = 0 λ a l 0 } ,
Γ j , k ( l ) = i = 0 F 1 c j ( i ) c k ( i + l ) λ c , 0 l < F .
N ( F , w , 1 , 1 ) = F 1 w ( w 1 ) .
r ( t ) = k = 1 N b k c k ( t ) + n ( t ) ,
I n 2 = I t n 2 + I s n 2 .
I t n 2 = 4 k T B R L ,
I s n 2 = 2 e I 0 B ,
SNR = R P W I n 2 ,
Z 1 = 0 T b r ( t ) c 1 ( t ) d t = w b 1 + k = 2 N b k Γ k , 1 + 0 T b n ( t ) c 1 ( t n T ) d t = w b 1 + M 1 + η ,
M 1 = k = 2 N I k ,
I k = b k Γ k , 1 ,
r ̂ p ( t ) = r ( t ) j = 2 N s ̂ j ( t ) ,
Z 1 ( s = 2 ) = 0 T b ( β r ( t ) α k = 2 N s ̂ k ( t ) ) c 1 ( t ) d t .
Z 1 ( s = 2 ) = β w b 1 + ( β w α ) M 1 ( s = 1 ) α k = 2 N m = 2 , m k N b m Γ m , k Γ 1 , k α k = 2 N b 1 Γ 1 , k 2 + η ( β α j = 2 N Γ 1 , k ) ,
Z 1 ( s = 2 ) = β w b 1 + ( β w α ) M 1 ( s = 1 ) α Δ M 1 ( s = 1 ) α k = 2 N b 1 Γ 1 , k 2 + η ( β α k = 2 N Γ 1 , k ) ,
I k = b k Γ 1 , k ,
M 1 = k = 2 N I k ,
η = 0 T b n ( t ) c 1 ( t ) d t .
P e = P ( b 1 = 1 ) P ( { Z 1 s = 2 b 1 } < Th b 1 = 1 ) + P ( b 1 = 0 ) P ( { Z 1 s = 2 b 1 } < Th b 1 = 0 ) = 1 2 P e 1 + 1 2 P e 0 ,
P e 1 = 1 2 erfc ( E [ Z 1 ( s = 2 ) b 1 = 1 ] Th 2 Var [ Z 1 ( s = 2 ) b 1 = 1 ] ) ,
P e 0 = 1 2 erfc ( Th E [ Z 1 ( s = 2 ) b 1 = 0 ] 2 Var [ Z 1 ( s = 2 ) b 1 = 0 ] ) ,
erfc ( x ) = 1 2 π 0 x e z 2 d z .
Th 0 = μ 1 ( α , β ) σ 0 ( α , β ) + μ 0 ( α , β ) σ 1 ( α , β ) σ 0 ( α , β ) + σ 1 ( α , β ) .
P e = 1 2 erfc ( μ 1 ( α , β ) μ 0 ( α , β ) 2 ( σ 0 ( α , β ) + σ 1 ( α , β ) ) ) .
μ b 1 = ( β w α ζ 4 ) b 1 + 1 2 ( β α w ) ζ 4 1 2 α ζ 4 ζ 5 ,
σ b 1 2 = ( β α w ) 2 ζ 1 α ( β α w ) ζ 2 + α 2 ζ 3 + σ η 2 ( β 2 2 α β ζ 4 + α 2 ζ 4 ( 1 + ζ 5 ) ) .
ζ 1 = 1 2 ζ 4 ( 1 1 2 ρ ) ,
ζ 2 = 1 2 ζ 4 ζ 5 ( 1 ρ ) + b 1 ζ 4 ( 1 ρ ) ,
ζ 3 = b 1 ζ 4 ζ 5 ( 1 ρ ) + b 1 2 ζ 4 ( 1 ρ ) + 1 4 ζ 4 ζ 5 2 + 1 2 ζ 4 ζ 5 ( 1 ρ 2 ) ,
ζ 4 = ζ 5 + ρ , ζ 5 = ( N 2 ) ρ ,
( α 0 , β 0 ) = arg min { P e ( α , β ) } .
α = β β 0 , α = β α 0 , α 0 β 0 = 1 .
E [ Z 1 ( S = 2 ) b 1 ] = E [ β w b 1 b 1 ] + E [ ( β w α ) M 1 ( s = 1 ) b 1 ] E [ α Δ M 1 ( s = 2 ) b 1 ] E [ α k = 2 N b 1 Γ 1 , k 2 b 1 ] + E [ η ( β α k = 2 N Γ 1 , k ) b 1 ] .
E [ ( Γ 1 , k ) ] = i = 0 λ c = 1 x i P ( Γ 1 , k = x i ) ,
E [ Γ 1 , k ] = P ( Γ 1 , k = 1 ) = ρ = w 2 F ,
E [ M 1 ( S = 1 ) b 1 ] = k = 2 N ρ 2 ,
E [ Δ M 1 ( s = 2 ) b 1 ] = k = 2 N m = 2 , k N ρ 2 2 ,
E [ k = 2 N b 1 Γ 1 , k 2 b 1 ] = k = 2 N b 1 ρ ,
E [ η ( β α k = 2 N Γ 1 , k ) b 1 ] = 0 .
Z 1 ( s = 2 ) b 1 = ψ 0 + ψ 1 + ψ 2 + ψ 3 + ψ 4 ,
ψ 0 = β w b 1 ,
ψ 1 = ( β α w ) M 1 ( s = 1 ) ,
ψ 2 = α k = 2 N b i Γ 1 , k 2 ,
ψ 3 = α Δ M 1 ( s = 1 ) ,
ψ 4 = η ( β α k = 2 N Γ 1 , k ) .
var ( Z 1 ( s = 2 ) b 1 ) = var ( ψ 1 ) + var ( ψ 2 ) + var ( ψ 3 ) + var ( ψ 4 ) 2 cov ( ψ 1 , ψ 2 ) + 2 cov ( ψ 1 , ψ 3 ) + 2 cov ( ψ 2 , ψ 3 ) ,
( i = 1 N Γ 1 , i ) 2 = i = 1 N Γ 1 , i 2 + i = 1 N j i N Γ 1 , i Γ 1 , j ,
E [ Γ m , k Γ n , k Γ 1 , k 2 ] = E [ Γ m , n 2 Γ 1 , q Γ 1 , k ] = ρ 3 ,
E [ Γ m , k Γ n , k Γ 1 , k Γ 1 , q ] = E [ Γ m , k Γ m , q Γ 1 , k Γ 1 , q ] = ρ 4 ,
var ( ψ 1 ) = ( β α w ) 2 k = 2 N ρ 2 ( 1 ρ 2 ) ,
var ( ψ 2 ) = α 2 b 1 2 k = 2 N ρ ( 1 ρ ) ,
var ( ψ 4 ) = σ η 2 ( β 2 α β k = 2 N ρ + α 2 k = 2 N ρ [ 1 + l = 3 N ρ ] ) ,
var ( ψ 3 ) = α 2 ( 1 2 k = 2 N m k N ρ 2 ( 1 ρ 2 ) + k = 2 N m k N n k N 1 4 ρ 3 ) ,
cov ( ψ 1 , ψ 2 ) = α ( β α w ) b 1 k = 2 N 1 2 ρ ( 1 ρ ) ,
cov ( ψ 1 , ψ 3 ) = α ( β α w ) k = 2 N m k N 1 4 ρ 2 ( 1 ρ ) ,
cov ( ψ 2 , ψ 3 ) = α 2 b 1 k = 2 N m = 2 , k N 1 2 ρ 2 ( 1 ρ ) .