Abstract

We experimentally show how the virtual private large-area network service (VPLS) technique, a layer 2 service, can improve optical network performance in terms of quality of service (QoS), and how a VPLS network behaves when it adopts all-optical wavelength conversion (AOWC), a new optical process that will be introduced in future optical networks. The advantages of VPLS are based on the capability to generate logical reliable paths in each wavelength channel, permitting suitable partitioning of the bandwidth according to the user requirements. In particular, we show the advantages of VPLS in access networks based on passive optical networks, and we test QoS properties of VPLS paths when an AOWC process occurs both in the core and in the access networks. The experimental investigation is carried out in a wide-area, all-optical gigabit Ethernet testbed with an access section based on an Ethernet passive optical network. As far as the core segment is concerned, we chose a high-efficiency AOWC process based on four-wave mixing in dispersion-shifted fiber; conversely in the access segment we chose a cheaper AOWC process based on cross gain modulation in a semiconductor optical amplifier. The reported results show that gigabit Ethernet transmission, with the relative layer 2 techniques, is also well suitable for wide-area WDM architectures, and in particular it is able to guarantee end-to-end QoS for huge bandwidth services such as high-definition TV and also in the case of congestion, restoration, and wavelength conversion processes.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription