Abstract

The emergence of a broad range of network-driven applications (e.g., multimedia, online gaming) brings in the need for a network environment able to provide multiservice capabilities with diverse quality-of-service (QoS) guarantees. In this paper, a medium access control protocol is proposed to support multiple services and QoS levels in optical burst-switched mesh networks without wavelength conversion. The protocol provides two different access mechanisms, queue-arbitrated and prearbitrated for connectionless and connection-oriented burst transport, respectively. It has been evaluated through extensive simulations and its simplistic form makes it very promising for implementation and deployment. Results indicate that the protocol can clearly provide a relative quality differentiation for connectionless traffic and guarantee null (or negligible, and thus acceptable) burst loss probability for a wide range of network (or offered) load while ensuring low access delay for the higher-priority traffic. Furthermore, in the multiservice scenario mixing connectionless and connection-oriented burst transmissions, three different prearbitrated slot scheduling algorithms are evaluated, each one providing a different performance in terms of connection blocking probability. The overall results demonstrate the suitability of this architecture for future integrated multiservice optical networks.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Zervas, Y. Qin, R. Nejabati, D. Simeonidou, F. Callegati, A. Campi, W. Cerroni, “SIP-enabled optical burst switching architectures and protocols for application-aware optical networks,” Comput. Netw., vol. 52, no. 10, pp. 2065–2076, July 2008.
    [CrossRef]
  2. Y. Chen, C. Qiao, X. Yu, “Optical burst switching: a new area in optical networking research,” IEEE Network, vol. 18, no. 3, pp. 16–23, May 2004.
    [CrossRef]
  3. J. Triay, J. Perelló, C. Cervelló-Pastor, S. Spadaro, “On avoiding-minimizing burst collisions in optical burst-switched networks without wavelength conversion,” Proc. of 11th Int. Conf. on Transparent Optical Networks (ICTON), Azores, Portugal, 2009, paper Mo.D3.4.
  4. IEEE Standards Board, “Distributed queue dual bus (DQDB) subnetwork of a metropolitan network—802.6,” Dec. 1990.
  5. H. Overby, “Quality of service differentation: teletraffic analysis and network layer packet redundancy in optical packet switched networks,” Ph.D. dissertation, Dept. of Telematics, Norwegian University of Science and Technology, Trondheim, Norway, 2005.
  6. M. Yoo, C. Qiao, S. Dixit, “QoS performance of optical burst switching in IP over WDM networks,” IEEE J. Sel. Areas Commun., vol. 18, no. 10, pp. 2062–2071, Oct. 2000.
    [CrossRef]
  7. H. Overby, N. Stol, M. Nord, “Evaluation of QoS differentiation mechanisms in asynchronous bufferless optical packet-switched networks,” IEEE Commun. Mag., vol. 44, no. 8, pp. 52–57, Aug. 2006.
    [CrossRef]
  8. Q. Zhang, V. M. Vokkarane, J. P. Jue, B. Chen, “Absolute QoS differentation in optical burst-switched networks,” IEEE J. Sel. Areas Commun., vol. 22, no. 9, pp. 1781–1795, 2004.
    [CrossRef]
  9. X. Liu, C. Qiao, W. Wei, T. Wang, “A universal signaling, switching and reservation framework for future optical networks,” J. Lightwave Technol., vol. 27, no. 12, pp. 1806–1815, June 2009.
    [CrossRef]
  10. J. A. Hernández, P. Reviriego, J. L. García-Dorado, V. López, D. Larrabeiti, J. Aracil, “Performance evaluation and design of polymorphous OBS networks with guaranteed TDM services,” J. Lightwave Technol., vol. 27, no. 13, pp. 2495–2505, July 2009.
    [CrossRef]
  11. L. Xu, H. G. Perros, G. N. Rouskas, “A simulation study of optical burst switching and access protocols for WDM ring networks,” Comput. Netw., vol. 41, no. 2, pp. 143–160, Feb. 2003.
    [CrossRef]
  12. W. P. Chen, W. F. Wang, W. S. Hwang, “A novel and simple beforehand bandwidth reservation (BBR) MAC protocol for OBS metro ring networks,” J. High Speed Networks, vol. 17, no. 1, pp. 59–72, Jan. 2008.
  13. H. T. Lin, W. R. Chang, “CORnet: an OBS metro ring network with QoS support and fairness control,” Comput. Netw., vol. 52, no. 10, pp. 2045–2064, July 2008.
    [CrossRef]
  14. L. M. Peng, Y. C. Kim, “Investigation of the design of MAC protocols for TT-TR-based WDM burst-switched ring networks,” J. Opt. Commun. Netw., vol. 1, no. 2, pp. 25–34, July 2009.
    [CrossRef]
  15. Z. Zhang, L. Liu, Y. Yang, “Slotted optical burst switching (SOBS) networks,” Comput. Commun., vol. 30, no. 18, pp. 3471–3479, Dec. 2007.
    [CrossRef]
  16. M. Klinkowski, D. Careglio, J. Solé-Pareta, “Comparison of conventional and offset time-emulated optical burst switching,” Proc. 8th Int. Conf. on Transparent Optical Networks (ICTON), Nothingham, UK, 2006, pp. 47–50.
  17. A. Gumaste, N. Ghani, P. Bafna, A. Lodha, A. Agrawal, T. Das, J. Wang, S.-Q. Zheng, “DynaSPOT: dynamic services provisioned optical transport test-bed—achieving multirate multiservice dynamic provisioning using strongly connected light-trail (SLiT) technology,” J. Lightwave Technol., vol. 26, no. 1, pp. 183–195, Jan. 2008.
    [CrossRef]
  18. B. Mukherjee, Optical WDM Networks, 1st ed. Springer, 2006.
  19. A. Rostami, A. Wolisz, “Modelling and synthesis of traffic in optical burst-switched networks,” J. Lightwave Technol., vol. 25, no. 10, pp. 2942–2952, Oct. 2007.
    [CrossRef]
  20. IST IP Nobel Phase 2: Next Generation Optical Networks for Broadband European Leadership Phase 2, Project deliverable D1.1: “Architectural Vision of Network Evolution,” Aug. 2006.

2009 (3)

2008 (4)

A. Gumaste, N. Ghani, P. Bafna, A. Lodha, A. Agrawal, T. Das, J. Wang, S.-Q. Zheng, “DynaSPOT: dynamic services provisioned optical transport test-bed—achieving multirate multiservice dynamic provisioning using strongly connected light-trail (SLiT) technology,” J. Lightwave Technol., vol. 26, no. 1, pp. 183–195, Jan. 2008.
[CrossRef]

W. P. Chen, W. F. Wang, W. S. Hwang, “A novel and simple beforehand bandwidth reservation (BBR) MAC protocol for OBS metro ring networks,” J. High Speed Networks, vol. 17, no. 1, pp. 59–72, Jan. 2008.

H. T. Lin, W. R. Chang, “CORnet: an OBS metro ring network with QoS support and fairness control,” Comput. Netw., vol. 52, no. 10, pp. 2045–2064, July 2008.
[CrossRef]

G. Zervas, Y. Qin, R. Nejabati, D. Simeonidou, F. Callegati, A. Campi, W. Cerroni, “SIP-enabled optical burst switching architectures and protocols for application-aware optical networks,” Comput. Netw., vol. 52, no. 10, pp. 2065–2076, July 2008.
[CrossRef]

2007 (2)

A. Rostami, A. Wolisz, “Modelling and synthesis of traffic in optical burst-switched networks,” J. Lightwave Technol., vol. 25, no. 10, pp. 2942–2952, Oct. 2007.
[CrossRef]

Z. Zhang, L. Liu, Y. Yang, “Slotted optical burst switching (SOBS) networks,” Comput. Commun., vol. 30, no. 18, pp. 3471–3479, Dec. 2007.
[CrossRef]

2006 (1)

H. Overby, N. Stol, M. Nord, “Evaluation of QoS differentiation mechanisms in asynchronous bufferless optical packet-switched networks,” IEEE Commun. Mag., vol. 44, no. 8, pp. 52–57, Aug. 2006.
[CrossRef]

2004 (2)

Q. Zhang, V. M. Vokkarane, J. P. Jue, B. Chen, “Absolute QoS differentation in optical burst-switched networks,” IEEE J. Sel. Areas Commun., vol. 22, no. 9, pp. 1781–1795, 2004.
[CrossRef]

Y. Chen, C. Qiao, X. Yu, “Optical burst switching: a new area in optical networking research,” IEEE Network, vol. 18, no. 3, pp. 16–23, May 2004.
[CrossRef]

2003 (1)

L. Xu, H. G. Perros, G. N. Rouskas, “A simulation study of optical burst switching and access protocols for WDM ring networks,” Comput. Netw., vol. 41, no. 2, pp. 143–160, Feb. 2003.
[CrossRef]

2000 (1)

M. Yoo, C. Qiao, S. Dixit, “QoS performance of optical burst switching in IP over WDM networks,” IEEE J. Sel. Areas Commun., vol. 18, no. 10, pp. 2062–2071, Oct. 2000.
[CrossRef]

Agrawal, A.

Aracil, J.

Bafna, P.

Callegati, F.

G. Zervas, Y. Qin, R. Nejabati, D. Simeonidou, F. Callegati, A. Campi, W. Cerroni, “SIP-enabled optical burst switching architectures and protocols for application-aware optical networks,” Comput. Netw., vol. 52, no. 10, pp. 2065–2076, July 2008.
[CrossRef]

Campi, A.

G. Zervas, Y. Qin, R. Nejabati, D. Simeonidou, F. Callegati, A. Campi, W. Cerroni, “SIP-enabled optical burst switching architectures and protocols for application-aware optical networks,” Comput. Netw., vol. 52, no. 10, pp. 2065–2076, July 2008.
[CrossRef]

Careglio, D.

M. Klinkowski, D. Careglio, J. Solé-Pareta, “Comparison of conventional and offset time-emulated optical burst switching,” Proc. 8th Int. Conf. on Transparent Optical Networks (ICTON), Nothingham, UK, 2006, pp. 47–50.

Cerroni, W.

G. Zervas, Y. Qin, R. Nejabati, D. Simeonidou, F. Callegati, A. Campi, W. Cerroni, “SIP-enabled optical burst switching architectures and protocols for application-aware optical networks,” Comput. Netw., vol. 52, no. 10, pp. 2065–2076, July 2008.
[CrossRef]

Cervelló-Pastor, C.

J. Triay, J. Perelló, C. Cervelló-Pastor, S. Spadaro, “On avoiding-minimizing burst collisions in optical burst-switched networks without wavelength conversion,” Proc. of 11th Int. Conf. on Transparent Optical Networks (ICTON), Azores, Portugal, 2009, paper Mo.D3.4.

Chang, W. R.

H. T. Lin, W. R. Chang, “CORnet: an OBS metro ring network with QoS support and fairness control,” Comput. Netw., vol. 52, no. 10, pp. 2045–2064, July 2008.
[CrossRef]

Chen, B.

Q. Zhang, V. M. Vokkarane, J. P. Jue, B. Chen, “Absolute QoS differentation in optical burst-switched networks,” IEEE J. Sel. Areas Commun., vol. 22, no. 9, pp. 1781–1795, 2004.
[CrossRef]

Chen, W. P.

W. P. Chen, W. F. Wang, W. S. Hwang, “A novel and simple beforehand bandwidth reservation (BBR) MAC protocol for OBS metro ring networks,” J. High Speed Networks, vol. 17, no. 1, pp. 59–72, Jan. 2008.

Chen, Y.

Y. Chen, C. Qiao, X. Yu, “Optical burst switching: a new area in optical networking research,” IEEE Network, vol. 18, no. 3, pp. 16–23, May 2004.
[CrossRef]

Das, T.

Dixit, S.

M. Yoo, C. Qiao, S. Dixit, “QoS performance of optical burst switching in IP over WDM networks,” IEEE J. Sel. Areas Commun., vol. 18, no. 10, pp. 2062–2071, Oct. 2000.
[CrossRef]

García-Dorado, J. L.

Ghani, N.

Gumaste, A.

Hernández, J. A.

Hwang, W. S.

W. P. Chen, W. F. Wang, W. S. Hwang, “A novel and simple beforehand bandwidth reservation (BBR) MAC protocol for OBS metro ring networks,” J. High Speed Networks, vol. 17, no. 1, pp. 59–72, Jan. 2008.

Jue, J. P.

Q. Zhang, V. M. Vokkarane, J. P. Jue, B. Chen, “Absolute QoS differentation in optical burst-switched networks,” IEEE J. Sel. Areas Commun., vol. 22, no. 9, pp. 1781–1795, 2004.
[CrossRef]

Kim, Y. C.

L. M. Peng, Y. C. Kim, “Investigation of the design of MAC protocols for TT-TR-based WDM burst-switched ring networks,” J. Opt. Commun. Netw., vol. 1, no. 2, pp. 25–34, July 2009.
[CrossRef]

Klinkowski, M.

M. Klinkowski, D. Careglio, J. Solé-Pareta, “Comparison of conventional and offset time-emulated optical burst switching,” Proc. 8th Int. Conf. on Transparent Optical Networks (ICTON), Nothingham, UK, 2006, pp. 47–50.

Larrabeiti, D.

Lin, H. T.

H. T. Lin, W. R. Chang, “CORnet: an OBS metro ring network with QoS support and fairness control,” Comput. Netw., vol. 52, no. 10, pp. 2045–2064, July 2008.
[CrossRef]

Liu, L.

Z. Zhang, L. Liu, Y. Yang, “Slotted optical burst switching (SOBS) networks,” Comput. Commun., vol. 30, no. 18, pp. 3471–3479, Dec. 2007.
[CrossRef]

Liu, X.

Lodha, A.

López, V.

Mukherjee, B.

B. Mukherjee, Optical WDM Networks, 1st ed. Springer, 2006.

Nejabati, R.

G. Zervas, Y. Qin, R. Nejabati, D. Simeonidou, F. Callegati, A. Campi, W. Cerroni, “SIP-enabled optical burst switching architectures and protocols for application-aware optical networks,” Comput. Netw., vol. 52, no. 10, pp. 2065–2076, July 2008.
[CrossRef]

Nord, M.

H. Overby, N. Stol, M. Nord, “Evaluation of QoS differentiation mechanisms in asynchronous bufferless optical packet-switched networks,” IEEE Commun. Mag., vol. 44, no. 8, pp. 52–57, Aug. 2006.
[CrossRef]

Overby, H.

H. Overby, N. Stol, M. Nord, “Evaluation of QoS differentiation mechanisms in asynchronous bufferless optical packet-switched networks,” IEEE Commun. Mag., vol. 44, no. 8, pp. 52–57, Aug. 2006.
[CrossRef]

H. Overby, “Quality of service differentation: teletraffic analysis and network layer packet redundancy in optical packet switched networks,” Ph.D. dissertation, Dept. of Telematics, Norwegian University of Science and Technology, Trondheim, Norway, 2005.

Peng, L. M.

L. M. Peng, Y. C. Kim, “Investigation of the design of MAC protocols for TT-TR-based WDM burst-switched ring networks,” J. Opt. Commun. Netw., vol. 1, no. 2, pp. 25–34, July 2009.
[CrossRef]

Perelló, J.

J. Triay, J. Perelló, C. Cervelló-Pastor, S. Spadaro, “On avoiding-minimizing burst collisions in optical burst-switched networks without wavelength conversion,” Proc. of 11th Int. Conf. on Transparent Optical Networks (ICTON), Azores, Portugal, 2009, paper Mo.D3.4.

Perros, H. G.

L. Xu, H. G. Perros, G. N. Rouskas, “A simulation study of optical burst switching and access protocols for WDM ring networks,” Comput. Netw., vol. 41, no. 2, pp. 143–160, Feb. 2003.
[CrossRef]

Qiao, C.

X. Liu, C. Qiao, W. Wei, T. Wang, “A universal signaling, switching and reservation framework for future optical networks,” J. Lightwave Technol., vol. 27, no. 12, pp. 1806–1815, June 2009.
[CrossRef]

Y. Chen, C. Qiao, X. Yu, “Optical burst switching: a new area in optical networking research,” IEEE Network, vol. 18, no. 3, pp. 16–23, May 2004.
[CrossRef]

M. Yoo, C. Qiao, S. Dixit, “QoS performance of optical burst switching in IP over WDM networks,” IEEE J. Sel. Areas Commun., vol. 18, no. 10, pp. 2062–2071, Oct. 2000.
[CrossRef]

Qin, Y.

G. Zervas, Y. Qin, R. Nejabati, D. Simeonidou, F. Callegati, A. Campi, W. Cerroni, “SIP-enabled optical burst switching architectures and protocols for application-aware optical networks,” Comput. Netw., vol. 52, no. 10, pp. 2065–2076, July 2008.
[CrossRef]

Reviriego, P.

Rostami, A.

Rouskas, G. N.

L. Xu, H. G. Perros, G. N. Rouskas, “A simulation study of optical burst switching and access protocols for WDM ring networks,” Comput. Netw., vol. 41, no. 2, pp. 143–160, Feb. 2003.
[CrossRef]

Simeonidou, D.

G. Zervas, Y. Qin, R. Nejabati, D. Simeonidou, F. Callegati, A. Campi, W. Cerroni, “SIP-enabled optical burst switching architectures and protocols for application-aware optical networks,” Comput. Netw., vol. 52, no. 10, pp. 2065–2076, July 2008.
[CrossRef]

Solé-Pareta, J.

M. Klinkowski, D. Careglio, J. Solé-Pareta, “Comparison of conventional and offset time-emulated optical burst switching,” Proc. 8th Int. Conf. on Transparent Optical Networks (ICTON), Nothingham, UK, 2006, pp. 47–50.

Spadaro, S.

J. Triay, J. Perelló, C. Cervelló-Pastor, S. Spadaro, “On avoiding-minimizing burst collisions in optical burst-switched networks without wavelength conversion,” Proc. of 11th Int. Conf. on Transparent Optical Networks (ICTON), Azores, Portugal, 2009, paper Mo.D3.4.

Stol, N.

H. Overby, N. Stol, M. Nord, “Evaluation of QoS differentiation mechanisms in asynchronous bufferless optical packet-switched networks,” IEEE Commun. Mag., vol. 44, no. 8, pp. 52–57, Aug. 2006.
[CrossRef]

Triay, J.

J. Triay, J. Perelló, C. Cervelló-Pastor, S. Spadaro, “On avoiding-minimizing burst collisions in optical burst-switched networks without wavelength conversion,” Proc. of 11th Int. Conf. on Transparent Optical Networks (ICTON), Azores, Portugal, 2009, paper Mo.D3.4.

Vokkarane, V. M.

Q. Zhang, V. M. Vokkarane, J. P. Jue, B. Chen, “Absolute QoS differentation in optical burst-switched networks,” IEEE J. Sel. Areas Commun., vol. 22, no. 9, pp. 1781–1795, 2004.
[CrossRef]

Wang, J.

Wang, T.

Wang, W. F.

W. P. Chen, W. F. Wang, W. S. Hwang, “A novel and simple beforehand bandwidth reservation (BBR) MAC protocol for OBS metro ring networks,” J. High Speed Networks, vol. 17, no. 1, pp. 59–72, Jan. 2008.

Wei, W.

Wolisz, A.

Xu, L.

L. Xu, H. G. Perros, G. N. Rouskas, “A simulation study of optical burst switching and access protocols for WDM ring networks,” Comput. Netw., vol. 41, no. 2, pp. 143–160, Feb. 2003.
[CrossRef]

Yang, Y.

Z. Zhang, L. Liu, Y. Yang, “Slotted optical burst switching (SOBS) networks,” Comput. Commun., vol. 30, no. 18, pp. 3471–3479, Dec. 2007.
[CrossRef]

Yoo, M.

M. Yoo, C. Qiao, S. Dixit, “QoS performance of optical burst switching in IP over WDM networks,” IEEE J. Sel. Areas Commun., vol. 18, no. 10, pp. 2062–2071, Oct. 2000.
[CrossRef]

Yu, X.

Y. Chen, C. Qiao, X. Yu, “Optical burst switching: a new area in optical networking research,” IEEE Network, vol. 18, no. 3, pp. 16–23, May 2004.
[CrossRef]

Zervas, G.

G. Zervas, Y. Qin, R. Nejabati, D. Simeonidou, F. Callegati, A. Campi, W. Cerroni, “SIP-enabled optical burst switching architectures and protocols for application-aware optical networks,” Comput. Netw., vol. 52, no. 10, pp. 2065–2076, July 2008.
[CrossRef]

Zhang, Q.

Q. Zhang, V. M. Vokkarane, J. P. Jue, B. Chen, “Absolute QoS differentation in optical burst-switched networks,” IEEE J. Sel. Areas Commun., vol. 22, no. 9, pp. 1781–1795, 2004.
[CrossRef]

Zhang, Z.

Z. Zhang, L. Liu, Y. Yang, “Slotted optical burst switching (SOBS) networks,” Comput. Commun., vol. 30, no. 18, pp. 3471–3479, Dec. 2007.
[CrossRef]

Zheng, S.-Q.

Comput. Commun. (1)

Z. Zhang, L. Liu, Y. Yang, “Slotted optical burst switching (SOBS) networks,” Comput. Commun., vol. 30, no. 18, pp. 3471–3479, Dec. 2007.
[CrossRef]

Comput. Netw. (3)

L. Xu, H. G. Perros, G. N. Rouskas, “A simulation study of optical burst switching and access protocols for WDM ring networks,” Comput. Netw., vol. 41, no. 2, pp. 143–160, Feb. 2003.
[CrossRef]

H. T. Lin, W. R. Chang, “CORnet: an OBS metro ring network with QoS support and fairness control,” Comput. Netw., vol. 52, no. 10, pp. 2045–2064, July 2008.
[CrossRef]

G. Zervas, Y. Qin, R. Nejabati, D. Simeonidou, F. Callegati, A. Campi, W. Cerroni, “SIP-enabled optical burst switching architectures and protocols for application-aware optical networks,” Comput. Netw., vol. 52, no. 10, pp. 2065–2076, July 2008.
[CrossRef]

IEEE Commun. Mag. (1)

H. Overby, N. Stol, M. Nord, “Evaluation of QoS differentiation mechanisms in asynchronous bufferless optical packet-switched networks,” IEEE Commun. Mag., vol. 44, no. 8, pp. 52–57, Aug. 2006.
[CrossRef]

IEEE J. Sel. Areas Commun. (2)

Q. Zhang, V. M. Vokkarane, J. P. Jue, B. Chen, “Absolute QoS differentation in optical burst-switched networks,” IEEE J. Sel. Areas Commun., vol. 22, no. 9, pp. 1781–1795, 2004.
[CrossRef]

M. Yoo, C. Qiao, S. Dixit, “QoS performance of optical burst switching in IP over WDM networks,” IEEE J. Sel. Areas Commun., vol. 18, no. 10, pp. 2062–2071, Oct. 2000.
[CrossRef]

IEEE Network (1)

Y. Chen, C. Qiao, X. Yu, “Optical burst switching: a new area in optical networking research,” IEEE Network, vol. 18, no. 3, pp. 16–23, May 2004.
[CrossRef]

J. High Speed Networks (1)

W. P. Chen, W. F. Wang, W. S. Hwang, “A novel and simple beforehand bandwidth reservation (BBR) MAC protocol for OBS metro ring networks,” J. High Speed Networks, vol. 17, no. 1, pp. 59–72, Jan. 2008.

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (1)

L. M. Peng, Y. C. Kim, “Investigation of the design of MAC protocols for TT-TR-based WDM burst-switched ring networks,” J. Opt. Commun. Netw., vol. 1, no. 2, pp. 25–34, July 2009.
[CrossRef]

Other (6)

B. Mukherjee, Optical WDM Networks, 1st ed. Springer, 2006.

M. Klinkowski, D. Careglio, J. Solé-Pareta, “Comparison of conventional and offset time-emulated optical burst switching,” Proc. 8th Int. Conf. on Transparent Optical Networks (ICTON), Nothingham, UK, 2006, pp. 47–50.

J. Triay, J. Perelló, C. Cervelló-Pastor, S. Spadaro, “On avoiding-minimizing burst collisions in optical burst-switched networks without wavelength conversion,” Proc. of 11th Int. Conf. on Transparent Optical Networks (ICTON), Azores, Portugal, 2009, paper Mo.D3.4.

IEEE Standards Board, “Distributed queue dual bus (DQDB) subnetwork of a metropolitan network—802.6,” Dec. 1990.

H. Overby, “Quality of service differentation: teletraffic analysis and network layer packet redundancy in optical packet switched networks,” Ph.D. dissertation, Dept. of Telematics, Norwegian University of Science and Technology, Trondheim, Norway, 2005.

IST IP Nobel Phase 2: Next Generation Optical Networks for Broadband European Leadership Phase 2, Project deliverable D1.1: “Architectural Vision of Network Evolution,” Aug. 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Example of a DAOBS light-tree. If node N1 needs to transmit to any ToB, it requests for free slots to the HoB or eventually waits for a free slot.

Fig. 2
Fig. 2

Data channel PA/QA slot example.

Fig. 3
Fig. 3

BCP and RCP packet formats.

Fig. 4
Fig. 4

Flow diagram at the HoB slot processing.

Fig. 5
Fig. 5

DAOBS protocol and network architecture.

Fig. 6
Fig. 6

QA entity with three burst priorities on wavelength λ k .

Fig. 7
Fig. 7

QA DASM flow at priority i.

Fig. 8
Fig. 8

Example of a multilayer PA service setup and allocation of slots in the MAC layer.

Fig. 9
Fig. 9

PA slot scheduling algorithms.

Fig. 10
Fig. 10

SPFF scheduling algorithm.

Fig. 11
Fig. 11

QA access mode without QoS for different LQ lengths: (a) burst blocking probability, and (b) mean access delay.

Fig. 12
Fig. 12

QA access mode with QoS and LQ = 5 bursts: (a) burst blocking probability comparison between the two traffic distributions, (b) access delay, (c) HoB transmission probability distribution 1, (d) mean number of hops distribution 1, and (e) end-to-end delay distribution 1.

Fig. 13
Fig. 13

QA access mode BBP as a function of the network load.

Fig. 14
Fig. 14

Dual PA/QA access modes. (a) Mean burst/call blocking probability (BP) on traffic distribution 20%–80%. (b) BP with traffic distribution 40%–60%. (c) Mean access delay for connectionless bursts and mean connection setup delay on traffic distribution 20%–80%. (d) HoB connectionless burst transmission and HoB connection setup rates on traffic distribution 20%–80%.

Fig. 15
Fig. 15

BP for different connection types on traffic distribution 20%–80%.

Fig. 16
Fig. 16

BBP comparison between standalone QA access with QoS and PA/QA dual access modes.

Tables (3)

Tables Icon

Table 1 Traffic Distribution Configurations

Tables Icon

Table 2 Applications’ QoS Requirements [20]

Tables Icon

Table 3 DAOBS Classes of Service a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

min λ j W n m [ RQ i , λ j + CD i , λ j + size ( LQ i , λ j ) ] ,
W = 10 × 10 9 155 × 10 6 = 64   slots   .
S i = { s i W | v ( s i ) = 0 s i + 1 = s i + t , t = W N , 1 i N } .
A CO = 1 C i = 1 n λ i 1 μ i b i ,