Abstract

Hybrid fiber-wireless networks for fixed wireless access operating in the millimeter-wave (mm-wave) frequency region have been actively pursued to provide ultrahigh bandwidth for untethered connectivity. Moving the radio operating frequency into the mm-wave region overcomes the spectral congestion in the lower microwave region and is also capable of providing high-capacity broadband wireless services in a picocellular or microcellular architecture. Optical fiber backhaul provides the broadband interconnectivity between a centralized location and a large number of high-throughput antenna base stations necessary in such an architecture. The transportation of mm-wave wireless signals within the hybrid network is subject to numerous impairments ranging from low conversion efficiency to fiber chromatic dispersion and also to signal degradation due to nonlinearity along the link. One of the major technical challenges in implementing these networks lies in the mitigation of these impairments that the wireless signals experience while traversing the links. In this paper, we present an overview of the different techniques and schemes to overcome some of the impairments for transporting mm-wave signals over optical fibers.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Seeds and K. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628-4241 (2006).
    [CrossRef]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319-330 (2007).
  3. A. Nirmalathas, C. Lim, D. Novak, and R. B. Waterhouse, “Progress in millimeter-wave fiber-radio access networks,” in Millimeter Waves in Communication Systems, Innovative Technology Series Information Systems and Networks, M.Ney, ed. (Hermes Penton Science Ltd., 2003), pp. 43-67.
  4. T. Kurniawan, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Performance analysis of optimized millimeter-wave fiber radio links,” IEEE Trans. Microwave Theory Tech. 54, 921-928 (2006).
  5. W. H. Chen and W. I. Way, “Multichannel single-sideband SCM/DWDM transmission systems,” J. Lightwave Technol. 7, 1679-1693 (2004).
  6. S.-H. Park and Y.-W. Choi, “Significant suppression of the third intermodulation distortion in transmission system with optical feedback forward linearized transmitter,” IEEE Photon. Technol. Lett. 17, 1280-1282 (2005).
  7. T. Ismail, C.-P. Liu, J. E. Mitchell, and A. J. Seeds, “High-dynamic-range wireless-over-fiber link using feedforward linearization,” J. Lightwave Technol. 25, 3274-3282 (2007).
  8. S. H. Lee, J. M. Kang, Y. Y. Won, H. C. Kwon, and S. K. Han, “Linearization of RoF optical source by using light-injected gain modulation,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 265-268.
  9. L. Roselli, V. Borgioni, F. Zepparelli, F. Ambrosi, M. Comez, P. Faccin, and A. Cassini, “Analog laser predistortion for multiservice radio-over-fiber systems,” J. Lightwave Technol. 21, 1211-1223 (2003).
    [CrossRef]
  10. A. R. Shah and B. Jalali, “Adaptive equalisation for broadband predistortion linearisation of optical transmitters,” IEE Proc.: Optoelectron. 152, 16-32 (2005).
    [CrossRef]
  11. A. Djupsjobacka, “A linearization concept for integrated-optic modulators,” IEEE Photon. Technol. Lett. 4, 869-872 (1992).
  12. H. Skeie and R. Johnson, “Linearization of electro-optic modulators by a cascade coupling of phase modulating electrodes,” Proc. SPIE 1583, 153-164 (1991).
    [CrossRef]
  13. S. Korotky and R. DeRidder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Commun. 8, 1377-1381 (1990).
    [CrossRef]
  14. K. J. Williams and R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett. 30, 1965-1966 (1994).
    [CrossRef]
  15. S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36, 944-946 (2000).
    [CrossRef]
  16. M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links,” Electron. Lett. 30, 2157-2158 (1994).
    [CrossRef]
  17. R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier substraction,” IEEE Photon. Technol. Lett. 7, 218-220 (1995).
    [CrossRef]
  18. H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, “25-GHz channel spacing DWDM multiplexing using an arrayed waveguide grating for 60-GHz band radio-on-fiber systems,” in International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 287-290.
  19. G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. QE-20, 1208-1216 (1984).
    [CrossRef]
  20. H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett. 31, 1848-1849 (1995).
    [CrossRef]
  21. G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74-75 (1997).
    [CrossRef]
  22. R. A. Griffin, P. M. Lane, and J. J. O'Reilly, “Dispersion-tolerant subcarrier data modulation of optical millimetre-wave signals,” Electron. Lett. 32, 2258-2260 (1996).
    [CrossRef]
  23. J. M. Fuster, J. Marti, and J. L. Corral, “Chromatic dispersion effects in electro-optical upconverted millimetre-wave fibre optic links,” Electron. Lett. 33, 1969-1970 (1997).
    [CrossRef]
  24. Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18, 1726-1728 (2006).
    [CrossRef]
  25. J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33, 512-513 (1997).
    [CrossRef]
  26. K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5, 949-951 (1993).
    [CrossRef]
  27. E. Vourch, D. Le Berre, and D. Herve, “Lightwave single sideband wavelength self-tunable filter using InP:Fe crystal for fiber-wireless systems,” IEEE Photon. Technol. Lett. 14, 194-196 (2002).
    [CrossRef]
  28. J. Capmany, D. Pastor, P. Munoz, S. Sales, B. Ortega, and A. Martinez, “WDM-SSB generation and dispersion mitigation in radio over fiber systems with improved performance using an AWG multiplexer with flat top resonances,” in International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 39-42.
  29. J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33, 1170-1171 (1997).
    [CrossRef]
  30. V. Polo, J. Marti, F. Ramos, and D. Moodie, “Mitigation of chromatic dispersion effects employing electroabsorption modulator-based transmitters,” IEEE Photon. Technol. Lett. 7, 883-885 (1999).
  31. J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, and E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168-1169 (1994).
    [CrossRef]
  32. U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech. 44, 1716-1724 (1996).
    [CrossRef]
  33. R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microwave Theory Tech. 43, 2263-2269 (1995).
    [CrossRef]
  34. F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett. 10, 1473-1475 (1998).
    [CrossRef]
  35. F. Ramos, J. Marti, and V. Polo, “Compensation of chromatic dispersion effects in microwave/millimeter-wave optical systems using four-wave-mixing induced in dispersion-shifted fibers,” IEEE Photon. Technol. Lett. 11, 1171-1173 (1999).
    [CrossRef]
  36. P. C. Won, W. Zhang, and J. A. R. Williams, “Self-phase modulation dependent dispersion mitigation in high power SSB and DSB + dispersion compensated modulated radio-over-fiber links,” IEEE MTT-S International Microwave Symposium Digest (IEEE, 2006), pp. 1947-1950.
  37. J. Marti and F. Ramos, “Compensation for dispersion-induced nonlinear distortion in subcarrier systems using optical-phase conjugation,” Electron. Lett. 33, 792-794 (1997).
    [CrossRef]
  38. E. Vergnol, D. Tanguy, J. F. Cadiou, A. Carenco, and E. Penard, “Multi-carrier and m-QAM modulation based on integrated single side band lighwave source,” in Optical Fiber Communication Conference (Optical Society of America, 1999), pp. 224-226.
  39. G. H. Smith and D. Novak, “Broadband millimeter-wave fiber-radio network incorporating remote up/downconversion,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1998), pp. 1509-1512.
  40. P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Experimental demonstration of digitized RF transport over optical fiber links,” in International Topical Meeting on Microwave Photonics, 2008. Jointly Held with the 2008 Asia-Pacific Microwave Photonics Conference. MWP/APMP 2008 (IEEE, 2008), pp. 15-18.
  41. J. Ma, J. Yu, C. Yu, X. Xin, J. Zeng, and L. Chen, “Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation,” J. Lightwave Technol. 25, 3244-3256 (2007).
  42. J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulator,” IEEE Photon. Technol. Lett. 18, 265-267 (2006).
    [CrossRef]
  43. L. T. Nichols and R. D. Esman, “Single sideband modulation techniques and applications,” in Optical Fiber Communication Conference (Optical Society of America, 1999), pp. 332-334.
  44. C. Lim, K. L. Lee, A. Nirmalathas, D. Novak, and R. Waterhouse, “Impact of chromatic dispersion on 60 GHz radio-over-fiber transmission,” 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2008), pp. 89-90.
  45. C. Lim, A. Nirmalathas, D. Novak, and R. Waterhouse, “Impact of ASE on phase noise in LMDS incorporating optical fibre backbones,” in International Topical Meeting on Microwave Photonics (IEEE, 2000), pp. 148-151.
  46. C. G. Schaffer, F. H. Lubeck, R. P. Braun, G. Grosskopf, and F. Schmidt, “Compensation of fiber dispersion in an optical mm-wave system in the 60 GHz-band,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1998), pp. 1529-1532.
  47. C. G. Schaffer, M. Sauer, K. Kojucharow, and H. Kaluzni, “Increasing the channel number in WDM mm-wave systems by spectral overlap,” in International Topical Meeting on Microwave Photonics (IEEE, 2000), pp. 164-167.
  48. C. Lim, A. Nirmalathas, D. Novak, R. S. Tucker, and R. B. Waterhouse, “Technique for increasing optical spectral efficiency in millimeter-wave WDM fiber-radio,” Electron. Lett. 37, 1043-1045 (2001).
    [CrossRef]
  49. H. Toda, T. Yamashita, K.-I. Kitayama, and T. Kuri, “A DWDM mm-wave fiber-radio system by optical frequency interleaving for high spectral efficiency,” in International Topical Meeting on Microwave Photonics 2001 (IEEE, 2002), pp. 85-88.
  50. C. Lim, A. Nirmalathas, D. Novak, and R. B. Waterhouse, “Capacity analysis for WDM fiber-radio backbones with star-tree and ring architecture incorporating wavelength interleaving,” J. Lightwave Technol. 21, 3308-3315 (2003).
    [CrossRef]
  51. C. Marra, A. Nirmalathas, D. Novak, C. Lim, L. Reekie, J. Besley, and N. Baker, “Wavelength interleaved OADMs incorporating optimized multiple phase-shifted FBGs for fiber-radio systems,” J. Lightwave Technol. 21, 32-39 (2003).
    [CrossRef]
  52. M. Bakaul, A. Nirmalathas, and C. Lim, “Multifunctional WDM optical interface for millimeter-wave fiber-radio antenna base station,” J. Lightwave Technol. 23, 1210-1218 (2005).
    [CrossRef]
  53. M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. B. Waterhouse, “Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks” J. Lightwave Technol. 24, 3341-3352 (2006).
    [CrossRef]
  54. H. Toda, T. Yamashita, T. Kuri, and K.-I. Kitayama, “Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems,” J. Lightwave Technol. 21, 1735-1741 (2003).
    [CrossRef]
  55. P. A. Gamage, A. Nirmalathas, C. Lim, M. Bakaul, D. Novak, and R. Waterhouse, “Efficient transmission scheme for AWG-based DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett. 19, 206-208 (2007).
  56. M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 190-192 (2005).
    [CrossRef]
  57. M. Attygalle, C. Lim, and A. Nirmalathas, “Extending optical transmission distance in fiber wireless links using passive filtering in conjunction with optimized modulation,” J. Lightwave Technol. 24, 1703-1709 (2006).
    [CrossRef]
  58. D. Wake, D. Johansson, and D. G. Moodie, “Passive pico-cell--new in wireless network infrastructure,” Electron. Lett. 33, 404-406 (1997).
    [CrossRef]
  59. A. Stohr, K. Kitayama, and D. Jager, “Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector,” IEEE Trans. Microwave Theory Tech. 47, 1338-1341 (1999).
    [CrossRef]
  60. K. Kitayama, A. Stohr, T. Kuri, R. Heinzelmann, D. Jager, and Y. Takahashi, “An approach to single optical component antenna base stations for broad-band millimeter-wave fiber-radio access systems,” IEEE Trans. Microwave Theory Tech. 48, 2588-2595 (2000).
    [CrossRef]
  61. L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
    [CrossRef]
  62. J. Yu, Z. Jia, T. Wang, and G.-K. Chang, “A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett. 19, 140-142 (2007).
  63. A. Nirmalathas, D. Novak, C. Lim, and R. B. Waterhouse, “Wavelength re-use in the WDM optical interface of a millimeter-wave fiber wireless antenna base-station,” IEEE Trans. Microwave Theory Tech. 49, 2006-2012 (2001).
    [CrossRef]
  64. L. S. Fock and R. S. Tucker, “Simultaneous reduction of intensity noise and distortion in semiconductor lasers by feed-forward compensation,” Electron. Lett. 27, 1297-1299 (1991).
  65. C. Lim, A. Nirmalathas, K. L. Lee, D. Novak, and R. Waterhouse, “Intermodulation distortion improvement for fiber-radio applications incorporating OSSB+C modulation in an optical integrated access environment,” J. Lightwave Technol. 25, 1602-1612 (2007).
    [CrossRef]

2007 (6)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319-330 (2007).

T. Ismail, C.-P. Liu, J. E. Mitchell, and A. J. Seeds, “High-dynamic-range wireless-over-fiber link using feedforward linearization,” J. Lightwave Technol. 25, 3274-3282 (2007).

J. Ma, J. Yu, C. Yu, X. Xin, J. Zeng, and L. Chen, “Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation,” J. Lightwave Technol. 25, 3244-3256 (2007).

P. A. Gamage, A. Nirmalathas, C. Lim, M. Bakaul, D. Novak, and R. Waterhouse, “Efficient transmission scheme for AWG-based DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett. 19, 206-208 (2007).

J. Yu, Z. Jia, T. Wang, and G.-K. Chang, “A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett. 19, 140-142 (2007).

C. Lim, A. Nirmalathas, K. L. Lee, D. Novak, and R. Waterhouse, “Intermodulation distortion improvement for fiber-radio applications incorporating OSSB+C modulation in an optical integrated access environment,” J. Lightwave Technol. 25, 1602-1612 (2007).
[CrossRef]

2006 (7)

L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
[CrossRef]

M. Attygalle, C. Lim, and A. Nirmalathas, “Extending optical transmission distance in fiber wireless links using passive filtering in conjunction with optimized modulation,” J. Lightwave Technol. 24, 1703-1709 (2006).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. B. Waterhouse, “Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks” J. Lightwave Technol. 24, 3341-3352 (2006).
[CrossRef]

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulator,” IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18, 1726-1728 (2006).
[CrossRef]

T. Kurniawan, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Performance analysis of optimized millimeter-wave fiber radio links,” IEEE Trans. Microwave Theory Tech. 54, 921-928 (2006).

A. Seeds and K. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628-4241 (2006).
[CrossRef]

2005 (4)

S.-H. Park and Y.-W. Choi, “Significant suppression of the third intermodulation distortion in transmission system with optical feedback forward linearized transmitter,” IEEE Photon. Technol. Lett. 17, 1280-1282 (2005).

A. R. Shah and B. Jalali, “Adaptive equalisation for broadband predistortion linearisation of optical transmitters,” IEE Proc.: Optoelectron. 152, 16-32 (2005).
[CrossRef]

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 190-192 (2005).
[CrossRef]

M. Bakaul, A. Nirmalathas, and C. Lim, “Multifunctional WDM optical interface for millimeter-wave fiber-radio antenna base station,” J. Lightwave Technol. 23, 1210-1218 (2005).
[CrossRef]

2004 (1)

W. H. Chen and W. I. Way, “Multichannel single-sideband SCM/DWDM transmission systems,” J. Lightwave Technol. 7, 1679-1693 (2004).

2003 (4)

2002 (1)

E. Vourch, D. Le Berre, and D. Herve, “Lightwave single sideband wavelength self-tunable filter using InP:Fe crystal for fiber-wireless systems,” IEEE Photon. Technol. Lett. 14, 194-196 (2002).
[CrossRef]

2001 (2)

C. Lim, A. Nirmalathas, D. Novak, R. S. Tucker, and R. B. Waterhouse, “Technique for increasing optical spectral efficiency in millimeter-wave WDM fiber-radio,” Electron. Lett. 37, 1043-1045 (2001).
[CrossRef]

A. Nirmalathas, D. Novak, C. Lim, and R. B. Waterhouse, “Wavelength re-use in the WDM optical interface of a millimeter-wave fiber wireless antenna base-station,” IEEE Trans. Microwave Theory Tech. 49, 2006-2012 (2001).
[CrossRef]

2000 (2)

K. Kitayama, A. Stohr, T. Kuri, R. Heinzelmann, D. Jager, and Y. Takahashi, “An approach to single optical component antenna base stations for broad-band millimeter-wave fiber-radio access systems,” IEEE Trans. Microwave Theory Tech. 48, 2588-2595 (2000).
[CrossRef]

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36, 944-946 (2000).
[CrossRef]

1999 (3)

F. Ramos, J. Marti, and V. Polo, “Compensation of chromatic dispersion effects in microwave/millimeter-wave optical systems using four-wave-mixing induced in dispersion-shifted fibers,” IEEE Photon. Technol. Lett. 11, 1171-1173 (1999).
[CrossRef]

V. Polo, J. Marti, F. Ramos, and D. Moodie, “Mitigation of chromatic dispersion effects employing electroabsorption modulator-based transmitters,” IEEE Photon. Technol. Lett. 7, 883-885 (1999).

A. Stohr, K. Kitayama, and D. Jager, “Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector,” IEEE Trans. Microwave Theory Tech. 47, 1338-1341 (1999).
[CrossRef]

1998 (1)

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett. 10, 1473-1475 (1998).
[CrossRef]

1997 (6)

J. M. Fuster, J. Marti, and J. L. Corral, “Chromatic dispersion effects in electro-optical upconverted millimetre-wave fibre optic links,” Electron. Lett. 33, 1969-1970 (1997).
[CrossRef]

J. Marti and F. Ramos, “Compensation for dispersion-induced nonlinear distortion in subcarrier systems using optical-phase conjugation,” Electron. Lett. 33, 792-794 (1997).
[CrossRef]

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33, 1170-1171 (1997).
[CrossRef]

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33, 512-513 (1997).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74-75 (1997).
[CrossRef]

D. Wake, D. Johansson, and D. G. Moodie, “Passive pico-cell--new in wireless network infrastructure,” Electron. Lett. 33, 404-406 (1997).
[CrossRef]

1996 (2)

R. A. Griffin, P. M. Lane, and J. J. O'Reilly, “Dispersion-tolerant subcarrier data modulation of optical millimetre-wave signals,” Electron. Lett. 32, 2258-2260 (1996).
[CrossRef]

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech. 44, 1716-1724 (1996).
[CrossRef]

1995 (3)

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microwave Theory Tech. 43, 2263-2269 (1995).
[CrossRef]

R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier substraction,” IEEE Photon. Technol. Lett. 7, 218-220 (1995).
[CrossRef]

H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett. 31, 1848-1849 (1995).
[CrossRef]

1994 (3)

K. J. Williams and R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett. 30, 1965-1966 (1994).
[CrossRef]

M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links,” Electron. Lett. 30, 2157-2158 (1994).
[CrossRef]

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, and E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168-1169 (1994).
[CrossRef]

1993 (1)

K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5, 949-951 (1993).
[CrossRef]

1992 (1)

A. Djupsjobacka, “A linearization concept for integrated-optic modulators,” IEEE Photon. Technol. Lett. 4, 869-872 (1992).

1991 (2)

H. Skeie and R. Johnson, “Linearization of electro-optic modulators by a cascade coupling of phase modulating electrodes,” Proc. SPIE 1583, 153-164 (1991).
[CrossRef]

L. S. Fock and R. S. Tucker, “Simultaneous reduction of intensity noise and distortion in semiconductor lasers by feed-forward compensation,” Electron. Lett. 27, 1297-1299 (1991).

1990 (1)

S. Korotky and R. DeRidder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Commun. 8, 1377-1381 (1990).
[CrossRef]

1984 (1)

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. QE-20, 1208-1216 (1984).
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74-75 (1997).
[CrossRef]

Ambrosi, F.

Armistead, C. J.

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, and E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168-1169 (1994).
[CrossRef]

Attygalle, M.

M. Attygalle, C. Lim, and A. Nirmalathas, “Extending optical transmission distance in fiber wireless links using passive filtering in conjunction with optimized modulation,” J. Lightwave Technol. 24, 1703-1709 (2006).
[CrossRef]

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 190-192 (2005).
[CrossRef]

Bakaul, M.

Baker, N.

Besley, J.

Borgioni, V.

Braun, R. P.

C. G. Schaffer, F. H. Lubeck, R. P. Braun, G. Grosskopf, and F. Schmidt, “Compensation of fiber dispersion in an optical mm-wave system in the 60 GHz-band,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1998), pp. 1529-1532.

Cadiou, J. F.

E. Vergnol, D. Tanguy, J. F. Cadiou, A. Carenco, and E. Penard, “Multi-carrier and m-QAM modulation based on integrated single side band lighwave source,” in Optical Fiber Communication Conference (Optical Society of America, 1999), pp. 224-226.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319-330 (2007).

J. Capmany, D. Pastor, P. Munoz, S. Sales, B. Ortega, and A. Martinez, “WDM-SSB generation and dispersion mitigation in radio over fiber systems with improved performance using an AWG multiplexer with flat top resonances,” in International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 39-42.

Carenco, A.

E. Vergnol, D. Tanguy, J. F. Cadiou, A. Carenco, and E. Penard, “Multi-carrier and m-QAM modulation based on integrated single side band lighwave source,” in Optical Fiber Communication Conference (Optical Society of America, 1999), pp. 224-226.

Cassini, A.

Chang, G.-K.

J. Yu, Z. Jia, T. Wang, and G.-K. Chang, “A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett. 19, 140-142 (2007).

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulator,” IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18, 1726-1728 (2006).
[CrossRef]

Charczenko, W.

M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links,” Electron. Lett. 30, 2157-2158 (1994).
[CrossRef]

Charlet, G.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36, 944-946 (2000).
[CrossRef]

Chazelas, J.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36, 944-946 (2000).
[CrossRef]

Chen, L.

J. Ma, J. Yu, C. Yu, X. Xin, J. Zeng, and L. Chen, “Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation,” J. Lightwave Technol. 25, 3244-3256 (2007).

L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
[CrossRef]

Chen, W. H.

W. H. Chen and W. I. Way, “Multichannel single-sideband SCM/DWDM transmission systems,” J. Lightwave Technol. 7, 1679-1693 (2004).

Choi, Y.-W.

S.-H. Park and Y.-W. Choi, “Significant suppression of the third intermodulation distortion in transmission system with optical feedback forward linearized transmitter,” IEEE Photon. Technol. Lett. 17, 1280-1282 (2005).

Comez, M.

Corral, J. L.

J. M. Fuster, J. Marti, and J. L. Corral, “Chromatic dispersion effects in electro-optical upconverted millimetre-wave fibre optic links,” Electron. Lett. 33, 1969-1970 (1997).
[CrossRef]

DeRidder, R.

S. Korotky and R. DeRidder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Commun. 8, 1377-1381 (1990).
[CrossRef]

Djupsjobacka, A.

A. Djupsjobacka, “A linearization concept for integrated-optic modulators,” IEEE Photon. Technol. Lett. 4, 869-872 (1992).

Dolfi, D.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36, 944-946 (2000).
[CrossRef]

Edvell, G.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 190-192 (2005).
[CrossRef]

Esman, R. D.

R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier substraction,” IEEE Photon. Technol. Lett. 7, 218-220 (1995).
[CrossRef]

K. J. Williams and R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett. 30, 1965-1966 (1994).
[CrossRef]

L. T. Nichols and R. D. Esman, “Single sideband modulation techniques and applications,” in Optical Fiber Communication Conference (Optical Society of America, 1999), pp. 332-334.

Faccin, P.

Fells, J. A. J.

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, and E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168-1169 (1994).
[CrossRef]

Fock, L. S.

L. S. Fock and R. S. Tucker, “Simultaneous reduction of intensity noise and distortion in semiconductor lasers by feed-forward compensation,” Electron. Lett. 27, 1297-1299 (1991).

Fuster, J. M.

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett. 10, 1473-1475 (1998).
[CrossRef]

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33, 1170-1171 (1997).
[CrossRef]

J. M. Fuster, J. Marti, and J. L. Corral, “Chromatic dispersion effects in electro-optical upconverted millimetre-wave fibre optic links,” Electron. Lett. 33, 1969-1970 (1997).
[CrossRef]

Gamage, P.

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Experimental demonstration of digitized RF transport over optical fiber links,” in International Topical Meeting on Microwave Photonics, 2008. Jointly Held with the 2008 Asia-Pacific Microwave Photonics Conference. MWP/APMP 2008 (IEEE, 2008), pp. 15-18.

Gamage, P. A.

P. A. Gamage, A. Nirmalathas, C. Lim, M. Bakaul, D. Novak, and R. Waterhouse, “Efficient transmission scheme for AWG-based DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett. 19, 206-208 (2007).

Gibbon, M. A.

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, and E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168-1169 (1994).
[CrossRef]

Gliese, U.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech. 44, 1716-1724 (1996).
[CrossRef]

Griffin, R. A.

R. A. Griffin, P. M. Lane, and J. J. O'Reilly, “Dispersion-tolerant subcarrier data modulation of optical millimetre-wave signals,” Electron. Lett. 32, 2258-2260 (1996).
[CrossRef]

Grosskopf, G.

C. G. Schaffer, F. H. Lubeck, R. P. Braun, G. Grosskopf, and F. Schmidt, “Compensation of fiber dispersion in an optical mm-wave system in the 60 GHz-band,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1998), pp. 1529-1532.

Hamilton, M. C.

M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links,” Electron. Lett. 30, 2157-2158 (1994).
[CrossRef]

Han, S. K.

S. H. Lee, J. M. Kang, Y. Y. Won, H. C. Kwon, and S. K. Han, “Linearization of RoF optical source by using light-injected gain modulation,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 265-268.

Heidemann, R.

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microwave Theory Tech. 43, 2263-2269 (1995).
[CrossRef]

Heinzelmann, R.

K. Kitayama, A. Stohr, T. Kuri, R. Heinzelmann, D. Jager, and Y. Takahashi, “An approach to single optical component antenna base stations for broad-band millimeter-wave fiber-radio access systems,” IEEE Trans. Microwave Theory Tech. 48, 2588-2595 (2000).
[CrossRef]

Herve, D.

E. Vourch, D. Le Berre, and D. Herve, “Lightwave single sideband wavelength self-tunable filter using InP:Fe crystal for fiber-wireless systems,” IEEE Photon. Technol. Lett. 14, 194-196 (2002).
[CrossRef]

Hofstetter, R.

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microwave Theory Tech. 43, 2263-2269 (1995).
[CrossRef]

Huignard, J.-P.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36, 944-946 (2000).
[CrossRef]

Ismail, T.

Jager, D.

K. Kitayama, A. Stohr, T. Kuri, R. Heinzelmann, D. Jager, and Y. Takahashi, “An approach to single optical component antenna base stations for broad-band millimeter-wave fiber-radio access systems,” IEEE Trans. Microwave Theory Tech. 48, 2588-2595 (2000).
[CrossRef]

A. Stohr, K. Kitayama, and D. Jager, “Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector,” IEEE Trans. Microwave Theory Tech. 47, 1338-1341 (1999).
[CrossRef]

Jalali, B.

A. R. Shah and B. Jalali, “Adaptive equalisation for broadband predistortion linearisation of optical transmitters,” IEE Proc.: Optoelectron. 152, 16-32 (2005).
[CrossRef]

Jia, Z.

J. Yu, Z. Jia, T. Wang, and G.-K. Chang, “A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett. 19, 140-142 (2007).

Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18, 1726-1728 (2006).
[CrossRef]

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulator,” IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Johansson, D.

D. Wake, D. Johansson, and D. G. Moodie, “Passive pico-cell--new in wireless network infrastructure,” Electron. Lett. 33, 404-406 (1997).
[CrossRef]

Johnson, R.

H. Skeie and R. Johnson, “Linearization of electro-optic modulators by a cascade coupling of phase modulating electrodes,” Proc. SPIE 1583, 153-164 (1991).
[CrossRef]

Kaluzni, H.

C. G. Schaffer, M. Sauer, K. Kojucharow, and H. Kaluzni, “Increasing the channel number in WDM mm-wave systems by spectral overlap,” in International Topical Meeting on Microwave Photonics (IEEE, 2000), pp. 164-167.

Kang, J. M.

S. H. Lee, J. M. Kang, Y. Y. Won, H. C. Kwon, and S. K. Han, “Linearization of RoF optical source by using light-injected gain modulation,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 265-268.

Kimber, E. M.

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, and E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168-1169 (1994).
[CrossRef]

Kitayama, K.

K. Kitayama, A. Stohr, T. Kuri, R. Heinzelmann, D. Jager, and Y. Takahashi, “An approach to single optical component antenna base stations for broad-band millimeter-wave fiber-radio access systems,” IEEE Trans. Microwave Theory Tech. 48, 2588-2595 (2000).
[CrossRef]

A. Stohr, K. Kitayama, and D. Jager, “Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector,” IEEE Trans. Microwave Theory Tech. 47, 1338-1341 (1999).
[CrossRef]

H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, “25-GHz channel spacing DWDM multiplexing using an arrayed waveguide grating for 60-GHz band radio-on-fiber systems,” in International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 287-290.

Kitayama, K.-I.

H. Toda, T. Yamashita, T. Kuri, and K.-I. Kitayama, “Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems,” J. Lightwave Technol. 21, 1735-1741 (2003).
[CrossRef]

H. Toda, T. Yamashita, K.-I. Kitayama, and T. Kuri, “A DWDM mm-wave fiber-radio system by optical frequency interleaving for high spectral efficiency,” in International Topical Meeting on Microwave Photonics 2001 (IEEE, 2002), pp. 85-88.

Kojucharow, K.

C. G. Schaffer, M. Sauer, K. Kojucharow, and H. Kaluzni, “Increasing the channel number in WDM mm-wave systems by spectral overlap,” in International Topical Meeting on Microwave Photonics (IEEE, 2000), pp. 164-167.

Korotky, S.

S. Korotky and R. DeRidder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Commun. 8, 1377-1381 (1990).
[CrossRef]

Kuri, T.

H. Toda, T. Yamashita, T. Kuri, and K.-I. Kitayama, “Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems,” J. Lightwave Technol. 21, 1735-1741 (2003).
[CrossRef]

K. Kitayama, A. Stohr, T. Kuri, R. Heinzelmann, D. Jager, and Y. Takahashi, “An approach to single optical component antenna base stations for broad-band millimeter-wave fiber-radio access systems,” IEEE Trans. Microwave Theory Tech. 48, 2588-2595 (2000).
[CrossRef]

H. Toda, T. Yamashita, K.-I. Kitayama, and T. Kuri, “A DWDM mm-wave fiber-radio system by optical frequency interleaving for high spectral efficiency,” in International Topical Meeting on Microwave Photonics 2001 (IEEE, 2002), pp. 85-88.

H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, “25-GHz channel spacing DWDM multiplexing using an arrayed waveguide grating for 60-GHz band radio-on-fiber systems,” in International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 287-290.

Kurniawan, T.

T. Kurniawan, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Performance analysis of optimized millimeter-wave fiber radio links,” IEEE Trans. Microwave Theory Tech. 54, 921-928 (2006).

Kwon, H. C.

S. H. Lee, J. M. Kang, Y. Y. Won, H. C. Kwon, and S. K. Han, “Linearization of RoF optical source by using light-injected gain modulation,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 265-268.

LaGasse, M. J.

M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links,” Electron. Lett. 30, 2157-2158 (1994).
[CrossRef]

Laming, R. I.

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33, 1170-1171 (1997).
[CrossRef]

Lane, P. M.

R. A. Griffin, P. M. Lane, and J. J. O'Reilly, “Dispersion-tolerant subcarrier data modulation of optical millimetre-wave signals,” Electron. Lett. 32, 2258-2260 (1996).
[CrossRef]

Lau, K. Y.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33, 512-513 (1997).
[CrossRef]

Le Berre, D.

E. Vourch, D. Le Berre, and D. Herve, “Lightwave single sideband wavelength self-tunable filter using InP:Fe crystal for fiber-wireless systems,” IEEE Photon. Technol. Lett. 14, 194-196 (2002).
[CrossRef]

Lee, K. L.

C. Lim, A. Nirmalathas, K. L. Lee, D. Novak, and R. Waterhouse, “Intermodulation distortion improvement for fiber-radio applications incorporating OSSB+C modulation in an optical integrated access environment,” J. Lightwave Technol. 25, 1602-1612 (2007).
[CrossRef]

C. Lim, K. L. Lee, A. Nirmalathas, D. Novak, and R. Waterhouse, “Impact of chromatic dispersion on 60 GHz radio-over-fiber transmission,” 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2008), pp. 89-90.

Lee, S. H.

S. H. Lee, J. M. Kang, Y. Y. Won, H. C. Kwon, and S. K. Han, “Linearization of RoF optical source by using light-injected gain modulation,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 265-268.

Lim, C.

P. A. Gamage, A. Nirmalathas, C. Lim, M. Bakaul, D. Novak, and R. Waterhouse, “Efficient transmission scheme for AWG-based DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett. 19, 206-208 (2007).

C. Lim, A. Nirmalathas, K. L. Lee, D. Novak, and R. Waterhouse, “Intermodulation distortion improvement for fiber-radio applications incorporating OSSB+C modulation in an optical integrated access environment,” J. Lightwave Technol. 25, 1602-1612 (2007).
[CrossRef]

M. Attygalle, C. Lim, and A. Nirmalathas, “Extending optical transmission distance in fiber wireless links using passive filtering in conjunction with optimized modulation,” J. Lightwave Technol. 24, 1703-1709 (2006).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. B. Waterhouse, “Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks” J. Lightwave Technol. 24, 3341-3352 (2006).
[CrossRef]

T. Kurniawan, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Performance analysis of optimized millimeter-wave fiber radio links,” IEEE Trans. Microwave Theory Tech. 54, 921-928 (2006).

M. Bakaul, A. Nirmalathas, and C. Lim, “Multifunctional WDM optical interface for millimeter-wave fiber-radio antenna base station,” J. Lightwave Technol. 23, 1210-1218 (2005).
[CrossRef]

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 190-192 (2005).
[CrossRef]

C. Marra, A. Nirmalathas, D. Novak, C. Lim, L. Reekie, J. Besley, and N. Baker, “Wavelength interleaved OADMs incorporating optimized multiple phase-shifted FBGs for fiber-radio systems,” J. Lightwave Technol. 21, 32-39 (2003).
[CrossRef]

C. Lim, A. Nirmalathas, D. Novak, and R. B. Waterhouse, “Capacity analysis for WDM fiber-radio backbones with star-tree and ring architecture incorporating wavelength interleaving,” J. Lightwave Technol. 21, 3308-3315 (2003).
[CrossRef]

C. Lim, A. Nirmalathas, D. Novak, R. S. Tucker, and R. B. Waterhouse, “Technique for increasing optical spectral efficiency in millimeter-wave WDM fiber-radio,” Electron. Lett. 37, 1043-1045 (2001).
[CrossRef]

A. Nirmalathas, D. Novak, C. Lim, and R. B. Waterhouse, “Wavelength re-use in the WDM optical interface of a millimeter-wave fiber wireless antenna base-station,” IEEE Trans. Microwave Theory Tech. 49, 2006-2012 (2001).
[CrossRef]

C. Lim, K. L. Lee, A. Nirmalathas, D. Novak, and R. Waterhouse, “Impact of chromatic dispersion on 60 GHz radio-over-fiber transmission,” 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2008), pp. 89-90.

C. Lim, A. Nirmalathas, D. Novak, and R. Waterhouse, “Impact of ASE on phase noise in LMDS incorporating optical fibre backbones,” in International Topical Meeting on Microwave Photonics (IEEE, 2000), pp. 148-151.

A. Nirmalathas, C. Lim, D. Novak, and R. B. Waterhouse, “Progress in millimeter-wave fiber-radio access networks,” in Millimeter Waves in Communication Systems, Innovative Technology Series Information Systems and Networks, M.Ney, ed. (Hermes Penton Science Ltd., 2003), pp. 43-67.

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Experimental demonstration of digitized RF transport over optical fiber links,” in International Topical Meeting on Microwave Photonics, 2008. Jointly Held with the 2008 Asia-Pacific Microwave Photonics Conference. MWP/APMP 2008 (IEEE, 2008), pp. 15-18.

Liu, C.-P.

Lubeck, F. H.

C. G. Schaffer, F. H. Lubeck, R. P. Braun, G. Grosskopf, and F. Schmidt, “Compensation of fiber dispersion in an optical mm-wave system in the 60 GHz-band,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1998), pp. 1529-1532.

Ma, J.

Marra, C.

Marti, J.

F. Ramos, J. Marti, and V. Polo, “Compensation of chromatic dispersion effects in microwave/millimeter-wave optical systems using four-wave-mixing induced in dispersion-shifted fibers,” IEEE Photon. Technol. Lett. 11, 1171-1173 (1999).
[CrossRef]

V. Polo, J. Marti, F. Ramos, and D. Moodie, “Mitigation of chromatic dispersion effects employing electroabsorption modulator-based transmitters,” IEEE Photon. Technol. Lett. 7, 883-885 (1999).

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett. 10, 1473-1475 (1998).
[CrossRef]

J. Marti and F. Ramos, “Compensation for dispersion-induced nonlinear distortion in subcarrier systems using optical-phase conjugation,” Electron. Lett. 33, 792-794 (1997).
[CrossRef]

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33, 1170-1171 (1997).
[CrossRef]

J. M. Fuster, J. Marti, and J. L. Corral, “Chromatic dispersion effects in electro-optical upconverted millimetre-wave fibre optic links,” Electron. Lett. 33, 1969-1970 (1997).
[CrossRef]

Martinez, A.

J. Capmany, D. Pastor, P. Munoz, S. Sales, B. Ortega, and A. Martinez, “WDM-SSB generation and dispersion mitigation in radio over fiber systems with improved performance using an AWG multiplexer with flat top resonances,” in International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 39-42.

Meslener, G. J.

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. QE-20, 1208-1216 (1984).
[CrossRef]

Mitchell, J. E.

Moodie, D.

V. Polo, J. Marti, F. Ramos, and D. Moodie, “Mitigation of chromatic dispersion effects employing electroabsorption modulator-based transmitters,” IEEE Photon. Technol. Lett. 7, 883-885 (1999).

Moodie, D. G.

D. Wake, D. Johansson, and D. G. Moodie, “Passive pico-cell--new in wireless network infrastructure,” Electron. Lett. 33, 404-406 (1997).
[CrossRef]

Moule, D. J.

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, and E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168-1169 (1994).
[CrossRef]

Munoz, P.

J. Capmany, D. Pastor, P. Munoz, S. Sales, B. Ortega, and A. Martinez, “WDM-SSB generation and dispersion mitigation in radio over fiber systems with improved performance using an AWG multiplexer with flat top resonances,” in International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 39-42.

Nichols, L. T.

L. T. Nichols and R. D. Esman, “Single sideband modulation techniques and applications,” in Optical Fiber Communication Conference (Optical Society of America, 1999), pp. 332-334.

Nielsen, T. N.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech. 44, 1716-1724 (1996).
[CrossRef]

Nirmalathas, A.

P. A. Gamage, A. Nirmalathas, C. Lim, M. Bakaul, D. Novak, and R. Waterhouse, “Efficient transmission scheme for AWG-based DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett. 19, 206-208 (2007).

C. Lim, A. Nirmalathas, K. L. Lee, D. Novak, and R. Waterhouse, “Intermodulation distortion improvement for fiber-radio applications incorporating OSSB+C modulation in an optical integrated access environment,” J. Lightwave Technol. 25, 1602-1612 (2007).
[CrossRef]

M. Attygalle, C. Lim, and A. Nirmalathas, “Extending optical transmission distance in fiber wireless links using passive filtering in conjunction with optimized modulation,” J. Lightwave Technol. 24, 1703-1709 (2006).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. B. Waterhouse, “Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks” J. Lightwave Technol. 24, 3341-3352 (2006).
[CrossRef]

T. Kurniawan, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Performance analysis of optimized millimeter-wave fiber radio links,” IEEE Trans. Microwave Theory Tech. 54, 921-928 (2006).

M. Bakaul, A. Nirmalathas, and C. Lim, “Multifunctional WDM optical interface for millimeter-wave fiber-radio antenna base station,” J. Lightwave Technol. 23, 1210-1218 (2005).
[CrossRef]

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 190-192 (2005).
[CrossRef]

C. Marra, A. Nirmalathas, D. Novak, C. Lim, L. Reekie, J. Besley, and N. Baker, “Wavelength interleaved OADMs incorporating optimized multiple phase-shifted FBGs for fiber-radio systems,” J. Lightwave Technol. 21, 32-39 (2003).
[CrossRef]

C. Lim, A. Nirmalathas, D. Novak, and R. B. Waterhouse, “Capacity analysis for WDM fiber-radio backbones with star-tree and ring architecture incorporating wavelength interleaving,” J. Lightwave Technol. 21, 3308-3315 (2003).
[CrossRef]

C. Lim, A. Nirmalathas, D. Novak, R. S. Tucker, and R. B. Waterhouse, “Technique for increasing optical spectral efficiency in millimeter-wave WDM fiber-radio,” Electron. Lett. 37, 1043-1045 (2001).
[CrossRef]

A. Nirmalathas, D. Novak, C. Lim, and R. B. Waterhouse, “Wavelength re-use in the WDM optical interface of a millimeter-wave fiber wireless antenna base-station,” IEEE Trans. Microwave Theory Tech. 49, 2006-2012 (2001).
[CrossRef]

C. Lim, K. L. Lee, A. Nirmalathas, D. Novak, and R. Waterhouse, “Impact of chromatic dispersion on 60 GHz radio-over-fiber transmission,” 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2008), pp. 89-90.

C. Lim, A. Nirmalathas, D. Novak, and R. Waterhouse, “Impact of ASE on phase noise in LMDS incorporating optical fibre backbones,” in International Topical Meeting on Microwave Photonics (IEEE, 2000), pp. 148-151.

A. Nirmalathas, C. Lim, D. Novak, and R. B. Waterhouse, “Progress in millimeter-wave fiber-radio access networks,” in Millimeter Waves in Communication Systems, Innovative Technology Series Information Systems and Networks, M.Ney, ed. (Hermes Penton Science Ltd., 2003), pp. 43-67.

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Experimental demonstration of digitized RF transport over optical fiber links,” in International Topical Meeting on Microwave Photonics, 2008. Jointly Held with the 2008 Asia-Pacific Microwave Photonics Conference. MWP/APMP 2008 (IEEE, 2008), pp. 15-18.

Norskov, S.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech. 44, 1716-1724 (1996).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319-330 (2007).

P. A. Gamage, A. Nirmalathas, C. Lim, M. Bakaul, D. Novak, and R. Waterhouse, “Efficient transmission scheme for AWG-based DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett. 19, 206-208 (2007).

C. Lim, A. Nirmalathas, K. L. Lee, D. Novak, and R. Waterhouse, “Intermodulation distortion improvement for fiber-radio applications incorporating OSSB+C modulation in an optical integrated access environment,” J. Lightwave Technol. 25, 1602-1612 (2007).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. B. Waterhouse, “Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks” J. Lightwave Technol. 24, 3341-3352 (2006).
[CrossRef]

T. Kurniawan, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Performance analysis of optimized millimeter-wave fiber radio links,” IEEE Trans. Microwave Theory Tech. 54, 921-928 (2006).

C. Lim, A. Nirmalathas, D. Novak, and R. B. Waterhouse, “Capacity analysis for WDM fiber-radio backbones with star-tree and ring architecture incorporating wavelength interleaving,” J. Lightwave Technol. 21, 3308-3315 (2003).
[CrossRef]

C. Marra, A. Nirmalathas, D. Novak, C. Lim, L. Reekie, J. Besley, and N. Baker, “Wavelength interleaved OADMs incorporating optimized multiple phase-shifted FBGs for fiber-radio systems,” J. Lightwave Technol. 21, 32-39 (2003).
[CrossRef]

C. Lim, A. Nirmalathas, D. Novak, R. S. Tucker, and R. B. Waterhouse, “Technique for increasing optical spectral efficiency in millimeter-wave WDM fiber-radio,” Electron. Lett. 37, 1043-1045 (2001).
[CrossRef]

A. Nirmalathas, D. Novak, C. Lim, and R. B. Waterhouse, “Wavelength re-use in the WDM optical interface of a millimeter-wave fiber wireless antenna base-station,” IEEE Trans. Microwave Theory Tech. 49, 2006-2012 (2001).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74-75 (1997).
[CrossRef]

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Experimental demonstration of digitized RF transport over optical fiber links,” in International Topical Meeting on Microwave Photonics, 2008. Jointly Held with the 2008 Asia-Pacific Microwave Photonics Conference. MWP/APMP 2008 (IEEE, 2008), pp. 15-18.

G. H. Smith and D. Novak, “Broadband millimeter-wave fiber-radio network incorporating remote up/downconversion,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1998), pp. 1509-1512.

A. Nirmalathas, C. Lim, D. Novak, and R. B. Waterhouse, “Progress in millimeter-wave fiber-radio access networks,” in Millimeter Waves in Communication Systems, Innovative Technology Series Information Systems and Networks, M.Ney, ed. (Hermes Penton Science Ltd., 2003), pp. 43-67.

C. Lim, A. Nirmalathas, D. Novak, and R. Waterhouse, “Impact of ASE on phase noise in LMDS incorporating optical fibre backbones,” in International Topical Meeting on Microwave Photonics (IEEE, 2000), pp. 148-151.

C. Lim, K. L. Lee, A. Nirmalathas, D. Novak, and R. Waterhouse, “Impact of chromatic dispersion on 60 GHz radio-over-fiber transmission,” 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2008), pp. 89-90.

O'Reilly, J. J.

R. A. Griffin, P. M. Lane, and J. J. O'Reilly, “Dispersion-tolerant subcarrier data modulation of optical millimetre-wave signals,” Electron. Lett. 32, 2258-2260 (1996).
[CrossRef]

Ortega, B.

J. Capmany, D. Pastor, P. Munoz, S. Sales, B. Ortega, and A. Martinez, “WDM-SSB generation and dispersion mitigation in radio over fiber systems with improved performance using an AWG multiplexer with flat top resonances,” in International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 39-42.

Park, J.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33, 512-513 (1997).
[CrossRef]

Park, S.-H.

S.-H. Park and Y.-W. Choi, “Significant suppression of the third intermodulation distortion in transmission system with optical feedback forward linearized transmitter,” IEEE Photon. Technol. Lett. 17, 1280-1282 (2005).

Pastor, D.

J. Capmany, D. Pastor, P. Munoz, S. Sales, B. Ortega, and A. Martinez, “WDM-SSB generation and dispersion mitigation in radio over fiber systems with improved performance using an AWG multiplexer with flat top resonances,” in International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 39-42.

Penard, E.

E. Vergnol, D. Tanguy, J. F. Cadiou, A. Carenco, and E. Penard, “Multi-carrier and m-QAM modulation based on integrated single side band lighwave source,” in Optical Fiber Communication Conference (Optical Society of America, 1999), pp. 224-226.

Pendock, G. J.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 190-192 (2005).
[CrossRef]

Penty, R. V.

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, and E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168-1169 (1994).
[CrossRef]

Polo, V.

V. Polo, J. Marti, F. Ramos, and D. Moodie, “Mitigation of chromatic dispersion effects employing electroabsorption modulator-based transmitters,” IEEE Photon. Technol. Lett. 7, 883-885 (1999).

F. Ramos, J. Marti, and V. Polo, “Compensation of chromatic dispersion effects in microwave/millimeter-wave optical systems using four-wave-mixing induced in dispersion-shifted fibers,” IEEE Photon. Technol. Lett. 11, 1171-1173 (1999).
[CrossRef]

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett. 10, 1473-1475 (1998).
[CrossRef]

Ramos, F.

F. Ramos, J. Marti, and V. Polo, “Compensation of chromatic dispersion effects in microwave/millimeter-wave optical systems using four-wave-mixing induced in dispersion-shifted fibers,” IEEE Photon. Technol. Lett. 11, 1171-1173 (1999).
[CrossRef]

V. Polo, J. Marti, F. Ramos, and D. Moodie, “Mitigation of chromatic dispersion effects employing electroabsorption modulator-based transmitters,” IEEE Photon. Technol. Lett. 7, 883-885 (1999).

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett. 10, 1473-1475 (1998).
[CrossRef]

J. Marti and F. Ramos, “Compensation for dispersion-induced nonlinear distortion in subcarrier systems using optical-phase conjugation,” Electron. Lett. 33, 792-794 (1997).
[CrossRef]

Reekie, L.

Roselli, L.

Sales, S.

J. Capmany, D. Pastor, P. Munoz, S. Sales, B. Ortega, and A. Martinez, “WDM-SSB generation and dispersion mitigation in radio over fiber systems with improved performance using an AWG multiplexer with flat top resonances,” in International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 39-42.

Sauer, M.

C. G. Schaffer, M. Sauer, K. Kojucharow, and H. Kaluzni, “Increasing the channel number in WDM mm-wave systems by spectral overlap,” in International Topical Meeting on Microwave Photonics (IEEE, 2000), pp. 164-167.

Schaffer, C. G.

C. G. Schaffer, M. Sauer, K. Kojucharow, and H. Kaluzni, “Increasing the channel number in WDM mm-wave systems by spectral overlap,” in International Topical Meeting on Microwave Photonics (IEEE, 2000), pp. 164-167.

C. G. Schaffer, F. H. Lubeck, R. P. Braun, G. Grosskopf, and F. Schmidt, “Compensation of fiber dispersion in an optical mm-wave system in the 60 GHz-band,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1998), pp. 1529-1532.

Schmidt, F.

C. G. Schaffer, F. H. Lubeck, R. P. Braun, G. Grosskopf, and F. Schmidt, “Compensation of fiber dispersion in an optical mm-wave system in the 60 GHz-band,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1998), pp. 1529-1532.

Schmuck, H.

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microwave Theory Tech. 43, 2263-2269 (1995).
[CrossRef]

H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett. 31, 1848-1849 (1995).
[CrossRef]

Seeds, A.

Seeds, A. J.

Shah, A. R.

A. R. Shah and B. Jalali, “Adaptive equalisation for broadband predistortion linearisation of optical transmitters,” IEE Proc.: Optoelectron. 152, 16-32 (2005).
[CrossRef]

Skeie, H.

H. Skeie and R. Johnson, “Linearization of electro-optic modulators by a cascade coupling of phase modulating electrodes,” Proc. SPIE 1583, 153-164 (1991).
[CrossRef]

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74-75 (1997).
[CrossRef]

G. H. Smith and D. Novak, “Broadband millimeter-wave fiber-radio network incorporating remote up/downconversion,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1998), pp. 1509-1512.

Sorin, W. V.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33, 512-513 (1997).
[CrossRef]

Stohr, A.

K. Kitayama, A. Stohr, T. Kuri, R. Heinzelmann, D. Jager, and Y. Takahashi, “An approach to single optical component antenna base stations for broad-band millimeter-wave fiber-radio access systems,” IEEE Trans. Microwave Theory Tech. 48, 2588-2595 (2000).
[CrossRef]

A. Stohr, K. Kitayama, and D. Jager, “Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector,” IEEE Trans. Microwave Theory Tech. 47, 1338-1341 (1999).
[CrossRef]

Su, Y.

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulator,” IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Takachio, N.

K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5, 949-951 (1993).
[CrossRef]

Takahashi, Y.

K. Kitayama, A. Stohr, T. Kuri, R. Heinzelmann, D. Jager, and Y. Takahashi, “An approach to single optical component antenna base stations for broad-band millimeter-wave fiber-radio access systems,” IEEE Trans. Microwave Theory Tech. 48, 2588-2595 (2000).
[CrossRef]

Tanguy, D.

E. Vergnol, D. Tanguy, J. F. Cadiou, A. Carenco, and E. Penard, “Multi-carrier and m-QAM modulation based on integrated single side band lighwave source,” in Optical Fiber Communication Conference (Optical Society of America, 1999), pp. 224-226.

Thaniyavarn, S.

M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links,” Electron. Lett. 30, 2157-2158 (1994).
[CrossRef]

Thompson, G. H. B.

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, and E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168-1169 (1994).
[CrossRef]

Thrush, E. J.

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, and E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168-1169 (1994).
[CrossRef]

Toda, H.

H. Toda, T. Yamashita, T. Kuri, and K.-I. Kitayama, “Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems,” J. Lightwave Technol. 21, 1735-1741 (2003).
[CrossRef]

H. Toda, T. Yamashita, K.-I. Kitayama, and T. Kuri, “A DWDM mm-wave fiber-radio system by optical frequency interleaving for high spectral efficiency,” in International Topical Meeting on Microwave Photonics 2001 (IEEE, 2002), pp. 85-88.

H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, “25-GHz channel spacing DWDM multiplexing using an arrayed waveguide grating for 60-GHz band radio-on-fiber systems,” in International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 287-290.

Tonda-Goldstein, S.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36, 944-946 (2000).
[CrossRef]

Tucker, R. S.

C. Lim, A. Nirmalathas, D. Novak, R. S. Tucker, and R. B. Waterhouse, “Technique for increasing optical spectral efficiency in millimeter-wave WDM fiber-radio,” Electron. Lett. 37, 1043-1045 (2001).
[CrossRef]

L. S. Fock and R. S. Tucker, “Simultaneous reduction of intensity noise and distortion in semiconductor lasers by feed-forward compensation,” Electron. Lett. 27, 1297-1299 (1991).

Vergnol, E.

E. Vergnol, D. Tanguy, J. F. Cadiou, A. Carenco, and E. Penard, “Multi-carrier and m-QAM modulation based on integrated single side band lighwave source,” in Optical Fiber Communication Conference (Optical Society of America, 1999), pp. 224-226.

Vourch, E.

E. Vourch, D. Le Berre, and D. Herve, “Lightwave single sideband wavelength self-tunable filter using InP:Fe crystal for fiber-wireless systems,” IEEE Photon. Technol. Lett. 14, 194-196 (2002).
[CrossRef]

Wake, D.

D. Wake, D. Johansson, and D. G. Moodie, “Passive pico-cell--new in wireless network infrastructure,” Electron. Lett. 33, 404-406 (1997).
[CrossRef]

Wang, T.

J. Yu, Z. Jia, T. Wang, and G.-K. Chang, “A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett. 19, 140-142 (2007).

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulator,” IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Waterhouse, R.

P. A. Gamage, A. Nirmalathas, C. Lim, M. Bakaul, D. Novak, and R. Waterhouse, “Efficient transmission scheme for AWG-based DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett. 19, 206-208 (2007).

C. Lim, A. Nirmalathas, K. L. Lee, D. Novak, and R. Waterhouse, “Intermodulation distortion improvement for fiber-radio applications incorporating OSSB+C modulation in an optical integrated access environment,” J. Lightwave Technol. 25, 1602-1612 (2007).
[CrossRef]

T. Kurniawan, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Performance analysis of optimized millimeter-wave fiber radio links,” IEEE Trans. Microwave Theory Tech. 54, 921-928 (2006).

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Experimental demonstration of digitized RF transport over optical fiber links,” in International Topical Meeting on Microwave Photonics, 2008. Jointly Held with the 2008 Asia-Pacific Microwave Photonics Conference. MWP/APMP 2008 (IEEE, 2008), pp. 15-18.

C. Lim, K. L. Lee, A. Nirmalathas, D. Novak, and R. Waterhouse, “Impact of chromatic dispersion on 60 GHz radio-over-fiber transmission,” 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2008), pp. 89-90.

C. Lim, A. Nirmalathas, D. Novak, and R. Waterhouse, “Impact of ASE on phase noise in LMDS incorporating optical fibre backbones,” in International Topical Meeting on Microwave Photonics (IEEE, 2000), pp. 148-151.

Waterhouse, R. B.

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. B. Waterhouse, “Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks” J. Lightwave Technol. 24, 3341-3352 (2006).
[CrossRef]

C. Lim, A. Nirmalathas, D. Novak, and R. B. Waterhouse, “Capacity analysis for WDM fiber-radio backbones with star-tree and ring architecture incorporating wavelength interleaving,” J. Lightwave Technol. 21, 3308-3315 (2003).
[CrossRef]

C. Lim, A. Nirmalathas, D. Novak, R. S. Tucker, and R. B. Waterhouse, “Technique for increasing optical spectral efficiency in millimeter-wave WDM fiber-radio,” Electron. Lett. 37, 1043-1045 (2001).
[CrossRef]

A. Nirmalathas, D. Novak, C. Lim, and R. B. Waterhouse, “Wavelength re-use in the WDM optical interface of a millimeter-wave fiber wireless antenna base-station,” IEEE Trans. Microwave Theory Tech. 49, 2006-2012 (2001).
[CrossRef]

A. Nirmalathas, C. Lim, D. Novak, and R. B. Waterhouse, “Progress in millimeter-wave fiber-radio access networks,” in Millimeter Waves in Communication Systems, Innovative Technology Series Information Systems and Networks, M.Ney, ed. (Hermes Penton Science Ltd., 2003), pp. 43-67.

Way, W. I.

W. H. Chen and W. I. Way, “Multichannel single-sideband SCM/DWDM transmission systems,” J. Lightwave Technol. 7, 1679-1693 (2004).

Wen, H.

L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
[CrossRef]

Wen, S.

L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
[CrossRef]

White, I. H.

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, and E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168-1169 (1994).
[CrossRef]

Williams, J. A. R.

P. C. Won, W. Zhang, and J. A. R. Williams, “Self-phase modulation dependent dispersion mitigation in high power SSB and DSB + dispersion compensated modulated radio-over-fiber links,” IEEE MTT-S International Microwave Symposium Digest (IEEE, 2006), pp. 1947-1950.

Williams, K.

Williams, K. J.

R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier substraction,” IEEE Photon. Technol. Lett. 7, 218-220 (1995).
[CrossRef]

K. J. Williams and R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett. 30, 1965-1966 (1994).
[CrossRef]

Won, P. C.

P. C. Won, W. Zhang, and J. A. R. Williams, “Self-phase modulation dependent dispersion mitigation in high power SSB and DSB + dispersion compensated modulated radio-over-fiber links,” IEEE MTT-S International Microwave Symposium Digest (IEEE, 2006), pp. 1947-1950.

Won, Y. Y.

S. H. Lee, J. M. Kang, Y. Y. Won, H. C. Kwon, and S. K. Han, “Linearization of RoF optical source by using light-injected gain modulation,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 265-268.

Xin, X.

Yamashita, T.

H. Toda, T. Yamashita, T. Kuri, and K.-I. Kitayama, “Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems,” J. Lightwave Technol. 21, 1735-1741 (2003).
[CrossRef]

H. Toda, T. Yamashita, K.-I. Kitayama, and T. Kuri, “A DWDM mm-wave fiber-radio system by optical frequency interleaving for high spectral efficiency,” in International Topical Meeting on Microwave Photonics 2001 (IEEE, 2002), pp. 85-88.

H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, “25-GHz channel spacing DWDM multiplexing using an arrayed waveguide grating for 60-GHz band radio-on-fiber systems,” in International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 287-290.

Yi, L.

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulator,” IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Yonenaga, K.

K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5, 949-951 (1993).
[CrossRef]

Yu, C.

Yu, J.

J. Ma, J. Yu, C. Yu, X. Xin, J. Zeng, and L. Chen, “Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation,” J. Lightwave Technol. 25, 3244-3256 (2007).

J. Yu, Z. Jia, T. Wang, and G.-K. Chang, “A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett. 19, 140-142 (2007).

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulator,” IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18, 1726-1728 (2006).
[CrossRef]

Zeng, J.

Zepparelli, F.

Zhang, W.

P. C. Won, W. Zhang, and J. A. R. Williams, “Self-phase modulation dependent dispersion mitigation in high power SSB and DSB + dispersion compensated modulated radio-over-fiber links,” IEEE MTT-S International Microwave Symposium Digest (IEEE, 2006), pp. 1947-1950.

Electron. Lett. (14)

K. J. Williams and R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett. 30, 1965-1966 (1994).
[CrossRef]

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36, 944-946 (2000).
[CrossRef]

M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links,” Electron. Lett. 30, 2157-2158 (1994).
[CrossRef]

H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett. 31, 1848-1849 (1995).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74-75 (1997).
[CrossRef]

R. A. Griffin, P. M. Lane, and J. J. O'Reilly, “Dispersion-tolerant subcarrier data modulation of optical millimetre-wave signals,” Electron. Lett. 32, 2258-2260 (1996).
[CrossRef]

J. M. Fuster, J. Marti, and J. L. Corral, “Chromatic dispersion effects in electro-optical upconverted millimetre-wave fibre optic links,” Electron. Lett. 33, 1969-1970 (1997).
[CrossRef]

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33, 512-513 (1997).
[CrossRef]

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33, 1170-1171 (1997).
[CrossRef]

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, and E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168-1169 (1994).
[CrossRef]

J. Marti and F. Ramos, “Compensation for dispersion-induced nonlinear distortion in subcarrier systems using optical-phase conjugation,” Electron. Lett. 33, 792-794 (1997).
[CrossRef]

C. Lim, A. Nirmalathas, D. Novak, R. S. Tucker, and R. B. Waterhouse, “Technique for increasing optical spectral efficiency in millimeter-wave WDM fiber-radio,” Electron. Lett. 37, 1043-1045 (2001).
[CrossRef]

D. Wake, D. Johansson, and D. G. Moodie, “Passive pico-cell--new in wireless network infrastructure,” Electron. Lett. 33, 404-406 (1997).
[CrossRef]

L. S. Fock and R. S. Tucker, “Simultaneous reduction of intensity noise and distortion in semiconductor lasers by feed-forward compensation,” Electron. Lett. 27, 1297-1299 (1991).

IEE Proc.: Optoelectron. (1)

A. R. Shah and B. Jalali, “Adaptive equalisation for broadband predistortion linearisation of optical transmitters,” IEE Proc.: Optoelectron. 152, 16-32 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. QE-20, 1208-1216 (1984).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

S. Korotky and R. DeRidder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Commun. 8, 1377-1381 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (14)

V. Polo, J. Marti, F. Ramos, and D. Moodie, “Mitigation of chromatic dispersion effects employing electroabsorption modulator-based transmitters,” IEEE Photon. Technol. Lett. 7, 883-885 (1999).

K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5, 949-951 (1993).
[CrossRef]

E. Vourch, D. Le Berre, and D. Herve, “Lightwave single sideband wavelength self-tunable filter using InP:Fe crystal for fiber-wireless systems,” IEEE Photon. Technol. Lett. 14, 194-196 (2002).
[CrossRef]

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett. 10, 1473-1475 (1998).
[CrossRef]

F. Ramos, J. Marti, and V. Polo, “Compensation of chromatic dispersion effects in microwave/millimeter-wave optical systems using four-wave-mixing induced in dispersion-shifted fibers,” IEEE Photon. Technol. Lett. 11, 1171-1173 (1999).
[CrossRef]

A. Djupsjobacka, “A linearization concept for integrated-optic modulators,” IEEE Photon. Technol. Lett. 4, 869-872 (1992).

S.-H. Park and Y.-W. Choi, “Significant suppression of the third intermodulation distortion in transmission system with optical feedback forward linearized transmitter,” IEEE Photon. Technol. Lett. 17, 1280-1282 (2005).

Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18, 1726-1728 (2006).
[CrossRef]

R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier substraction,” IEEE Photon. Technol. Lett. 7, 218-220 (1995).
[CrossRef]

J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulator,” IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

P. A. Gamage, A. Nirmalathas, C. Lim, M. Bakaul, D. Novak, and R. Waterhouse, “Efficient transmission scheme for AWG-based DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett. 19, 206-208 (2007).

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 190-192 (2005).
[CrossRef]

L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
[CrossRef]

J. Yu, Z. Jia, T. Wang, and G.-K. Chang, “A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett. 19, 140-142 (2007).

IEEE Trans. Microwave Theory Tech. (6)

A. Nirmalathas, D. Novak, C. Lim, and R. B. Waterhouse, “Wavelength re-use in the WDM optical interface of a millimeter-wave fiber wireless antenna base-station,” IEEE Trans. Microwave Theory Tech. 49, 2006-2012 (2001).
[CrossRef]

A. Stohr, K. Kitayama, and D. Jager, “Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector,” IEEE Trans. Microwave Theory Tech. 47, 1338-1341 (1999).
[CrossRef]

K. Kitayama, A. Stohr, T. Kuri, R. Heinzelmann, D. Jager, and Y. Takahashi, “An approach to single optical component antenna base stations for broad-band millimeter-wave fiber-radio access systems,” IEEE Trans. Microwave Theory Tech. 48, 2588-2595 (2000).
[CrossRef]

T. Kurniawan, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Performance analysis of optimized millimeter-wave fiber radio links,” IEEE Trans. Microwave Theory Tech. 54, 921-928 (2006).

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech. 44, 1716-1724 (1996).
[CrossRef]

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microwave Theory Tech. 43, 2263-2269 (1995).
[CrossRef]

J. Lightwave Technol. (12)

L. Roselli, V. Borgioni, F. Zepparelli, F. Ambrosi, M. Comez, P. Faccin, and A. Cassini, “Analog laser predistortion for multiservice radio-over-fiber systems,” J. Lightwave Technol. 21, 1211-1223 (2003).
[CrossRef]

W. H. Chen and W. I. Way, “Multichannel single-sideband SCM/DWDM transmission systems,” J. Lightwave Technol. 7, 1679-1693 (2004).

A. Seeds and K. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628-4241 (2006).
[CrossRef]

T. Ismail, C.-P. Liu, J. E. Mitchell, and A. J. Seeds, “High-dynamic-range wireless-over-fiber link using feedforward linearization,” J. Lightwave Technol. 25, 3274-3282 (2007).

M. Attygalle, C. Lim, and A. Nirmalathas, “Extending optical transmission distance in fiber wireless links using passive filtering in conjunction with optimized modulation,” J. Lightwave Technol. 24, 1703-1709 (2006).
[CrossRef]

C. Lim, A. Nirmalathas, D. Novak, and R. B. Waterhouse, “Capacity analysis for WDM fiber-radio backbones with star-tree and ring architecture incorporating wavelength interleaving,” J. Lightwave Technol. 21, 3308-3315 (2003).
[CrossRef]

C. Marra, A. Nirmalathas, D. Novak, C. Lim, L. Reekie, J. Besley, and N. Baker, “Wavelength interleaved OADMs incorporating optimized multiple phase-shifted FBGs for fiber-radio systems,” J. Lightwave Technol. 21, 32-39 (2003).
[CrossRef]

M. Bakaul, A. Nirmalathas, and C. Lim, “Multifunctional WDM optical interface for millimeter-wave fiber-radio antenna base station,” J. Lightwave Technol. 23, 1210-1218 (2005).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. B. Waterhouse, “Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks” J. Lightwave Technol. 24, 3341-3352 (2006).
[CrossRef]

H. Toda, T. Yamashita, T. Kuri, and K.-I. Kitayama, “Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems,” J. Lightwave Technol. 21, 1735-1741 (2003).
[CrossRef]

J. Ma, J. Yu, C. Yu, X. Xin, J. Zeng, and L. Chen, “Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation,” J. Lightwave Technol. 25, 3244-3256 (2007).

C. Lim, A. Nirmalathas, K. L. Lee, D. Novak, and R. Waterhouse, “Intermodulation distortion improvement for fiber-radio applications incorporating OSSB+C modulation in an optical integrated access environment,” J. Lightwave Technol. 25, 1602-1612 (2007).
[CrossRef]

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319-330 (2007).

Proc. SPIE (1)

H. Skeie and R. Johnson, “Linearization of electro-optic modulators by a cascade coupling of phase modulating electrodes,” Proc. SPIE 1583, 153-164 (1991).
[CrossRef]

Other (14)

S. H. Lee, J. M. Kang, Y. Y. Won, H. C. Kwon, and S. K. Han, “Linearization of RoF optical source by using light-injected gain modulation,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 265-268.

A. Nirmalathas, C. Lim, D. Novak, and R. B. Waterhouse, “Progress in millimeter-wave fiber-radio access networks,” in Millimeter Waves in Communication Systems, Innovative Technology Series Information Systems and Networks, M.Ney, ed. (Hermes Penton Science Ltd., 2003), pp. 43-67.

H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, “25-GHz channel spacing DWDM multiplexing using an arrayed waveguide grating for 60-GHz band radio-on-fiber systems,” in International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 287-290.

J. Capmany, D. Pastor, P. Munoz, S. Sales, B. Ortega, and A. Martinez, “WDM-SSB generation and dispersion mitigation in radio over fiber systems with improved performance using an AWG multiplexer with flat top resonances,” in International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 39-42.

P. C. Won, W. Zhang, and J. A. R. Williams, “Self-phase modulation dependent dispersion mitigation in high power SSB and DSB + dispersion compensated modulated radio-over-fiber links,” IEEE MTT-S International Microwave Symposium Digest (IEEE, 2006), pp. 1947-1950.

E. Vergnol, D. Tanguy, J. F. Cadiou, A. Carenco, and E. Penard, “Multi-carrier and m-QAM modulation based on integrated single side band lighwave source,” in Optical Fiber Communication Conference (Optical Society of America, 1999), pp. 224-226.

G. H. Smith and D. Novak, “Broadband millimeter-wave fiber-radio network incorporating remote up/downconversion,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1998), pp. 1509-1512.

P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Experimental demonstration of digitized RF transport over optical fiber links,” in International Topical Meeting on Microwave Photonics, 2008. Jointly Held with the 2008 Asia-Pacific Microwave Photonics Conference. MWP/APMP 2008 (IEEE, 2008), pp. 15-18.

H. Toda, T. Yamashita, K.-I. Kitayama, and T. Kuri, “A DWDM mm-wave fiber-radio system by optical frequency interleaving for high spectral efficiency,” in International Topical Meeting on Microwave Photonics 2001 (IEEE, 2002), pp. 85-88.

L. T. Nichols and R. D. Esman, “Single sideband modulation techniques and applications,” in Optical Fiber Communication Conference (Optical Society of America, 1999), pp. 332-334.

C. Lim, K. L. Lee, A. Nirmalathas, D. Novak, and R. Waterhouse, “Impact of chromatic dispersion on 60 GHz radio-over-fiber transmission,” 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2008), pp. 89-90.

C. Lim, A. Nirmalathas, D. Novak, and R. Waterhouse, “Impact of ASE on phase noise in LMDS incorporating optical fibre backbones,” in International Topical Meeting on Microwave Photonics (IEEE, 2000), pp. 148-151.

C. G. Schaffer, F. H. Lubeck, R. P. Braun, G. Grosskopf, and F. Schmidt, “Compensation of fiber dispersion in an optical mm-wave system in the 60 GHz-band,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1998), pp. 1529-1532.

C. G. Schaffer, M. Sauer, K. Kojucharow, and H. Kaluzni, “Increasing the channel number in WDM mm-wave systems by spectral overlap,” in International Topical Meeting on Microwave Photonics (IEEE, 2000), pp. 164-167.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.