Abstract

A temperature compensation technique is proposed and demonstrated for highly accurate control of the transmission wavelength of wavelength-tunable optical bandpass filters. The technique calculates wavelength error, which is caused by transient variations of the operating temperature of filter modules, by use of the theory of thermal conduction and controls the filter with an appropriate offset according to the calculated value to maintain a constant transmission wavelength. A disk-shaped wavelength-tunable filter based on a mechanical tuning mechanism is demonstrated to confirm the validity of the technique. For the filter, the transmission wavelength is controlled to an accuracy of 0.01 nm against drastic temperature variations whose maximal change rate reaches 2.5 °C∕min in the range of 20-50 °C. A filter controlled with this technique has the potential to provide high-performance channel selectors for wavelength-division-multiplex-based photonic networks, and its feasibility is confirmed by transmission experiments at 2.5 Gbit/s.

© 2004 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. K. Sato, S. Okamoto, and H. Hadama, "Network performance and integrity enhancement with optical path layer technologies," IEEE J. Sel. Areas Commun. 12, 159-170 (1994).
  2. M. Tokuhisa, Y. Chiba, H. Miwa, and S. Nogami, "Path design in photonic MPLS networks," NTT Tech. Rev. 14, 63-68 (2002).
  3. K. Shimano, A. Sahara, K. Noguchi, M. Koga, Y. Takigawa, and K. Sato, "Fast restoration on network control plane established through photonic MPLS routers," IEICE Jpn. Trans. Commun. E86-B, 1522-1529 (2003).
  4. C. A. Brackett, "Dense wavelength division multiplexing networks: principles and applications," IEEE J. Sel. Areas Commun. 8, 948-964 (1990).
  5. M. S. Goodman, "Multiwavelength networks and new approaches to packet switching," IEEE Commun. Mag. 27, 27-35 (1989).
  6. B. C. Collings, M. L. Mitchell, L. Boivin, and W. H. Knox, "A 1021 channel WDM system," IEEE Photon. Technol. Lett. 12, 906-908 (2000).
  7. M. Shirasaki, "Virtually-imaged phase-array for WDM filters," Proc. SPIE 2918, 80-91 (1997).
  8. Y. Kokubun, S. Yoneda, and S. Matsuura, "Athermal narrow-band optical filter at 1.55 μm wavelength by silica-based athermal waveguide," IEICE Trans. Electron. E81-C, 1187-1194 (1998).
  9. A. Sakamoto, T. Matano, and H. Takeuchi, "Ceramic substrate with negative thermal expansion for athermalization of fiber Bragg gratings," IEICE Trans. Electron. E81-C, 1141-1145 (1998).
  10. H. J. Patrick, B. M. Wright, A. D. Greenblatt, Z. J. Homrighaus, and E. J. Friebele, "Athermal fibre cavity etalon for ultra-high-sensitivity strain sensing," IEE Electron. Lett. 35, 920-921 (1999).
  11. F. Koyama, T. Amano, N. Furukawa, N. Nishiyama, M. Arai, and K. Iga, "Micromachined semiconductor vertical cavity for temperature insensitive surface emitting lasers and optical filters," Jpn. J. Appl. Phys. 39, 1542-1545 (2000).
  12. Y. Katagiri, Y. Tachikawa, K. Aida, S. Nagaoka, and F. Ohira, "Synchro-scanned rotating tunable optical disk filter for wavelength discrimination," IEEE J. Photon. Technol. Lett. 10, 400-402 (1998).
  13. Y. Katagiri, K. Aida, Y. Tachikawa, S. Nagaoka, H. Abe, and F. Ohira, "Thermal stability in wavelength discrimination using synchro-scanned optical disk filter," Electron. Lett. 34, 1515-1516 (1998).

Electron. Lett. (1)

Y. Katagiri, K. Aida, Y. Tachikawa, S. Nagaoka, H. Abe, and F. Ohira, "Thermal stability in wavelength discrimination using synchro-scanned optical disk filter," Electron. Lett. 34, 1515-1516 (1998).

IEE Electron. Lett. (1)

H. J. Patrick, B. M. Wright, A. D. Greenblatt, Z. J. Homrighaus, and E. J. Friebele, "Athermal fibre cavity etalon for ultra-high-sensitivity strain sensing," IEE Electron. Lett. 35, 920-921 (1999).

IEEE Commun. Mag. (1)

M. S. Goodman, "Multiwavelength networks and new approaches to packet switching," IEEE Commun. Mag. 27, 27-35 (1989).

IEEE J. Photon. Technol. Lett. (1)

Y. Katagiri, Y. Tachikawa, K. Aida, S. Nagaoka, and F. Ohira, "Synchro-scanned rotating tunable optical disk filter for wavelength discrimination," IEEE J. Photon. Technol. Lett. 10, 400-402 (1998).

IEEE J. Sel. Areas Commun. (2)

K. Sato, S. Okamoto, and H. Hadama, "Network performance and integrity enhancement with optical path layer technologies," IEEE J. Sel. Areas Commun. 12, 159-170 (1994).

C. A. Brackett, "Dense wavelength division multiplexing networks: principles and applications," IEEE J. Sel. Areas Commun. 8, 948-964 (1990).

IEEE Photon. Technol. Lett. (1)

B. C. Collings, M. L. Mitchell, L. Boivin, and W. H. Knox, "A 1021 channel WDM system," IEEE Photon. Technol. Lett. 12, 906-908 (2000).

IEICE Jpn. Trans. Commun. (1)

K. Shimano, A. Sahara, K. Noguchi, M. Koga, Y. Takigawa, and K. Sato, "Fast restoration on network control plane established through photonic MPLS routers," IEICE Jpn. Trans. Commun. E86-B, 1522-1529 (2003).

IEICE Trans. Electron. (2)

Y. Kokubun, S. Yoneda, and S. Matsuura, "Athermal narrow-band optical filter at 1.55 μm wavelength by silica-based athermal waveguide," IEICE Trans. Electron. E81-C, 1187-1194 (1998).

A. Sakamoto, T. Matano, and H. Takeuchi, "Ceramic substrate with negative thermal expansion for athermalization of fiber Bragg gratings," IEICE Trans. Electron. E81-C, 1141-1145 (1998).

Jpn. J. Appl. Phys. (1)

F. Koyama, T. Amano, N. Furukawa, N. Nishiyama, M. Arai, and K. Iga, "Micromachined semiconductor vertical cavity for temperature insensitive surface emitting lasers and optical filters," Jpn. J. Appl. Phys. 39, 1542-1545 (2000).

NTT Tech. Rev. (1)

M. Tokuhisa, Y. Chiba, H. Miwa, and S. Nogami, "Path design in photonic MPLS networks," NTT Tech. Rev. 14, 63-68 (2002).

Proc. SPIE (1)

M. Shirasaki, "Virtually-imaged phase-array for WDM filters," Proc. SPIE 2918, 80-91 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.