Abstract

We first experimentally demonstrated a digital mobile fronthaul (MFH) architecture using delta–sigma modulation as the new digitization interface to replace the conventional common public radio interface (CPRI). Both one-bit and two-bit delta–sigma modulations were demonstrated, and the digitized signals were transmitted over on–off keying (OOK) or 4-level pulse-amplitude-modulation (PAM4) optical intensity modulation-direct detection (IM-DD) links. 32 LTE component carriers (CCs) were digitized and transmitted over a 25-km single-λ 10-Gbaud OOK/PAM4 link, so that 32 LTE carrier aggregation (CA) specified by 3GPP release 13 can be supported. Compared with the conventional digitization interface based on CPRI, the fronthaul capacity is increased by four times. Error vector magnitude (EVM) less than 5% or 2.1% for all LTE CCs was obtained using one-bit and two-bit delta–sigma modulators, so that high-order modulations (256QAM/1024QAM) can be supported. As a waveform-agnostic digitization interface, delta–sigma modulation can digitize not only 4G-LTE but also 5G waveforms, and its 5G compatibility was verified by filter-bank-multicarrier (FBMC) signals. The tolerance to bit error ratio (BER) of the proposed delta–sigma modulation-based digital MFH was evaluated, and no significant EVM degradation was observed for BER up to 3×105. A comparison with analog MFH reveals that the proposed digital MFH based on delta–sigma modulation can offer improved resilience against noise and nonlinear impairments, and it increases the fronthaul capacity by four times compared with the conventional CPRI-based digital MFH without significant EVM penalty.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improving performance of mobile fronthaul architecture employing high order delta-sigma modulator with PAM-4 format

Haibo Li, Rong Hu, Qi Yang, Ming Luo, Zhixue He, Peng Jiang, Yongpiao Liu, Xiang Li, and Shaohua Yu
Opt. Express 25(1) 1-9 (2017)

Digital mobile fronthaul employing differential pulse code modulation with suppressed quantization noise

Lu Zhang, Xiaodan Pang, Oskars Ozolins, Aleksejs Udalcovs, Richard Schatz, Urban Westergren, Gunnar Jacobsen, Sergei Popov, Lena Wosinska, Shilin Xiao, Weisheng Hu, and Jiajia Chen
Opt. Express 25(25) 31921-31936 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol.  17, no. 1, pp. 405–426, 2015.
    [Crossref]
  2. China Mobile, “C-RAN the road towards green RAN (version 2.5),” White Paper, Oct.2011.
  3. K. Tanaka and A. Agata, “Next-generation optical access networks for C-RAN,” in Optical Fiber Communication Conf. (OFC), 2015, paper Tu2E.1.
  4. T. Pfeiffer, “Next generation mobile fronthaul architectures,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.7.
  5. T. Pfeiffer, “Next generation mobile fronthaul and midhaul architectures,” J. Opt. Commun. Netw., vol.  7, no. 11, pp. B38–B45, 2015.
    [Crossref]
  6. A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you should know about fronthaul,” J. Lightwave Technol., vol.  33, no. 5, pp. 1077–1083, 2015.
    [Crossref]
  7. X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.2.
  8. X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightwave Technol., vol.  34, no. 6, pp. 1556–1564, 2016.
    [Crossref]
  9. M. Zhu, X. Liu, N. Chand, F. Effenberger, and G. K. Chang, “High-capacity mobile fronthaul supporting LTE-advanced carrier aggregation and 8 × 8 MIMO,” in Opt. Fiber Communication Conf. (OFC), 2015, paper M2J.3.
  10. S. Cho, H. S. Chung, C. Han, S. Lee, and J. H. Lee, “Experimental demonstrations of next generation cost-effective mobile fronthaul with IFoF technique,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.5.
  11. J. Wang, C. Liu, M. Zhu, A. Yi, L. Cheng, and G. K. Chang, “Investigation of data-dependent channel cross-modulation in multiband radio-over-fiber systems,” J. Lightwave Technol., vol.  32, no. 10, pp. 1861–1871, 2014.
    [Crossref]
  12. J. Wang, C. Liu, M. Zhu, M. Xu, Z. Dong, and G.-K. Chang, “Characterization and mitigation of nonlinear intermodulations in multichannel OFDM radio-over-fiber systems,” in European Conf. on Optical Communication (ECOC), 2014, paper P.7.18.
  13. J. Wang, C. Liu, J. Zhang, M. Zhu, M. Xu, F. Lu, L. Cheng, and G.-K. Chang, “Nonlinear inter-band subcarrier intermodulations of multi-RAT OFDM wireless services in 5G heterogeneous mobile fronthaul networks,” J. Lightwave Technol., vol.  34, no. 17, pp. 4089–4103, 2016.
    [Crossref]
  14. J. Zhang, J. Wang, M. Xu, F. Lu, L. Chen, J. Yu, and G.-K. Chang, “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Optical Fiber Communication Conf. (OFC), 2016, paper Tu2B.3.
  15. Common Public Radio Interface (CPRI) Specification V7.0 (2015-10-09) [Online]. Available: http://www.cpri.info/downloads/CPRI_v_7_0_2015-10-09.pdf .
  16. “Evolved universal terrestrial radio access (E-UTRA); carrier aggregation; base station (BS) radio transmission and reception,” , V10.1.0, July2013.
  17. “New WI proposal: LTE carrier aggregation enhancement beyond 5 carriers,” , Dec.2014.
  18. B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J., vol.  18, no. 2, pp. 117–133, 2013.
    [Crossref]
  19. S. H. Park, O. Simeone, O. Sahin, and S. Shamai, “Fronthaul compression for cloud radio access networks: Signal processing advances inspired by network information theory,” IEEE Signal Process. Mag., vol.  31, no. 6, pp. 69–79, 2014.
    [Crossref]
  20. N. Shibata, T. Tashiro, S. Kuwano, N. Yuki, J. Terada, and A. Otaka, “Mobile front-haul employing Ethernet-based TDM-PON system for small cells,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.1.
  21. Y. Ma, Z. Xu, H. Lin, M. Zhou, H. Wang, C. Zhang, J. Yu, and X. Wang, “Demonstration of CPRI over self-seeded WDM-PON in commercial LTE environment,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.6.
  22. K. Miyamoto, S. Kuwano, J. Terada, and A. Otaka, “Analysis of mobile fronthaul bandwidth and wireless transmission performance in split-PHY processing architecture,” Opt. Express, vol.  24, no. 2, pp. 1261–1268, 2016.
    [Crossref]
  23. R. Gray, “Oversampled sigma-delta modulation,” IEEE Trans. Commun., vol.  35, no. 5, pp. 481–489, 1987.
    [Crossref]
  24. P. M. Aziz, H. V. Sorensen, and J. V. der Spiegel, “An overview of sigma-delta converters,” IEEE Signal Process. Mag., vol.  13, no. 1, pp. 61–84, 1996.
    [Crossref]
  25. R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. Wiley-IEEE, 2004.
  26. R. Schreier, “High-level design and simulation of delta-sigma modulators,” June2016 [Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/19-delta-sigma-toolbox .
  27. W. R. Bennett, “Spectra of quantized signals,” Bell Syst. Tech. J., vol.  27, no. 3, pp. 446–472, 1948.
    [Crossref]
  28. S. Yan and E. Sanchez-Sinencio, “A continuous-time sigma-delta modulator with 88-dB dynamic range and 1.1-MHz signal bandwidth,” IEEE J. Solid-State Circuits, vol.  39, no. 1, pp. 75–86, 2004.
    [Crossref]
  29. A. Jerng and C. G. Sodini, “A wideband ΔΣ digital-RF modulator for high data rate transmitters,” IEEE J. Solid-State Circuits, vol.  42, no. 8, pp. 1710–1722, 2007.
    [Crossref]
  30. M. Helaoui, S. Hatami, R. Negra, and F. M. Ghannouchi, “A novel architecture of delta-sigma modulator enabling all-digital multiband multistandard RF transmitters design,” IEEE Trans. Circuits Syst. II, vol.  55, no. 11, pp. 1129–1133, 2008.
    [Crossref]
  31. A. Frappe, A. Flament, B. Stefanelli, A. Kaiser, and A. Cathelin, “An all-digital RF signal generator using high-speed ΔΣ modulators,” IEEE J. Solid-State Circuits, vol.  44, no. 10, pp. 2722–2732, 2009.
    [Crossref]
  32. A. Pozsgay, T. Zounes, R. Hossain, M. Boulemnakher, V. Knopik, and S. Grange, “A fully digital 65  nm CMOS transmitter for the 2.4-to-2.7  GHz WiFi/WiMAX bands using 5.4  GHz ΔΣ RF DACs,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2008, pp. 360–361.
  33. S. Chung, R. Ma, S. Shinjo, and K. H. Teo, “Inter-band carrier aggregation digital transmitter architecture with concurrent multi-band delta-sigma modulation using out-of-band noise cancellation,” in IEEE MTT-S Int. Microwave Symp., 2015.
  34. S. Chung, R. Ma, S. Shinjo, H. Nakamizo, K. Parsons, and K. H. Teo, “Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding,” IEEE Trans. Microwave Theory Tech., vol.  63, no. 2, pp. 598–613, 2015.
    [Crossref]
  35. T. Kitayabu, Y. Amano, and H. Ishikawa, “Concurrent dual-band transmitter architecture for spectrum aggregation system,” in IEEE Radio and Wireless Symp. (RWS), 2010, pp. 689–692.
  36. N. V. Silva, A. S. R. Oliveira, and N. B. Carvalho, “Design and optimization of flexible and coding efficient all-digital RF transmitters,” IEEE Trans. Microwave Theory Tech., vol.  61, no. 1, pp. 625–632, 2013.
    [Crossref]
  37. T. P. Hung, J. Rode, L. E. Larson, and P. M. Asbeck, “Design of H-bridge class-D power amplifiers for digital pulse modulation transmitters,” IEEE Trans. Microwave Theory Tech., vol.  55, no. 12, pp. 2845–2855, 2007.
    [Crossref]
  38. M. Nielsen and T. Larsen, “A transmitter architecture based on delta-sigma modulation and switch-mode power amplification,” IEEE Trans. Circuits Syst. II, vol.  54, no. 8, pp. 735–739, 2007.
    [Crossref]
  39. F. M. Ghannouchi, S. Hatami, P. Aflaki, M. Helaoui, and R. Negra, “Accurate power efficiency estimation of GHz wireless delta-sigma transmitters for different classes of switching mode power amplifiers,” IEEE Trans. Microwave Theory Tech., vol.  58, no. 11, pp. 2812–2819, 2010.
    [Crossref]
  40. J. A. Wepman, “Analog-to-digital converters and their applications in radio receivers,” IEEE Commun. Mag., vol.  33, no. 5, pp. 39–45, 1995.
    [Crossref]
  41. M. R. Miller and C. S. Petrie, “A multibit sigma-delta ADC for multimode receivers,” IEEE J. Solid-State Circuits, vol.  38, no. 3, pp. 475–482, 2003.
    [Crossref]
  42. C. Wu, E. Alon, and B. Nikoli, “A wideband 400 MHz-to-4  GHz direct RF-to-digital multimode ΔΣ receiver,” IEEE J. Solid-State Circuits, vol.  49, no. 7, pp. 1639–1652, 2014.
    [Crossref]
  43. L. Bettini, T. Christen, T. Burger, and Q. Huang, “A reconfigurable DT ΔΣ modulator for multi-standard 2G/3G/4G wireless receivers,” IEEE J. Emerging Sel. Top. Circuits Syst., vol.  5, no. 4, pp. 525–536, 2015.
    [Crossref]
  44. J. Arias, P. Kiss, V. Prodanov, V. Boccuzzi, M. Banu, D. Bisbal, J. San Pablo, L. Quintanilla, and J. Barbolla, “A 32-mW 320-MHz continuous-time complex delta-sigma ADC for multi-mode wireless-LAN receivers,” IEEE J. Solid-State Circuits, vol.  41, no. 2, pp. 339–351, 2006.
    [Crossref]
  45. K. B. Östman, M. Englund, O. Viitala, K. Stadius, K. Koli, and J. Ryynanen, “Next-generation RF front-end design methods for direct ΔΣ receivers,” IEEE J. Emerging Sel. Top. Circuits Syst., vol.  5, no. 4, pp. 514–524, 2015.
    [Crossref]
  46. A. Kanno and T. Kawanishi, “Analog signal transmission by FPGA-based pseudo-delta-sigma modulator,” in IEEE Photonics Conf. (IPC), 2015, pp. 136–137.
  47. S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photon. Technol. Lett., vol.  26, no. 24, pp. 2484–2487, 2014.
    [Crossref]
  48. L. M. Pessoa, J. S. Tavares, D. Coelho, and H. M. Salgado, “Experimental evaluation of a digitized fiber-wireless system employing sigma delta modulation,” Opt. Express, vol.  22, no. 14, pp. 17508–17523, 2014.
    [Crossref]
  49. H. Qian, J. Chen, S. Yao, Z. Yu, H. Zhang, and W. Xu, “One-bit sigma-delta modulator for nonlinear visible light communication systems,” IEEE Photon. Technol. Lett., vol.  27, no. 4, pp. 419–422, 2015.
    [Crossref]
  50. K. Kitamura, S. Sasaki, Y. Matsuya, and T. Douseki, “Optical wireless digital-sound transmission system with 1-bit ΔΣ-modulated visible light and spherical Si solar cells,” IEEE Sens. J., vol.  10, no. 11, pp. 1753–1758, 2010.
    [Crossref]
  51. J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Optical Fiber Communication Conf. (OFC), 2016, paper W1H.2.
  52. “Base Station (BS) radio transmission and reception,” , V.12.6.0, Feb.2015.
  53. “Base Station (BS) conformance testing,” , V.14.1.0, Sept.2016.

2016 (3)

2015 (7)

A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you should know about fronthaul,” J. Lightwave Technol., vol.  33, no. 5, pp. 1077–1083, 2015.
[Crossref]

T. Pfeiffer, “Next generation mobile fronthaul and midhaul architectures,” J. Opt. Commun. Netw., vol.  7, no. 11, pp. B38–B45, 2015.
[Crossref]

K. B. Östman, M. Englund, O. Viitala, K. Stadius, K. Koli, and J. Ryynanen, “Next-generation RF front-end design methods for direct ΔΣ receivers,” IEEE J. Emerging Sel. Top. Circuits Syst., vol.  5, no. 4, pp. 514–524, 2015.
[Crossref]

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol.  17, no. 1, pp. 405–426, 2015.
[Crossref]

H. Qian, J. Chen, S. Yao, Z. Yu, H. Zhang, and W. Xu, “One-bit sigma-delta modulator for nonlinear visible light communication systems,” IEEE Photon. Technol. Lett., vol.  27, no. 4, pp. 419–422, 2015.
[Crossref]

S. Chung, R. Ma, S. Shinjo, H. Nakamizo, K. Parsons, and K. H. Teo, “Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding,” IEEE Trans. Microwave Theory Tech., vol.  63, no. 2, pp. 598–613, 2015.
[Crossref]

L. Bettini, T. Christen, T. Burger, and Q. Huang, “A reconfigurable DT ΔΣ modulator for multi-standard 2G/3G/4G wireless receivers,” IEEE J. Emerging Sel. Top. Circuits Syst., vol.  5, no. 4, pp. 525–536, 2015.
[Crossref]

2014 (5)

C. Wu, E. Alon, and B. Nikoli, “A wideband 400 MHz-to-4  GHz direct RF-to-digital multimode ΔΣ receiver,” IEEE J. Solid-State Circuits, vol.  49, no. 7, pp. 1639–1652, 2014.
[Crossref]

S. H. Park, O. Simeone, O. Sahin, and S. Shamai, “Fronthaul compression for cloud radio access networks: Signal processing advances inspired by network information theory,” IEEE Signal Process. Mag., vol.  31, no. 6, pp. 69–79, 2014.
[Crossref]

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photon. Technol. Lett., vol.  26, no. 24, pp. 2484–2487, 2014.
[Crossref]

J. Wang, C. Liu, M. Zhu, A. Yi, L. Cheng, and G. K. Chang, “Investigation of data-dependent channel cross-modulation in multiband radio-over-fiber systems,” J. Lightwave Technol., vol.  32, no. 10, pp. 1861–1871, 2014.
[Crossref]

L. M. Pessoa, J. S. Tavares, D. Coelho, and H. M. Salgado, “Experimental evaluation of a digitized fiber-wireless system employing sigma delta modulation,” Opt. Express, vol.  22, no. 14, pp. 17508–17523, 2014.
[Crossref]

2013 (2)

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J., vol.  18, no. 2, pp. 117–133, 2013.
[Crossref]

N. V. Silva, A. S. R. Oliveira, and N. B. Carvalho, “Design and optimization of flexible and coding efficient all-digital RF transmitters,” IEEE Trans. Microwave Theory Tech., vol.  61, no. 1, pp. 625–632, 2013.
[Crossref]

2010 (2)

F. M. Ghannouchi, S. Hatami, P. Aflaki, M. Helaoui, and R. Negra, “Accurate power efficiency estimation of GHz wireless delta-sigma transmitters for different classes of switching mode power amplifiers,” IEEE Trans. Microwave Theory Tech., vol.  58, no. 11, pp. 2812–2819, 2010.
[Crossref]

K. Kitamura, S. Sasaki, Y. Matsuya, and T. Douseki, “Optical wireless digital-sound transmission system with 1-bit ΔΣ-modulated visible light and spherical Si solar cells,” IEEE Sens. J., vol.  10, no. 11, pp. 1753–1758, 2010.
[Crossref]

2009 (1)

A. Frappe, A. Flament, B. Stefanelli, A. Kaiser, and A. Cathelin, “An all-digital RF signal generator using high-speed ΔΣ modulators,” IEEE J. Solid-State Circuits, vol.  44, no. 10, pp. 2722–2732, 2009.
[Crossref]

2008 (1)

M. Helaoui, S. Hatami, R. Negra, and F. M. Ghannouchi, “A novel architecture of delta-sigma modulator enabling all-digital multiband multistandard RF transmitters design,” IEEE Trans. Circuits Syst. II, vol.  55, no. 11, pp. 1129–1133, 2008.
[Crossref]

2007 (3)

A. Jerng and C. G. Sodini, “A wideband ΔΣ digital-RF modulator for high data rate transmitters,” IEEE J. Solid-State Circuits, vol.  42, no. 8, pp. 1710–1722, 2007.
[Crossref]

T. P. Hung, J. Rode, L. E. Larson, and P. M. Asbeck, “Design of H-bridge class-D power amplifiers for digital pulse modulation transmitters,” IEEE Trans. Microwave Theory Tech., vol.  55, no. 12, pp. 2845–2855, 2007.
[Crossref]

M. Nielsen and T. Larsen, “A transmitter architecture based on delta-sigma modulation and switch-mode power amplification,” IEEE Trans. Circuits Syst. II, vol.  54, no. 8, pp. 735–739, 2007.
[Crossref]

2006 (1)

J. Arias, P. Kiss, V. Prodanov, V. Boccuzzi, M. Banu, D. Bisbal, J. San Pablo, L. Quintanilla, and J. Barbolla, “A 32-mW 320-MHz continuous-time complex delta-sigma ADC for multi-mode wireless-LAN receivers,” IEEE J. Solid-State Circuits, vol.  41, no. 2, pp. 339–351, 2006.
[Crossref]

2004 (1)

S. Yan and E. Sanchez-Sinencio, “A continuous-time sigma-delta modulator with 88-dB dynamic range and 1.1-MHz signal bandwidth,” IEEE J. Solid-State Circuits, vol.  39, no. 1, pp. 75–86, 2004.
[Crossref]

2003 (1)

M. R. Miller and C. S. Petrie, “A multibit sigma-delta ADC for multimode receivers,” IEEE J. Solid-State Circuits, vol.  38, no. 3, pp. 475–482, 2003.
[Crossref]

1996 (1)

P. M. Aziz, H. V. Sorensen, and J. V. der Spiegel, “An overview of sigma-delta converters,” IEEE Signal Process. Mag., vol.  13, no. 1, pp. 61–84, 1996.
[Crossref]

1995 (1)

J. A. Wepman, “Analog-to-digital converters and their applications in radio receivers,” IEEE Commun. Mag., vol.  33, no. 5, pp. 39–45, 1995.
[Crossref]

1987 (1)

R. Gray, “Oversampled sigma-delta modulation,” IEEE Trans. Commun., vol.  35, no. 5, pp. 481–489, 1987.
[Crossref]

1948 (1)

W. R. Bennett, “Spectra of quantized signals,” Bell Syst. Tech. J., vol.  27, no. 3, pp. 446–472, 1948.
[Crossref]

Aflaki, P.

F. M. Ghannouchi, S. Hatami, P. Aflaki, M. Helaoui, and R. Negra, “Accurate power efficiency estimation of GHz wireless delta-sigma transmitters for different classes of switching mode power amplifiers,” IEEE Trans. Microwave Theory Tech., vol.  58, no. 11, pp. 2812–2819, 2010.
[Crossref]

Agata, A.

K. Tanaka and A. Agata, “Next-generation optical access networks for C-RAN,” in Optical Fiber Communication Conf. (OFC), 2015, paper Tu2E.1.

Alon, E.

C. Wu, E. Alon, and B. Nikoli, “A wideband 400 MHz-to-4  GHz direct RF-to-digital multimode ΔΣ receiver,” IEEE J. Solid-State Circuits, vol.  49, no. 7, pp. 1639–1652, 2014.
[Crossref]

Amano, Y.

T. Kitayabu, Y. Amano, and H. Ishikawa, “Concurrent dual-band transmitter architecture for spectrum aggregation system,” in IEEE Radio and Wireless Symp. (RWS), 2010, pp. 689–692.

Arias, J.

J. Arias, P. Kiss, V. Prodanov, V. Boccuzzi, M. Banu, D. Bisbal, J. San Pablo, L. Quintanilla, and J. Barbolla, “A 32-mW 320-MHz continuous-time complex delta-sigma ADC for multi-mode wireless-LAN receivers,” IEEE J. Solid-State Circuits, vol.  41, no. 2, pp. 339–351, 2006.
[Crossref]

Asbeck, P. M.

T. P. Hung, J. Rode, L. E. Larson, and P. M. Asbeck, “Design of H-bridge class-D power amplifiers for digital pulse modulation transmitters,” IEEE Trans. Microwave Theory Tech., vol.  55, no. 12, pp. 2845–2855, 2007.
[Crossref]

Aziz, P. M.

P. M. Aziz, H. V. Sorensen, and J. V. der Spiegel, “An overview of sigma-delta converters,” IEEE Signal Process. Mag., vol.  13, no. 1, pp. 61–84, 1996.
[Crossref]

Banu, M.

J. Arias, P. Kiss, V. Prodanov, V. Boccuzzi, M. Banu, D. Bisbal, J. San Pablo, L. Quintanilla, and J. Barbolla, “A 32-mW 320-MHz continuous-time complex delta-sigma ADC for multi-mode wireless-LAN receivers,” IEEE J. Solid-State Circuits, vol.  41, no. 2, pp. 339–351, 2006.
[Crossref]

Barbolla, J.

J. Arias, P. Kiss, V. Prodanov, V. Boccuzzi, M. Banu, D. Bisbal, J. San Pablo, L. Quintanilla, and J. Barbolla, “A 32-mW 320-MHz continuous-time complex delta-sigma ADC for multi-mode wireless-LAN receivers,” IEEE J. Solid-State Circuits, vol.  41, no. 2, pp. 339–351, 2006.
[Crossref]

Bennett, W. R.

W. R. Bennett, “Spectra of quantized signals,” Bell Syst. Tech. J., vol.  27, no. 3, pp. 446–472, 1948.
[Crossref]

Berger, M. S.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol.  17, no. 1, pp. 405–426, 2015.
[Crossref]

Bettini, L.

L. Bettini, T. Christen, T. Burger, and Q. Huang, “A reconfigurable DT ΔΣ modulator for multi-standard 2G/3G/4G wireless receivers,” IEEE J. Emerging Sel. Top. Circuits Syst., vol.  5, no. 4, pp. 525–536, 2015.
[Crossref]

Bisbal, D.

J. Arias, P. Kiss, V. Prodanov, V. Boccuzzi, M. Banu, D. Bisbal, J. San Pablo, L. Quintanilla, and J. Barbolla, “A 32-mW 320-MHz continuous-time complex delta-sigma ADC for multi-mode wireless-LAN receivers,” IEEE J. Solid-State Circuits, vol.  41, no. 2, pp. 339–351, 2006.
[Crossref]

Boccuzzi, V.

J. Arias, P. Kiss, V. Prodanov, V. Boccuzzi, M. Banu, D. Bisbal, J. San Pablo, L. Quintanilla, and J. Barbolla, “A 32-mW 320-MHz continuous-time complex delta-sigma ADC for multi-mode wireless-LAN receivers,” IEEE J. Solid-State Circuits, vol.  41, no. 2, pp. 339–351, 2006.
[Crossref]

Boulemnakher, M.

A. Pozsgay, T. Zounes, R. Hossain, M. Boulemnakher, V. Knopik, and S. Grange, “A fully digital 65  nm CMOS transmitter for the 2.4-to-2.7  GHz WiFi/WiMAX bands using 5.4  GHz ΔΣ RF DACs,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2008, pp. 360–361.

Burger, T.

L. Bettini, T. Christen, T. Burger, and Q. Huang, “A reconfigurable DT ΔΣ modulator for multi-standard 2G/3G/4G wireless receivers,” IEEE J. Emerging Sel. Top. Circuits Syst., vol.  5, no. 4, pp. 525–536, 2015.
[Crossref]

Cao, W.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J., vol.  18, no. 2, pp. 117–133, 2013.
[Crossref]

Carvalho, N. B.

N. V. Silva, A. S. R. Oliveira, and N. B. Carvalho, “Design and optimization of flexible and coding efficient all-digital RF transmitters,” IEEE Trans. Microwave Theory Tech., vol.  61, no. 1, pp. 625–632, 2013.
[Crossref]

Cathelin, A.

A. Frappe, A. Flament, B. Stefanelli, A. Kaiser, and A. Cathelin, “An all-digital RF signal generator using high-speed ΔΣ modulators,” IEEE J. Solid-State Circuits, vol.  44, no. 10, pp. 2722–2732, 2009.
[Crossref]

Chanclou, P.

Chand, N.

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightwave Technol., vol.  34, no. 6, pp. 1556–1564, 2016.
[Crossref]

X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.2.

M. Zhu, X. Liu, N. Chand, F. Effenberger, and G. K. Chang, “High-capacity mobile fronthaul supporting LTE-advanced carrier aggregation and 8 × 8 MIMO,” in Opt. Fiber Communication Conf. (OFC), 2015, paper M2J.3.

Chang, G.

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Optical Fiber Communication Conf. (OFC), 2016, paper W1H.2.

Chang, G. K.

J. Wang, C. Liu, M. Zhu, A. Yi, L. Cheng, and G. K. Chang, “Investigation of data-dependent channel cross-modulation in multiband radio-over-fiber systems,” J. Lightwave Technol., vol.  32, no. 10, pp. 1861–1871, 2014.
[Crossref]

M. Zhu, X. Liu, N. Chand, F. Effenberger, and G. K. Chang, “High-capacity mobile fronthaul supporting LTE-advanced carrier aggregation and 8 × 8 MIMO,” in Opt. Fiber Communication Conf. (OFC), 2015, paper M2J.3.

Chang, G.-K.

J. Wang, C. Liu, J. Zhang, M. Zhu, M. Xu, F. Lu, L. Cheng, and G.-K. Chang, “Nonlinear inter-band subcarrier intermodulations of multi-RAT OFDM wireless services in 5G heterogeneous mobile fronthaul networks,” J. Lightwave Technol., vol.  34, no. 17, pp. 4089–4103, 2016.
[Crossref]

J. Zhang, J. Wang, M. Xu, F. Lu, L. Chen, J. Yu, and G.-K. Chang, “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Optical Fiber Communication Conf. (OFC), 2016, paper Tu2B.3.

J. Wang, C. Liu, M. Zhu, M. Xu, Z. Dong, and G.-K. Chang, “Characterization and mitigation of nonlinear intermodulations in multichannel OFDM radio-over-fiber systems,” in European Conf. on Optical Communication (ECOC), 2014, paper P.7.18.

Checko, A.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol.  17, no. 1, pp. 405–426, 2015.
[Crossref]

Chen, J.

H. Qian, J. Chen, S. Yao, Z. Yu, H. Zhang, and W. Xu, “One-bit sigma-delta modulator for nonlinear visible light communication systems,” IEEE Photon. Technol. Lett., vol.  27, no. 4, pp. 419–422, 2015.
[Crossref]

Chen, L.

J. Zhang, J. Wang, M. Xu, F. Lu, L. Chen, J. Yu, and G.-K. Chang, “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Optical Fiber Communication Conf. (OFC), 2016, paper Tu2B.3.

Cheng, L.

Cho, S.

S. Cho, H. S. Chung, C. Han, S. Lee, and J. H. Lee, “Experimental demonstrations of next generation cost-effective mobile fronthaul with IFoF technique,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.5.

Christen, T.

L. Bettini, T. Christen, T. Burger, and Q. Huang, “A reconfigurable DT ΔΣ modulator for multi-standard 2G/3G/4G wireless receivers,” IEEE J. Emerging Sel. Top. Circuits Syst., vol.  5, no. 4, pp. 525–536, 2015.
[Crossref]

Christiansen, H. L.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol.  17, no. 1, pp. 405–426, 2015.
[Crossref]

Chung, H. S.

S. Cho, H. S. Chung, C. Han, S. Lee, and J. H. Lee, “Experimental demonstrations of next generation cost-effective mobile fronthaul with IFoF technique,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.5.

Chung, S.

S. Chung, R. Ma, S. Shinjo, H. Nakamizo, K. Parsons, and K. H. Teo, “Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding,” IEEE Trans. Microwave Theory Tech., vol.  63, no. 2, pp. 598–613, 2015.
[Crossref]

S. Chung, R. Ma, S. Shinjo, and K. H. Teo, “Inter-band carrier aggregation digital transmitter architecture with concurrent multi-band delta-sigma modulation using out-of-band noise cancellation,” in IEEE MTT-S Int. Microwave Symp., 2015.

Coelho, D.

der Spiegel, J. V.

P. M. Aziz, H. V. Sorensen, and J. V. der Spiegel, “An overview of sigma-delta converters,” IEEE Signal Process. Mag., vol.  13, no. 1, pp. 61–84, 1996.
[Crossref]

Diallo, T.

Dittmann, L.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol.  17, no. 1, pp. 405–426, 2015.
[Crossref]

Dong, Z.

J. Wang, C. Liu, M. Zhu, M. Xu, Z. Dong, and G.-K. Chang, “Characterization and mitigation of nonlinear intermodulations in multichannel OFDM radio-over-fiber systems,” in European Conf. on Optical Communication (ECOC), 2014, paper P.7.18.

Douseki, T.

K. Kitamura, S. Sasaki, Y. Matsuya, and T. Douseki, “Optical wireless digital-sound transmission system with 1-bit ΔΣ-modulated visible light and spherical Si solar cells,” IEEE Sens. J., vol.  10, no. 11, pp. 1753–1758, 2010.
[Crossref]

Effenberger, F.

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightwave Technol., vol.  34, no. 6, pp. 1556–1564, 2016.
[Crossref]

X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.2.

M. Zhu, X. Liu, N. Chand, F. Effenberger, and G. K. Chang, “High-capacity mobile fronthaul supporting LTE-advanced carrier aggregation and 8 × 8 MIMO,” in Opt. Fiber Communication Conf. (OFC), 2015, paper M2J.3.

Englund, M.

K. B. Östman, M. Englund, O. Viitala, K. Stadius, K. Koli, and J. Ryynanen, “Next-generation RF front-end design methods for direct ΔΣ receivers,” IEEE J. Emerging Sel. Top. Circuits Syst., vol.  5, no. 4, pp. 514–524, 2015.
[Crossref]

Flament, A.

A. Frappe, A. Flament, B. Stefanelli, A. Kaiser, and A. Cathelin, “An all-digital RF signal generator using high-speed ΔΣ modulators,” IEEE J. Solid-State Circuits, vol.  44, no. 10, pp. 2722–2732, 2009.
[Crossref]

Frappe, A.

A. Frappe, A. Flament, B. Stefanelli, A. Kaiser, and A. Cathelin, “An all-digital RF signal generator using high-speed ΔΣ modulators,” IEEE J. Solid-State Circuits, vol.  44, no. 10, pp. 2722–2732, 2009.
[Crossref]

Ghannouchi, F. M.

F. M. Ghannouchi, S. Hatami, P. Aflaki, M. Helaoui, and R. Negra, “Accurate power efficiency estimation of GHz wireless delta-sigma transmitters for different classes of switching mode power amplifiers,” IEEE Trans. Microwave Theory Tech., vol.  58, no. 11, pp. 2812–2819, 2010.
[Crossref]

M. Helaoui, S. Hatami, R. Negra, and F. M. Ghannouchi, “A novel architecture of delta-sigma modulator enabling all-digital multiband multistandard RF transmitters design,” IEEE Trans. Circuits Syst. II, vol.  55, no. 11, pp. 1129–1133, 2008.
[Crossref]

Grange, S.

A. Pozsgay, T. Zounes, R. Hossain, M. Boulemnakher, V. Knopik, and S. Grange, “A fully digital 65  nm CMOS transmitter for the 2.4-to-2.7  GHz WiFi/WiMAX bands using 5.4  GHz ΔΣ RF DACs,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2008, pp. 360–361.

Gray, R.

R. Gray, “Oversampled sigma-delta modulation,” IEEE Trans. Commun., vol.  35, no. 5, pp. 481–489, 1987.
[Crossref]

Guo, B.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J., vol.  18, no. 2, pp. 117–133, 2013.
[Crossref]

Han, C.

S. Cho, H. S. Chung, C. Han, S. Lee, and J. H. Lee, “Experimental demonstrations of next generation cost-effective mobile fronthaul with IFoF technique,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.5.

Hatami, S.

F. M. Ghannouchi, S. Hatami, P. Aflaki, M. Helaoui, and R. Negra, “Accurate power efficiency estimation of GHz wireless delta-sigma transmitters for different classes of switching mode power amplifiers,” IEEE Trans. Microwave Theory Tech., vol.  58, no. 11, pp. 2812–2819, 2010.
[Crossref]

M. Helaoui, S. Hatami, R. Negra, and F. M. Ghannouchi, “A novel architecture of delta-sigma modulator enabling all-digital multiband multistandard RF transmitters design,” IEEE Trans. Circuits Syst. II, vol.  55, no. 11, pp. 1129–1133, 2008.
[Crossref]

Helaoui, M.

F. M. Ghannouchi, S. Hatami, P. Aflaki, M. Helaoui, and R. Negra, “Accurate power efficiency estimation of GHz wireless delta-sigma transmitters for different classes of switching mode power amplifiers,” IEEE Trans. Microwave Theory Tech., vol.  58, no. 11, pp. 2812–2819, 2010.
[Crossref]

M. Helaoui, S. Hatami, R. Negra, and F. M. Ghannouchi, “A novel architecture of delta-sigma modulator enabling all-digital multiband multistandard RF transmitters design,” IEEE Trans. Circuits Syst. II, vol.  55, no. 11, pp. 1129–1133, 2008.
[Crossref]

Hong, S.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photon. Technol. Lett., vol.  26, no. 24, pp. 2484–2487, 2014.
[Crossref]

Hossain, R.

A. Pozsgay, T. Zounes, R. Hossain, M. Boulemnakher, V. Knopik, and S. Grange, “A fully digital 65  nm CMOS transmitter for the 2.4-to-2.7  GHz WiFi/WiMAX bands using 5.4  GHz ΔΣ RF DACs,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2008, pp. 360–361.

Huang, Q.

L. Bettini, T. Christen, T. Burger, and Q. Huang, “A reconfigurable DT ΔΣ modulator for multi-standard 2G/3G/4G wireless receivers,” IEEE J. Emerging Sel. Top. Circuits Syst., vol.  5, no. 4, pp. 525–536, 2015.
[Crossref]

Hung, T. P.

T. P. Hung, J. Rode, L. E. Larson, and P. M. Asbeck, “Design of H-bridge class-D power amplifiers for digital pulse modulation transmitters,” IEEE Trans. Microwave Theory Tech., vol.  55, no. 12, pp. 2845–2855, 2007.
[Crossref]

Ishikawa, H.

T. Kitayabu, Y. Amano, and H. Ishikawa, “Concurrent dual-band transmitter architecture for spectrum aggregation system,” in IEEE Radio and Wireless Symp. (RWS), 2010, pp. 689–692.

Jang, S.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photon. Technol. Lett., vol.  26, no. 24, pp. 2484–2487, 2014.
[Crossref]

Jerng, A.

A. Jerng and C. G. Sodini, “A wideband ΔΣ digital-RF modulator for high data rate transmitters,” IEEE J. Solid-State Circuits, vol.  42, no. 8, pp. 1710–1722, 2007.
[Crossref]

Jo, G.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photon. Technol. Lett., vol.  26, no. 24, pp. 2484–2487, 2014.
[Crossref]

Jung, J.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photon. Technol. Lett., vol.  26, no. 24, pp. 2484–2487, 2014.
[Crossref]

Kaiser, A.

A. Frappe, A. Flament, B. Stefanelli, A. Kaiser, and A. Cathelin, “An all-digital RF signal generator using high-speed ΔΣ modulators,” IEEE J. Solid-State Circuits, vol.  44, no. 10, pp. 2722–2732, 2009.
[Crossref]

Kanno, A.

A. Kanno and T. Kawanishi, “Analog signal transmission by FPGA-based pseudo-delta-sigma modulator,” in IEEE Photonics Conf. (IPC), 2015, pp. 136–137.

Kardaras, G.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol.  17, no. 1, pp. 405–426, 2015.
[Crossref]

Kawanishi, T.

A. Kanno and T. Kawanishi, “Analog signal transmission by FPGA-based pseudo-delta-sigma modulator,” in IEEE Photonics Conf. (IPC), 2015, pp. 136–137.

Kiss, P.

J. Arias, P. Kiss, V. Prodanov, V. Boccuzzi, M. Banu, D. Bisbal, J. San Pablo, L. Quintanilla, and J. Barbolla, “A 32-mW 320-MHz continuous-time complex delta-sigma ADC for multi-mode wireless-LAN receivers,” IEEE J. Solid-State Circuits, vol.  41, no. 2, pp. 339–351, 2006.
[Crossref]

Kitamura, K.

K. Kitamura, S. Sasaki, Y. Matsuya, and T. Douseki, “Optical wireless digital-sound transmission system with 1-bit ΔΣ-modulated visible light and spherical Si solar cells,” IEEE Sens. J., vol.  10, no. 11, pp. 1753–1758, 2010.
[Crossref]

Kitayabu, T.

T. Kitayabu, Y. Amano, and H. Ishikawa, “Concurrent dual-band transmitter architecture for spectrum aggregation system,” in IEEE Radio and Wireless Symp. (RWS), 2010, pp. 689–692.

Knopik, V.

A. Pozsgay, T. Zounes, R. Hossain, M. Boulemnakher, V. Knopik, and S. Grange, “A fully digital 65  nm CMOS transmitter for the 2.4-to-2.7  GHz WiFi/WiMAX bands using 5.4  GHz ΔΣ RF DACs,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2008, pp. 360–361.

Koli, K.

K. B. Östman, M. Englund, O. Viitala, K. Stadius, K. Koli, and J. Ryynanen, “Next-generation RF front-end design methods for direct ΔΣ receivers,” IEEE J. Emerging Sel. Top. Circuits Syst., vol.  5, no. 4, pp. 514–524, 2015.
[Crossref]

Kuwano, S.

K. Miyamoto, S. Kuwano, J. Terada, and A. Otaka, “Analysis of mobile fronthaul bandwidth and wireless transmission performance in split-PHY processing architecture,” Opt. Express, vol.  24, no. 2, pp. 1261–1268, 2016.
[Crossref]

N. Shibata, T. Tashiro, S. Kuwano, N. Yuki, J. Terada, and A. Otaka, “Mobile front-haul employing Ethernet-based TDM-PON system for small cells,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.1.

Larsen, T.

M. Nielsen and T. Larsen, “A transmitter architecture based on delta-sigma modulation and switch-mode power amplification,” IEEE Trans. Circuits Syst. II, vol.  54, no. 8, pp. 735–739, 2007.
[Crossref]

Larson, L. E.

T. P. Hung, J. Rode, L. E. Larson, and P. M. Asbeck, “Design of H-bridge class-D power amplifiers for digital pulse modulation transmitters,” IEEE Trans. Microwave Theory Tech., vol.  55, no. 12, pp. 2845–2855, 2007.
[Crossref]

Lee, J. H.

S. Cho, H. S. Chung, C. Han, S. Lee, and J. H. Lee, “Experimental demonstrations of next generation cost-effective mobile fronthaul with IFoF technique,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.5.

Lee, S.

S. Cho, H. S. Chung, C. Han, S. Lee, and J. H. Lee, “Experimental demonstrations of next generation cost-effective mobile fronthaul with IFoF technique,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.5.

Lin, H.

Y. Ma, Z. Xu, H. Lin, M. Zhou, H. Wang, C. Zhang, J. Yu, and X. Wang, “Demonstration of CPRI over self-seeded WDM-PON in commercial LTE environment,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.6.

X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.2.

Liu, C.

Liu, X.

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightwave Technol., vol.  34, no. 6, pp. 1556–1564, 2016.
[Crossref]

X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.2.

M. Zhu, X. Liu, N. Chand, F. Effenberger, and G. K. Chang, “High-capacity mobile fronthaul supporting LTE-advanced carrier aggregation and 8 × 8 MIMO,” in Opt. Fiber Communication Conf. (OFC), 2015, paper M2J.3.

Lu, F.

J. Wang, C. Liu, J. Zhang, M. Zhu, M. Xu, F. Lu, L. Cheng, and G.-K. Chang, “Nonlinear inter-band subcarrier intermodulations of multi-RAT OFDM wireless services in 5G heterogeneous mobile fronthaul networks,” J. Lightwave Technol., vol.  34, no. 17, pp. 4089–4103, 2016.
[Crossref]

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Optical Fiber Communication Conf. (OFC), 2016, paper W1H.2.

J. Zhang, J. Wang, M. Xu, F. Lu, L. Chen, J. Yu, and G.-K. Chang, “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Optical Fiber Communication Conf. (OFC), 2016, paper Tu2B.3.

Ma, R.

S. Chung, R. Ma, S. Shinjo, H. Nakamizo, K. Parsons, and K. H. Teo, “Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding,” IEEE Trans. Microwave Theory Tech., vol.  63, no. 2, pp. 598–613, 2015.
[Crossref]

S. Chung, R. Ma, S. Shinjo, and K. H. Teo, “Inter-band carrier aggregation digital transmitter architecture with concurrent multi-band delta-sigma modulation using out-of-band noise cancellation,” in IEEE MTT-S Int. Microwave Symp., 2015.

Ma, Y.

Y. Ma, Z. Xu, H. Lin, M. Zhou, H. Wang, C. Zhang, J. Yu, and X. Wang, “Demonstration of CPRI over self-seeded WDM-PON in commercial LTE environment,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.6.

Matsuya, Y.

K. Kitamura, S. Sasaki, Y. Matsuya, and T. Douseki, “Optical wireless digital-sound transmission system with 1-bit ΔΣ-modulated visible light and spherical Si solar cells,” IEEE Sens. J., vol.  10, no. 11, pp. 1753–1758, 2010.
[Crossref]

Miller, M. R.

M. R. Miller and C. S. Petrie, “A multibit sigma-delta ADC for multimode receivers,” IEEE J. Solid-State Circuits, vol.  38, no. 3, pp. 475–482, 2003.
[Crossref]

Miyamoto, K.

Nakamizo, H.

S. Chung, R. Ma, S. Shinjo, H. Nakamizo, K. Parsons, and K. H. Teo, “Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding,” IEEE Trans. Microwave Theory Tech., vol.  63, no. 2, pp. 598–613, 2015.
[Crossref]

Negra, R.

F. M. Ghannouchi, S. Hatami, P. Aflaki, M. Helaoui, and R. Negra, “Accurate power efficiency estimation of GHz wireless delta-sigma transmitters for different classes of switching mode power amplifiers,” IEEE Trans. Microwave Theory Tech., vol.  58, no. 11, pp. 2812–2819, 2010.
[Crossref]

M. Helaoui, S. Hatami, R. Negra, and F. M. Ghannouchi, “A novel architecture of delta-sigma modulator enabling all-digital multiband multistandard RF transmitters design,” IEEE Trans. Circuits Syst. II, vol.  55, no. 11, pp. 1129–1133, 2008.
[Crossref]

Nielsen, M.

M. Nielsen and T. Larsen, “A transmitter architecture based on delta-sigma modulation and switch-mode power amplification,” IEEE Trans. Circuits Syst. II, vol.  54, no. 8, pp. 735–739, 2007.
[Crossref]

Nikoli, B.

C. Wu, E. Alon, and B. Nikoli, “A wideband 400 MHz-to-4  GHz direct RF-to-digital multimode ΔΣ receiver,” IEEE J. Solid-State Circuits, vol.  49, no. 7, pp. 1639–1652, 2014.
[Crossref]

Oliveira, A. S. R.

N. V. Silva, A. S. R. Oliveira, and N. B. Carvalho, “Design and optimization of flexible and coding efficient all-digital RF transmitters,” IEEE Trans. Microwave Theory Tech., vol.  61, no. 1, pp. 625–632, 2013.
[Crossref]

Östman, K. B.

K. B. Östman, M. Englund, O. Viitala, K. Stadius, K. Koli, and J. Ryynanen, “Next-generation RF front-end design methods for direct ΔΣ receivers,” IEEE J. Emerging Sel. Top. Circuits Syst., vol.  5, no. 4, pp. 514–524, 2015.
[Crossref]

Otaka, A.

K. Miyamoto, S. Kuwano, J. Terada, and A. Otaka, “Analysis of mobile fronthaul bandwidth and wireless transmission performance in split-PHY processing architecture,” Opt. Express, vol.  24, no. 2, pp. 1261–1268, 2016.
[Crossref]

N. Shibata, T. Tashiro, S. Kuwano, N. Yuki, J. Terada, and A. Otaka, “Mobile front-haul employing Ethernet-based TDM-PON system for small cells,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.1.

Park, B.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photon. Technol. Lett., vol.  26, no. 24, pp. 2484–2487, 2014.
[Crossref]

Park, S. H.

S. H. Park, O. Simeone, O. Sahin, and S. Shamai, “Fronthaul compression for cloud radio access networks: Signal processing advances inspired by network information theory,” IEEE Signal Process. Mag., vol.  31, no. 6, pp. 69–79, 2014.
[Crossref]

Parsons, K.

S. Chung, R. Ma, S. Shinjo, H. Nakamizo, K. Parsons, and K. H. Teo, “Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding,” IEEE Trans. Microwave Theory Tech., vol.  63, no. 2, pp. 598–613, 2015.
[Crossref]

Pessoa, L. M.

Petrie, C. S.

M. R. Miller and C. S. Petrie, “A multibit sigma-delta ADC for multimode receivers,” IEEE J. Solid-State Circuits, vol.  38, no. 3, pp. 475–482, 2003.
[Crossref]

Pfeiffer, T.

T. Pfeiffer, “Next generation mobile fronthaul and midhaul architectures,” J. Opt. Commun. Netw., vol.  7, no. 11, pp. B38–B45, 2015.
[Crossref]

T. Pfeiffer, “Next generation mobile fronthaul architectures,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.7.

Pizzinat, A.

Pozsgay, A.

A. Pozsgay, T. Zounes, R. Hossain, M. Boulemnakher, V. Knopik, and S. Grange, “A fully digital 65  nm CMOS transmitter for the 2.4-to-2.7  GHz WiFi/WiMAX bands using 5.4  GHz ΔΣ RF DACs,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2008, pp. 360–361.

Prodanov, V.

J. Arias, P. Kiss, V. Prodanov, V. Boccuzzi, M. Banu, D. Bisbal, J. San Pablo, L. Quintanilla, and J. Barbolla, “A 32-mW 320-MHz continuous-time complex delta-sigma ADC for multi-mode wireless-LAN receivers,” IEEE J. Solid-State Circuits, vol.  41, no. 2, pp. 339–351, 2006.
[Crossref]

Qian, H.

H. Qian, J. Chen, S. Yao, Z. Yu, H. Zhang, and W. Xu, “One-bit sigma-delta modulator for nonlinear visible light communication systems,” IEEE Photon. Technol. Lett., vol.  27, no. 4, pp. 419–422, 2015.
[Crossref]

Quintanilla, L.

J. Arias, P. Kiss, V. Prodanov, V. Boccuzzi, M. Banu, D. Bisbal, J. San Pablo, L. Quintanilla, and J. Barbolla, “A 32-mW 320-MHz continuous-time complex delta-sigma ADC for multi-mode wireless-LAN receivers,” IEEE J. Solid-State Circuits, vol.  41, no. 2, pp. 339–351, 2006.
[Crossref]

Rode, J.

T. P. Hung, J. Rode, L. E. Larson, and P. M. Asbeck, “Design of H-bridge class-D power amplifiers for digital pulse modulation transmitters,” IEEE Trans. Microwave Theory Tech., vol.  55, no. 12, pp. 2845–2855, 2007.
[Crossref]

Ryynanen, J.

K. B. Östman, M. Englund, O. Viitala, K. Stadius, K. Koli, and J. Ryynanen, “Next-generation RF front-end design methods for direct ΔΣ receivers,” IEEE J. Emerging Sel. Top. Circuits Syst., vol.  5, no. 4, pp. 514–524, 2015.
[Crossref]

Sahin, O.

S. H. Park, O. Simeone, O. Sahin, and S. Shamai, “Fronthaul compression for cloud radio access networks: Signal processing advances inspired by network information theory,” IEEE Signal Process. Mag., vol.  31, no. 6, pp. 69–79, 2014.
[Crossref]

Salgado, H. M.

Saliou, F.

Samardzija, D.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J., vol.  18, no. 2, pp. 117–133, 2013.
[Crossref]

San Pablo, J.

J. Arias, P. Kiss, V. Prodanov, V. Boccuzzi, M. Banu, D. Bisbal, J. San Pablo, L. Quintanilla, and J. Barbolla, “A 32-mW 320-MHz continuous-time complex delta-sigma ADC for multi-mode wireless-LAN receivers,” IEEE J. Solid-State Circuits, vol.  41, no. 2, pp. 339–351, 2006.
[Crossref]

Sanchez-Sinencio, E.

S. Yan and E. Sanchez-Sinencio, “A continuous-time sigma-delta modulator with 88-dB dynamic range and 1.1-MHz signal bandwidth,” IEEE J. Solid-State Circuits, vol.  39, no. 1, pp. 75–86, 2004.
[Crossref]

Sasaki, S.

K. Kitamura, S. Sasaki, Y. Matsuya, and T. Douseki, “Optical wireless digital-sound transmission system with 1-bit ΔΣ-modulated visible light and spherical Si solar cells,” IEEE Sens. J., vol.  10, no. 11, pp. 1753–1758, 2010.
[Crossref]

Schreier, R.

R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. Wiley-IEEE, 2004.

Scolari, L.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol.  17, no. 1, pp. 405–426, 2015.
[Crossref]

Shamai, S.

S. H. Park, O. Simeone, O. Sahin, and S. Shamai, “Fronthaul compression for cloud radio access networks: Signal processing advances inspired by network information theory,” IEEE Signal Process. Mag., vol.  31, no. 6, pp. 69–79, 2014.
[Crossref]

Shibata, N.

N. Shibata, T. Tashiro, S. Kuwano, N. Yuki, J. Terada, and A. Otaka, “Mobile front-haul employing Ethernet-based TDM-PON system for small cells,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.1.

Shinjo, S.

S. Chung, R. Ma, S. Shinjo, H. Nakamizo, K. Parsons, and K. H. Teo, “Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding,” IEEE Trans. Microwave Theory Tech., vol.  63, no. 2, pp. 598–613, 2015.
[Crossref]

S. Chung, R. Ma, S. Shinjo, and K. H. Teo, “Inter-band carrier aggregation digital transmitter architecture with concurrent multi-band delta-sigma modulation using out-of-band noise cancellation,” in IEEE MTT-S Int. Microwave Symp., 2015.

Silva, N. V.

N. V. Silva, A. S. R. Oliveira, and N. B. Carvalho, “Design and optimization of flexible and coding efficient all-digital RF transmitters,” IEEE Trans. Microwave Theory Tech., vol.  61, no. 1, pp. 625–632, 2013.
[Crossref]

Simeone, O.

S. H. Park, O. Simeone, O. Sahin, and S. Shamai, “Fronthaul compression for cloud radio access networks: Signal processing advances inspired by network information theory,” IEEE Signal Process. Mag., vol.  31, no. 6, pp. 69–79, 2014.
[Crossref]

Sodini, C. G.

A. Jerng and C. G. Sodini, “A wideband ΔΣ digital-RF modulator for high data rate transmitters,” IEEE J. Solid-State Circuits, vol.  42, no. 8, pp. 1710–1722, 2007.
[Crossref]

Sorensen, H. V.

P. M. Aziz, H. V. Sorensen, and J. V. der Spiegel, “An overview of sigma-delta converters,” IEEE Signal Process. Mag., vol.  13, no. 1, pp. 61–84, 1996.
[Crossref]

Stadius, K.

K. B. Östman, M. Englund, O. Viitala, K. Stadius, K. Koli, and J. Ryynanen, “Next-generation RF front-end design methods for direct ΔΣ receivers,” IEEE J. Emerging Sel. Top. Circuits Syst., vol.  5, no. 4, pp. 514–524, 2015.
[Crossref]

Stefanelli, B.

A. Frappe, A. Flament, B. Stefanelli, A. Kaiser, and A. Cathelin, “An all-digital RF signal generator using high-speed ΔΣ modulators,” IEEE J. Solid-State Circuits, vol.  44, no. 10, pp. 2722–2732, 2009.
[Crossref]

Tanaka, K.

K. Tanaka and A. Agata, “Next-generation optical access networks for C-RAN,” in Optical Fiber Communication Conf. (OFC), 2015, paper Tu2E.1.

Tao, A.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J., vol.  18, no. 2, pp. 117–133, 2013.
[Crossref]

Tashiro, T.

N. Shibata, T. Tashiro, S. Kuwano, N. Yuki, J. Terada, and A. Otaka, “Mobile front-haul employing Ethernet-based TDM-PON system for small cells,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.1.

Tavares, J. S.

Temes, G. C.

R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. Wiley-IEEE, 2004.

Teo, K. H.

S. Chung, R. Ma, S. Shinjo, H. Nakamizo, K. Parsons, and K. H. Teo, “Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding,” IEEE Trans. Microwave Theory Tech., vol.  63, no. 2, pp. 598–613, 2015.
[Crossref]

S. Chung, R. Ma, S. Shinjo, and K. H. Teo, “Inter-band carrier aggregation digital transmitter architecture with concurrent multi-band delta-sigma modulation using out-of-band noise cancellation,” in IEEE MTT-S Int. Microwave Symp., 2015.

Terada, J.

K. Miyamoto, S. Kuwano, J. Terada, and A. Otaka, “Analysis of mobile fronthaul bandwidth and wireless transmission performance in split-PHY processing architecture,” Opt. Express, vol.  24, no. 2, pp. 1261–1268, 2016.
[Crossref]

N. Shibata, T. Tashiro, S. Kuwano, N. Yuki, J. Terada, and A. Otaka, “Mobile front-haul employing Ethernet-based TDM-PON system for small cells,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.1.

Viitala, O.

K. B. Östman, M. Englund, O. Viitala, K. Stadius, K. Koli, and J. Ryynanen, “Next-generation RF front-end design methods for direct ΔΣ receivers,” IEEE J. Emerging Sel. Top. Circuits Syst., vol.  5, no. 4, pp. 514–524, 2015.
[Crossref]

Wang, H.

Y. Ma, Z. Xu, H. Lin, M. Zhou, H. Wang, C. Zhang, J. Yu, and X. Wang, “Demonstration of CPRI over self-seeded WDM-PON in commercial LTE environment,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.6.

Wang, J.

J. Wang, C. Liu, J. Zhang, M. Zhu, M. Xu, F. Lu, L. Cheng, and G.-K. Chang, “Nonlinear inter-band subcarrier intermodulations of multi-RAT OFDM wireless services in 5G heterogeneous mobile fronthaul networks,” J. Lightwave Technol., vol.  34, no. 17, pp. 4089–4103, 2016.
[Crossref]

J. Wang, C. Liu, M. Zhu, A. Yi, L. Cheng, and G. K. Chang, “Investigation of data-dependent channel cross-modulation in multiband radio-over-fiber systems,” J. Lightwave Technol., vol.  32, no. 10, pp. 1861–1871, 2014.
[Crossref]

J. Zhang, J. Wang, M. Xu, F. Lu, L. Chen, J. Yu, and G.-K. Chang, “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Optical Fiber Communication Conf. (OFC), 2016, paper Tu2B.3.

J. Wang, C. Liu, M. Zhu, M. Xu, Z. Dong, and G.-K. Chang, “Characterization and mitigation of nonlinear intermodulations in multichannel OFDM radio-over-fiber systems,” in European Conf. on Optical Communication (ECOC), 2014, paper P.7.18.

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Optical Fiber Communication Conf. (OFC), 2016, paper W1H.2.

Wang, X.

Y. Ma, Z. Xu, H. Lin, M. Zhou, H. Wang, C. Zhang, J. Yu, and X. Wang, “Demonstration of CPRI over self-seeded WDM-PON in commercial LTE environment,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.6.

Wepman, J. A.

J. A. Wepman, “Analog-to-digital converters and their applications in radio receivers,” IEEE Commun. Mag., vol.  33, no. 5, pp. 39–45, 1995.
[Crossref]

Wu, C.

C. Wu, E. Alon, and B. Nikoli, “A wideband 400 MHz-to-4  GHz direct RF-to-digital multimode ΔΣ receiver,” IEEE J. Solid-State Circuits, vol.  49, no. 7, pp. 1639–1652, 2014.
[Crossref]

Xu, M.

J. Wang, C. Liu, J. Zhang, M. Zhu, M. Xu, F. Lu, L. Cheng, and G.-K. Chang, “Nonlinear inter-band subcarrier intermodulations of multi-RAT OFDM wireless services in 5G heterogeneous mobile fronthaul networks,” J. Lightwave Technol., vol.  34, no. 17, pp. 4089–4103, 2016.
[Crossref]

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Optical Fiber Communication Conf. (OFC), 2016, paper W1H.2.

J. Wang, C. Liu, M. Zhu, M. Xu, Z. Dong, and G.-K. Chang, “Characterization and mitigation of nonlinear intermodulations in multichannel OFDM radio-over-fiber systems,” in European Conf. on Optical Communication (ECOC), 2014, paper P.7.18.

J. Zhang, J. Wang, M. Xu, F. Lu, L. Chen, J. Yu, and G.-K. Chang, “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Optical Fiber Communication Conf. (OFC), 2016, paper Tu2B.3.

Xu, W.

H. Qian, J. Chen, S. Yao, Z. Yu, H. Zhang, and W. Xu, “One-bit sigma-delta modulator for nonlinear visible light communication systems,” IEEE Photon. Technol. Lett., vol.  27, no. 4, pp. 419–422, 2015.
[Crossref]

Xu, Z.

Y. Ma, Z. Xu, H. Lin, M. Zhou, H. Wang, C. Zhang, J. Yu, and X. Wang, “Demonstration of CPRI over self-seeded WDM-PON in commercial LTE environment,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.6.

Yan, S.

S. Yan and E. Sanchez-Sinencio, “A continuous-time sigma-delta modulator with 88-dB dynamic range and 1.1-MHz signal bandwidth,” IEEE J. Solid-State Circuits, vol.  39, no. 1, pp. 75–86, 2004.
[Crossref]

Yan, Y.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol.  17, no. 1, pp. 405–426, 2015.
[Crossref]

Yao, S.

H. Qian, J. Chen, S. Yao, Z. Yu, H. Zhang, and W. Xu, “One-bit sigma-delta modulator for nonlinear visible light communication systems,” IEEE Photon. Technol. Lett., vol.  27, no. 4, pp. 419–422, 2015.
[Crossref]

Yi, A.

Ying, K.

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Optical Fiber Communication Conf. (OFC), 2016, paper W1H.2.

Yu, J.

Y. Ma, Z. Xu, H. Lin, M. Zhou, H. Wang, C. Zhang, J. Yu, and X. Wang, “Demonstration of CPRI over self-seeded WDM-PON in commercial LTE environment,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.6.

J. Zhang, J. Wang, M. Xu, F. Lu, L. Chen, J. Yu, and G.-K. Chang, “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Optical Fiber Communication Conf. (OFC), 2016, paper Tu2B.3.

Yu, Z.

H. Qian, J. Chen, S. Yao, Z. Yu, H. Zhang, and W. Xu, “One-bit sigma-delta modulator for nonlinear visible light communication systems,” IEEE Photon. Technol. Lett., vol.  27, no. 4, pp. 419–422, 2015.
[Crossref]

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Optical Fiber Communication Conf. (OFC), 2016, paper W1H.2.

Yuki, N.

N. Shibata, T. Tashiro, S. Kuwano, N. Yuki, J. Terada, and A. Otaka, “Mobile front-haul employing Ethernet-based TDM-PON system for small cells,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.1.

Zeng, H.

Zhang, C.

Y. Ma, Z. Xu, H. Lin, M. Zhou, H. Wang, C. Zhang, J. Yu, and X. Wang, “Demonstration of CPRI over self-seeded WDM-PON in commercial LTE environment,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.6.

Zhang, H.

H. Qian, J. Chen, S. Yao, Z. Yu, H. Zhang, and W. Xu, “One-bit sigma-delta modulator for nonlinear visible light communication systems,” IEEE Photon. Technol. Lett., vol.  27, no. 4, pp. 419–422, 2015.
[Crossref]

Zhang, J.

J. Wang, C. Liu, J. Zhang, M. Zhu, M. Xu, F. Lu, L. Cheng, and G.-K. Chang, “Nonlinear inter-band subcarrier intermodulations of multi-RAT OFDM wireless services in 5G heterogeneous mobile fronthaul networks,” J. Lightwave Technol., vol.  34, no. 17, pp. 4089–4103, 2016.
[Crossref]

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Optical Fiber Communication Conf. (OFC), 2016, paper W1H.2.

J. Zhang, J. Wang, M. Xu, F. Lu, L. Chen, J. Yu, and G.-K. Chang, “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Optical Fiber Communication Conf. (OFC), 2016, paper Tu2B.3.

Zhou, L.

X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.2.

Zhou, M.

Y. Ma, Z. Xu, H. Lin, M. Zhou, H. Wang, C. Zhang, J. Yu, and X. Wang, “Demonstration of CPRI over self-seeded WDM-PON in commercial LTE environment,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.6.

Zhu, M.

J. Wang, C. Liu, J. Zhang, M. Zhu, M. Xu, F. Lu, L. Cheng, and G.-K. Chang, “Nonlinear inter-band subcarrier intermodulations of multi-RAT OFDM wireless services in 5G heterogeneous mobile fronthaul networks,” J. Lightwave Technol., vol.  34, no. 17, pp. 4089–4103, 2016.
[Crossref]

J. Wang, C. Liu, M. Zhu, A. Yi, L. Cheng, and G. K. Chang, “Investigation of data-dependent channel cross-modulation in multiband radio-over-fiber systems,” J. Lightwave Technol., vol.  32, no. 10, pp. 1861–1871, 2014.
[Crossref]

J. Wang, C. Liu, M. Zhu, M. Xu, Z. Dong, and G.-K. Chang, “Characterization and mitigation of nonlinear intermodulations in multichannel OFDM radio-over-fiber systems,” in European Conf. on Optical Communication (ECOC), 2014, paper P.7.18.

M. Zhu, X. Liu, N. Chand, F. Effenberger, and G. K. Chang, “High-capacity mobile fronthaul supporting LTE-advanced carrier aggregation and 8 × 8 MIMO,” in Opt. Fiber Communication Conf. (OFC), 2015, paper M2J.3.

Zounes, T.

A. Pozsgay, T. Zounes, R. Hossain, M. Boulemnakher, V. Knopik, and S. Grange, “A fully digital 65  nm CMOS transmitter for the 2.4-to-2.7  GHz WiFi/WiMAX bands using 5.4  GHz ΔΣ RF DACs,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2008, pp. 360–361.

Bell Labs Tech. J. (1)

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J., vol.  18, no. 2, pp. 117–133, 2013.
[Crossref]

Bell Syst. Tech. J. (1)

W. R. Bennett, “Spectra of quantized signals,” Bell Syst. Tech. J., vol.  27, no. 3, pp. 446–472, 1948.
[Crossref]

IEEE Commun. Mag. (1)

J. A. Wepman, “Analog-to-digital converters and their applications in radio receivers,” IEEE Commun. Mag., vol.  33, no. 5, pp. 39–45, 1995.
[Crossref]

IEEE Commun. Surv. Tutorials (1)

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol.  17, no. 1, pp. 405–426, 2015.
[Crossref]

IEEE J. Emerging Sel. Top. Circuits Syst. (2)

L. Bettini, T. Christen, T. Burger, and Q. Huang, “A reconfigurable DT ΔΣ modulator for multi-standard 2G/3G/4G wireless receivers,” IEEE J. Emerging Sel. Top. Circuits Syst., vol.  5, no. 4, pp. 525–536, 2015.
[Crossref]

K. B. Östman, M. Englund, O. Viitala, K. Stadius, K. Koli, and J. Ryynanen, “Next-generation RF front-end design methods for direct ΔΣ receivers,” IEEE J. Emerging Sel. Top. Circuits Syst., vol.  5, no. 4, pp. 514–524, 2015.
[Crossref]

IEEE J. Solid-State Circuits (6)

J. Arias, P. Kiss, V. Prodanov, V. Boccuzzi, M. Banu, D. Bisbal, J. San Pablo, L. Quintanilla, and J. Barbolla, “A 32-mW 320-MHz continuous-time complex delta-sigma ADC for multi-mode wireless-LAN receivers,” IEEE J. Solid-State Circuits, vol.  41, no. 2, pp. 339–351, 2006.
[Crossref]

M. R. Miller and C. S. Petrie, “A multibit sigma-delta ADC for multimode receivers,” IEEE J. Solid-State Circuits, vol.  38, no. 3, pp. 475–482, 2003.
[Crossref]

C. Wu, E. Alon, and B. Nikoli, “A wideband 400 MHz-to-4  GHz direct RF-to-digital multimode ΔΣ receiver,” IEEE J. Solid-State Circuits, vol.  49, no. 7, pp. 1639–1652, 2014.
[Crossref]

A. Frappe, A. Flament, B. Stefanelli, A. Kaiser, and A. Cathelin, “An all-digital RF signal generator using high-speed ΔΣ modulators,” IEEE J. Solid-State Circuits, vol.  44, no. 10, pp. 2722–2732, 2009.
[Crossref]

S. Yan and E. Sanchez-Sinencio, “A continuous-time sigma-delta modulator with 88-dB dynamic range and 1.1-MHz signal bandwidth,” IEEE J. Solid-State Circuits, vol.  39, no. 1, pp. 75–86, 2004.
[Crossref]

A. Jerng and C. G. Sodini, “A wideband ΔΣ digital-RF modulator for high data rate transmitters,” IEEE J. Solid-State Circuits, vol.  42, no. 8, pp. 1710–1722, 2007.
[Crossref]

IEEE Photon. Technol. Lett. (2)

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photon. Technol. Lett., vol.  26, no. 24, pp. 2484–2487, 2014.
[Crossref]

H. Qian, J. Chen, S. Yao, Z. Yu, H. Zhang, and W. Xu, “One-bit sigma-delta modulator for nonlinear visible light communication systems,” IEEE Photon. Technol. Lett., vol.  27, no. 4, pp. 419–422, 2015.
[Crossref]

IEEE Sens. J. (1)

K. Kitamura, S. Sasaki, Y. Matsuya, and T. Douseki, “Optical wireless digital-sound transmission system with 1-bit ΔΣ-modulated visible light and spherical Si solar cells,” IEEE Sens. J., vol.  10, no. 11, pp. 1753–1758, 2010.
[Crossref]

IEEE Signal Process. Mag. (2)

S. H. Park, O. Simeone, O. Sahin, and S. Shamai, “Fronthaul compression for cloud radio access networks: Signal processing advances inspired by network information theory,” IEEE Signal Process. Mag., vol.  31, no. 6, pp. 69–79, 2014.
[Crossref]

P. M. Aziz, H. V. Sorensen, and J. V. der Spiegel, “An overview of sigma-delta converters,” IEEE Signal Process. Mag., vol.  13, no. 1, pp. 61–84, 1996.
[Crossref]

IEEE Trans. Circuits Syst. II (2)

M. Nielsen and T. Larsen, “A transmitter architecture based on delta-sigma modulation and switch-mode power amplification,” IEEE Trans. Circuits Syst. II, vol.  54, no. 8, pp. 735–739, 2007.
[Crossref]

M. Helaoui, S. Hatami, R. Negra, and F. M. Ghannouchi, “A novel architecture of delta-sigma modulator enabling all-digital multiband multistandard RF transmitters design,” IEEE Trans. Circuits Syst. II, vol.  55, no. 11, pp. 1129–1133, 2008.
[Crossref]

IEEE Trans. Commun. (1)

R. Gray, “Oversampled sigma-delta modulation,” IEEE Trans. Commun., vol.  35, no. 5, pp. 481–489, 1987.
[Crossref]

IEEE Trans. Microwave Theory Tech. (4)

F. M. Ghannouchi, S. Hatami, P. Aflaki, M. Helaoui, and R. Negra, “Accurate power efficiency estimation of GHz wireless delta-sigma transmitters for different classes of switching mode power amplifiers,” IEEE Trans. Microwave Theory Tech., vol.  58, no. 11, pp. 2812–2819, 2010.
[Crossref]

S. Chung, R. Ma, S. Shinjo, H. Nakamizo, K. Parsons, and K. H. Teo, “Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding,” IEEE Trans. Microwave Theory Tech., vol.  63, no. 2, pp. 598–613, 2015.
[Crossref]

N. V. Silva, A. S. R. Oliveira, and N. B. Carvalho, “Design and optimization of flexible and coding efficient all-digital RF transmitters,” IEEE Trans. Microwave Theory Tech., vol.  61, no. 1, pp. 625–632, 2013.
[Crossref]

T. P. Hung, J. Rode, L. E. Larson, and P. M. Asbeck, “Design of H-bridge class-D power amplifiers for digital pulse modulation transmitters,” IEEE Trans. Microwave Theory Tech., vol.  55, no. 12, pp. 2845–2855, 2007.
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (1)

Opt. Express (2)

Other (22)

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Optical Fiber Communication Conf. (OFC), 2016, paper W1H.2.

“Base Station (BS) radio transmission and reception,” , V.12.6.0, Feb.2015.

“Base Station (BS) conformance testing,” , V.14.1.0, Sept.2016.

J. Wang, C. Liu, M. Zhu, M. Xu, Z. Dong, and G.-K. Chang, “Characterization and mitigation of nonlinear intermodulations in multichannel OFDM radio-over-fiber systems,” in European Conf. on Optical Communication (ECOC), 2014, paper P.7.18.

T. Kitayabu, Y. Amano, and H. Ishikawa, “Concurrent dual-band transmitter architecture for spectrum aggregation system,” in IEEE Radio and Wireless Symp. (RWS), 2010, pp. 689–692.

R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. Wiley-IEEE, 2004.

R. Schreier, “High-level design and simulation of delta-sigma modulators,” June2016 [Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/19-delta-sigma-toolbox .

A. Pozsgay, T. Zounes, R. Hossain, M. Boulemnakher, V. Knopik, and S. Grange, “A fully digital 65  nm CMOS transmitter for the 2.4-to-2.7  GHz WiFi/WiMAX bands using 5.4  GHz ΔΣ RF DACs,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2008, pp. 360–361.

S. Chung, R. Ma, S. Shinjo, and K. H. Teo, “Inter-band carrier aggregation digital transmitter architecture with concurrent multi-band delta-sigma modulation using out-of-band noise cancellation,” in IEEE MTT-S Int. Microwave Symp., 2015.

A. Kanno and T. Kawanishi, “Analog signal transmission by FPGA-based pseudo-delta-sigma modulator,” in IEEE Photonics Conf. (IPC), 2015, pp. 136–137.

N. Shibata, T. Tashiro, S. Kuwano, N. Yuki, J. Terada, and A. Otaka, “Mobile front-haul employing Ethernet-based TDM-PON system for small cells,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.1.

Y. Ma, Z. Xu, H. Lin, M. Zhou, H. Wang, C. Zhang, J. Yu, and X. Wang, “Demonstration of CPRI over self-seeded WDM-PON in commercial LTE environment,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.6.

China Mobile, “C-RAN the road towards green RAN (version 2.5),” White Paper, Oct.2011.

K. Tanaka and A. Agata, “Next-generation optical access networks for C-RAN,” in Optical Fiber Communication Conf. (OFC), 2015, paper Tu2E.1.

T. Pfeiffer, “Next generation mobile fronthaul architectures,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.7.

X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.2.

M. Zhu, X. Liu, N. Chand, F. Effenberger, and G. K. Chang, “High-capacity mobile fronthaul supporting LTE-advanced carrier aggregation and 8 × 8 MIMO,” in Opt. Fiber Communication Conf. (OFC), 2015, paper M2J.3.

S. Cho, H. S. Chung, C. Han, S. Lee, and J. H. Lee, “Experimental demonstrations of next generation cost-effective mobile fronthaul with IFoF technique,” in Optical Fiber Communication Conf. (OFC), 2015, paper M2J.5.

J. Zhang, J. Wang, M. Xu, F. Lu, L. Chen, J. Yu, and G.-K. Chang, “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Optical Fiber Communication Conf. (OFC), 2016, paper Tu2B.3.

Common Public Radio Interface (CPRI) Specification V7.0 (2015-10-09) [Online]. Available: http://www.cpri.info/downloads/CPRI_v_7_0_2015-10-09.pdf .

“Evolved universal terrestrial radio access (E-UTRA); carrier aggregation; base station (BS) radio transmission and reception,” , V10.1.0, July2013.

“New WI proposal: LTE carrier aggregation enhancement beyond 5 carriers,” , Dec.2014.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Typical architecture of a cloud-radio access network (C-RAN), including the mobile backhaul (MBH) network from the service-gateway (S-GW) or the mobile management entity (MME) of the core network to baseband processing units (BBUs), and the mobile fronthaul (MFH) network from BBUs to remote radio heads (RRHs). (b) Analog MFH based on radio-over-fiber (RoF) technologies. (c) Digital MFH based on common public radio interface (CPRI). (d) Digital MFH based on delta–sigma modulation.
Fig. 2.
Fig. 2. Operation principles of two digitization interfaces of digital MFH networks. (a) CPRI is based on a Nyquist ADC with a 30.72-MSa/s sampling rate and 15 quantization bits per sample. (b) Delta–sigma modulation only uses one or two quantization bits, which leads to significant quantization noise if sampled at the Nyquist rate. (c) Oversampling extends the Nyquist zone, so that quantization noise can be spread over a wider frequency range. (d) The noise transfer function acts as a low-pass filter to the signal and a high-pass filter to the noise, so that quantization noise is pushed out of the signal band, and the signal and noise are separated in the frequency domain. (e) Low-pass filtering eliminates the out-of-band quantization noise and retrieves the original analog signal.
Fig. 3.
Fig. 3. (a) Experimental setup. (b) Signal waveforms and eye-diagram of one-bit digitization: analog LTE signal (red) before delta–sigma modulation at point i; 10-Gb/s OOK (blue) after delta–sigma modulation at point ii; retrieved analog signal (green) after the LPF at point iii. (c) Signal waveforms and eye-diagram of two-bit digitization: analog signal (red) at point i; 10-Gbaud PAM4 (blue) at point ii; retrieved analog signal (green) at point iii.
Fig. 4.
Fig. 4. Experimental results of Case I. (a)  Z -domain block diagram of a second-order delta–sigma modulator based on CRFF structure. (b) Zeroes and poles of the noise transfer function. (c),(d) Electrical spectra of 32 carrier aggregated LTE signals after delta–sigma modulation. (d) is a zoom-in of (c). (e) EVMs of all 32 LTE CCs, including 18 CCs carrying 64QAM and 14 CCs carrying 16QAM. (f) Constellations of the best and worst cases for 64QAM and 16QAM, respectively.
Fig. 5.
Fig. 5. Experimental results of Case II. (a, b) Electrical spectra of 30 carrier aggregated FBMC signals after delta–sigma modulation. (b) is a zoom-in of (a). (c) EVMs of all 30 FBMC CCs, including 10 CCs carrying 256QAM, 8 CCs carrying 64QAM, 6 CCs carrying 16QAM, and the remaining 6 CCs carrying QPSK. (d) Constellations of the best and worst cases for each modulation format.
Fig. 6.
Fig. 6. Experimental results of Case III. (a)  Z -domain block diagram of a fourth-order delta–sigma modulator based on CRFF structure. (b) Zeroes and poles of the noise transfer function. (c, d) Electrical spectra of 32 LTE CCs after delta–sigma modulation. (d) is a zoom-in of (c). (e) EVMs of all 32 LTE CCs, including 16 CCs carrying 256QAM and 16 CCs carrying 64QAM. (f) Constellations of the best and worst cases of 256QAM and 64QAM, respectively.
Fig. 7.
Fig. 7. Experimental results of Case IV. (a, b) Electrical spectra of 32 LTE CCs after two-bit delta–sigma modulation. (b) is a zoom-in of (a). (c) EVMs of all 32 LTE CCs, including 10 CCs carrying 1024QAM and 22 CCs carrying 256QAM. (d) Constellations of the best and worst cases of 1024QAM and 256QAM, respectively.
Fig. 8.
Fig. 8. BER tolerance of the EVM performance of delta–sigma modulation-based digital MFH. (a) EVMs of 32 LTE CCs in Case I under different BER conditions of a 10-Gb/s OOK link. BER threshold is 1 × 10 4 , i.e., for BER below that value, EVMs of all CCs still satisfy the 3GPP specifications. (b) Constellations of CC 8, 18, 19, and 31 at BER = 1 × 10 4 , corresponding to the best and worst cases of 64QAM and 16QAM, respectively. (c) EVMs of 32 LTE CCs in Case III under different BER conditions with threshold of 3 × 10 5 . (d) Constellations of CC 12, 17, 6, and 32 at BER = 3 × 10 5 , corresponding to the best and worst cases of 256QAM and 64QAM, respectively.
Fig. 9.
Fig. 9. Experimental results of Case V RoF-based analog MFH. Average EVM of 24 LTE CCs as a function of the input V pp before the power amplifier in Fig. 3. Two power amplifiers with noise figure (NF) of 5.8 and 11 dB were used, and the best achievable constellations are shown in insets.

Tables (4)

Tables Icon

TABLE I CPRI Data Rate Options [15]

Tables Icon

TABLE II Comparison of Three MFH Technologies: ROF-Based Analog MFH, CPRI-Based Digital MFH, and Delta–Sigma Modulation-Based Digital MFH

Tables Icon

TABLE III Experimental Designs of Delta–Sigma Modulation-Based Digital MFH and ROF-Based Analog MFH

Tables Icon

TABLE IV 3GPP Specifications of EVMs for Various Modulation Formats [52]