Abstract

Common Public Radio Interface (CPRI) is a successful industry cooperation defining the publicly available specification for the key internal interface of radio base stations between the radio equipment control (REC) and the radio equipment (RE) in the fronthaul of mobile networks. However, CPRI is expensive to deploy, consumes large bandwidth, and currently is statically configured. On the other hand, an Ethernet-based mobile fronthaul will be cost-efficient and more easily reconfigurable. Encapsulating CPRI over Ethernet (CoE) is an attractive solution, but stringent CPRI requirements such as delay and jitter are major challenges that need to be met to make CoE a reality. This study investigates whether CoE can meet delay and jitter requirements by performing FPGA-based Verilog experiments and simulations. Verilog experiments show that CoE encapsulation with fixed Ethernet frame size requires about tens of microseconds. Numerical experiments show that the proposed scheduling policy of CoE flows on Ethernet can reduce jitter when redundant Ethernet capacity is provided. The reduction in jitter can be as large as 1 μs, hence making Ethernet-based mobile fronthaul a credible technology.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time- Versus Size-Based CPRI in Ethernet Encapsulation for Next Generation Reconfigurable Fronthaul

L. Valcarenghi, K. Kondepu, and P. Castoldi
J. Opt. Commun. Netw. 9(9) D64-D73 (2017)

Switched Ethernet Fronthaul Architecture for Cloud-Radio Access Networks

Philippos Assimakopoulos, Mohamad Kenan Al-Hares, and Nathan J. Gomes
J. Opt. Commun. Netw. 8(12) B135-B146 (2016)

Fronthaul Network Modeling and Dimensioning Meeting Ultra-Low Latency Requirements for 5G

Gabriel Otero Pérez, José Alberto Hernández, and David Larrabeiti
J. Opt. Commun. Netw. 10(6) 573-581 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Cisco Visual Networking Index, 2015 [Online]. Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html . Accessed Oct. 31, 2016.
  2. V. Jungnickel, K. Habel, M. Parker, S. Walker, C. Bock, J. Ferrer Riera, V. Marques, and D. Levi, “Software-defined open architecture for front-and-backhaul in 5G mobile networks,” in Proc. 16th Int. Conf. on Transparent Optical Networks (ICTON), July 2014.
  3. A. Checko, H. Christiansen, H. Yan, Y. Scolari, G. Kardaras, M. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol. 17, pp. 405–426, 2015.
    [Crossref]
  4. Next Generation Fronthaul Interface (1914) Working Group [Online]. Available: http://sites.ieee.org/sagroups-1914/ . Accessed Oct. 31, 2016.
  5. “Next Generation Fronthaul Interface,” China Mobile White Paper, 2015 [Online]. Available: http://labs.chinamobile.com/cran/wp-content/uploads/White Paper of Next Generation Fronthaul Interface.PDF . Accessed Oct. 31, 2016.
  6. “Common Public Radio Interface (CPRI) Specification V7,” 2015 [Online]. Available: http://www.cpri.info/downloads/CPRI_v_7_0_2015-10-09.pdf . Accessed Oct. 31, 2016.
  7. Open Base Station Architecture Initiative (OBSAI), 2013 [Online]. Available: http://www.obsai.com/specifications.htm . Accessed Oct. 31, 2016.
  8. Open Radio equipment Interface (ORI), 2014 [Online]. Available: http://www.etsi.org/technologies-clusters/technologies/ori . Accessed Oct. 31, 2016.
  9. G. Britton, B. Kubert, and J. Chapin, “RF over Ethernet for wireless infrastructure,” in Proc. Software Defined Radio Technical Conf., Nov. 2005.
  10. Fujitsu Network Communications, “The benefits of cloud-RAN architecture in mobile network expansion,” 2014 [Online]. Available: http://www.fujitsu.com/downloads/TEL/fnc/whitepapers/CloudRANwp.pdf . Accessed Oct. 31, 2016.
  11. J. Huang, Ed., “Integrated mobile fronthaul and backhaul,” 2016 [Online]. Available: https://tools.ietf.org/pdf/draft-huang-detnet-xhaul-00.pdf . Accessed Oct. 31, 2016.
  12. J. Farkas and B. Varga, “Applicability of Qbu and Qbv to fronthaul,” Ericson White Paper, 2015 [Online]. Available: http://www.ieee802.org/1/files/public/docs2015/cm-farkas-applicability-of-bu-and-bv-1115-v02.pdf . Accessed Oct. 31, 2016.
  13. T. Wan and P. Ashwood, “A performance study of CPRI over Ethernet,” , 2015 [Online]. Available: http://www.ieee1904.org/3/meeting_archive/2015/02/tf3_1502_ashwood_1a.pdf . Accessed Oct. 31, 2016.
  14. N. Gomes, P. Chanclou, P. Turnbull, A. Magee, and V. Jungnickel, “Fronthaul evolution: From CPRI to Ethernet,” Opt. Fiber Technol., vol. 26, pp. 50–58, 2015.
    [Crossref]
  15. L. Valcarenghi, K. Kondepu, and P. Castoldi, “Analytical and experimental evaluation of CPRI over Ethernet dynamic rate reconfiguration,” in Proc. IEEE Int. Conf. on Communications (ICC), May 2016.
  16. D. Chitimalla, K. Kondepu, L. Valcarenghi, and B. Mukherjee, “Reconfigurable and efficient fronthaul of 5G systems,” in IEEE Int. Conf. on Advanced Networks and Telecommuncations Systems (ANTS), Dec. 2015.
  17. “IEEE P802.1Qbu—Bridges and bridged networks—Amendment: Enhancements for frame preemption,” July2015 [Online login required]. Available: http://www.ieee802.org/1/files/private/bu-drafts/d3/802-1Qbu-d3-0.pdf . Accessed Oct. 31, 2016.
  18. “IEEE P802.1Qbv—Bridges and bridged networks—Amendment: Enhancements for scheduled traffic, Sept.2015 [Online login required]. Available: http://www.ieee802.org/1/files/private/bv-drafts/d3/802-1Qbv-d3-1.pdf . Accessed Oct. 31, 2016.
  19. “A performance study of CPRI over Ethernet,” IEEE 1904.3 Working Group Meeting, Jan. 2015.
  20. T. Wan and P. Ashwood-Smith, “A performance study of CPRI over Ethernet with IEEE 802.1Qbu and 802.1Qbv enhancements,” in IEEE GLOBECOM, Dec. 2015.
  21. M. Fiorani, B. Skubic, J. Mårtensson, L. Valcarenghi, P. Castoldi, L. Wosinska, and P. Monti, “On the design of 5G transport networks,” Photon. Netw. Commun., vol. 30, pp. 403–415, 2015.
    [Crossref]
  22. A. Asensio, P. Saengudomlert, M. Ruiz, and L. Velasco, “Study of the centralization level of optical network-supported cloud RAN,” in Optical Network Design and Modeling (ONDM), May 2016.
  23. H. Ali-Ahmad, C. Cicconetti, A. Oliva, V. Mancuso, M. Sama, P. Seite, and S. Shanmugalingam, “An SDN-based network architecture for extremely dense wireless networks,” in IEEE SDN for Future Networks and Services, Nov. 2013, pp. 105–108.
  24. H. Son and S. Shin, “Fronthaul size: Calculation of maximum distance between RRH and BBU,” Apr.2014 [Online]. Available: http://www.netmanias.com/en/post/blog/6276/c-ran-fronthaul-lte/fronthaul-size-calculation-of-maximum-distance-between-rrh-and-bbu . Accessed Oct. 31, 2016.
  25. “Jitter measurement for voice over IP,” Voipfuture White Paper, 2009 [Online]. Available: http://www.voipfuture.com/wordpress/wp-content/uploads/2015/07/Voipfuture_WP_Jitter-Measurement-VoIP-Quality-Monitoring-Basics.pdf . Accessed Oct. 31, 2016.
  26. J. Anuskiewicz, “Measuring jitter accuratley,” 2008 [Online]. Available: http://www.lightwaveonline.com/articles/2008/04/measuring-jitter-accurately-54886317.html . Accessed Oct. 31, 2016.
  27. E. Sinem and V. Pravin, “TDMA scheduling algorithms for wireless sensor networks,” Wireless Netw., vol. 16, pp. 985–997, 2010.
    [Crossref]
  28. J. Mao, Z. Wu, and X. Wu, “A TDMA scheduling scheme for many-to-one communications in wireless sensor networks,” Comput. Commun., vol. 30, pp. 863–872, 2007.
    [Crossref]
  29. J. Korhonen, “Practical approach to converged FH/BH network architecture and functional partitioning,” , 2016 [Online]. Available: http://sites.ieee.org/sagroups-1914/files/2016/08/tf1_1608_korhonen_practical_approach_2.pdf . Accessed Oct. 31, 2016.

2015 (3)

A. Checko, H. Christiansen, H. Yan, Y. Scolari, G. Kardaras, M. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol. 17, pp. 405–426, 2015.
[Crossref]

N. Gomes, P. Chanclou, P. Turnbull, A. Magee, and V. Jungnickel, “Fronthaul evolution: From CPRI to Ethernet,” Opt. Fiber Technol., vol. 26, pp. 50–58, 2015.
[Crossref]

M. Fiorani, B. Skubic, J. Mårtensson, L. Valcarenghi, P. Castoldi, L. Wosinska, and P. Monti, “On the design of 5G transport networks,” Photon. Netw. Commun., vol. 30, pp. 403–415, 2015.
[Crossref]

2010 (1)

E. Sinem and V. Pravin, “TDMA scheduling algorithms for wireless sensor networks,” Wireless Netw., vol. 16, pp. 985–997, 2010.
[Crossref]

2007 (1)

J. Mao, Z. Wu, and X. Wu, “A TDMA scheduling scheme for many-to-one communications in wireless sensor networks,” Comput. Commun., vol. 30, pp. 863–872, 2007.
[Crossref]

Ali-Ahmad, H.

H. Ali-Ahmad, C. Cicconetti, A. Oliva, V. Mancuso, M. Sama, P. Seite, and S. Shanmugalingam, “An SDN-based network architecture for extremely dense wireless networks,” in IEEE SDN for Future Networks and Services, Nov. 2013, pp. 105–108.

Asensio, A.

A. Asensio, P. Saengudomlert, M. Ruiz, and L. Velasco, “Study of the centralization level of optical network-supported cloud RAN,” in Optical Network Design and Modeling (ONDM), May 2016.

Ashwood, P.

T. Wan and P. Ashwood, “A performance study of CPRI over Ethernet,” , 2015 [Online]. Available: http://www.ieee1904.org/3/meeting_archive/2015/02/tf3_1502_ashwood_1a.pdf . Accessed Oct. 31, 2016.

Ashwood-Smith, P.

T. Wan and P. Ashwood-Smith, “A performance study of CPRI over Ethernet with IEEE 802.1Qbu and 802.1Qbv enhancements,” in IEEE GLOBECOM, Dec. 2015.

Berger, M.

A. Checko, H. Christiansen, H. Yan, Y. Scolari, G. Kardaras, M. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol. 17, pp. 405–426, 2015.
[Crossref]

Bock, C.

V. Jungnickel, K. Habel, M. Parker, S. Walker, C. Bock, J. Ferrer Riera, V. Marques, and D. Levi, “Software-defined open architecture for front-and-backhaul in 5G mobile networks,” in Proc. 16th Int. Conf. on Transparent Optical Networks (ICTON), July 2014.

Britton, G.

G. Britton, B. Kubert, and J. Chapin, “RF over Ethernet for wireless infrastructure,” in Proc. Software Defined Radio Technical Conf., Nov. 2005.

Castoldi, P.

M. Fiorani, B. Skubic, J. Mårtensson, L. Valcarenghi, P. Castoldi, L. Wosinska, and P. Monti, “On the design of 5G transport networks,” Photon. Netw. Commun., vol. 30, pp. 403–415, 2015.
[Crossref]

L. Valcarenghi, K. Kondepu, and P. Castoldi, “Analytical and experimental evaluation of CPRI over Ethernet dynamic rate reconfiguration,” in Proc. IEEE Int. Conf. on Communications (ICC), May 2016.

Chanclou, P.

N. Gomes, P. Chanclou, P. Turnbull, A. Magee, and V. Jungnickel, “Fronthaul evolution: From CPRI to Ethernet,” Opt. Fiber Technol., vol. 26, pp. 50–58, 2015.
[Crossref]

Chapin, J.

G. Britton, B. Kubert, and J. Chapin, “RF over Ethernet for wireless infrastructure,” in Proc. Software Defined Radio Technical Conf., Nov. 2005.

Checko, A.

A. Checko, H. Christiansen, H. Yan, Y. Scolari, G. Kardaras, M. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol. 17, pp. 405–426, 2015.
[Crossref]

Chitimalla, D.

D. Chitimalla, K. Kondepu, L. Valcarenghi, and B. Mukherjee, “Reconfigurable and efficient fronthaul of 5G systems,” in IEEE Int. Conf. on Advanced Networks and Telecommuncations Systems (ANTS), Dec. 2015.

Christiansen, H.

A. Checko, H. Christiansen, H. Yan, Y. Scolari, G. Kardaras, M. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol. 17, pp. 405–426, 2015.
[Crossref]

Cicconetti, C.

H. Ali-Ahmad, C. Cicconetti, A. Oliva, V. Mancuso, M. Sama, P. Seite, and S. Shanmugalingam, “An SDN-based network architecture for extremely dense wireless networks,” in IEEE SDN for Future Networks and Services, Nov. 2013, pp. 105–108.

Dittmann, L.

A. Checko, H. Christiansen, H. Yan, Y. Scolari, G. Kardaras, M. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol. 17, pp. 405–426, 2015.
[Crossref]

Farkas, J.

J. Farkas and B. Varga, “Applicability of Qbu and Qbv to fronthaul,” Ericson White Paper, 2015 [Online]. Available: http://www.ieee802.org/1/files/public/docs2015/cm-farkas-applicability-of-bu-and-bv-1115-v02.pdf . Accessed Oct. 31, 2016.

Ferrer Riera, J.

V. Jungnickel, K. Habel, M. Parker, S. Walker, C. Bock, J. Ferrer Riera, V. Marques, and D. Levi, “Software-defined open architecture for front-and-backhaul in 5G mobile networks,” in Proc. 16th Int. Conf. on Transparent Optical Networks (ICTON), July 2014.

Fiorani, M.

M. Fiorani, B. Skubic, J. Mårtensson, L. Valcarenghi, P. Castoldi, L. Wosinska, and P. Monti, “On the design of 5G transport networks,” Photon. Netw. Commun., vol. 30, pp. 403–415, 2015.
[Crossref]

Gomes, N.

N. Gomes, P. Chanclou, P. Turnbull, A. Magee, and V. Jungnickel, “Fronthaul evolution: From CPRI to Ethernet,” Opt. Fiber Technol., vol. 26, pp. 50–58, 2015.
[Crossref]

Habel, K.

V. Jungnickel, K. Habel, M. Parker, S. Walker, C. Bock, J. Ferrer Riera, V. Marques, and D. Levi, “Software-defined open architecture for front-and-backhaul in 5G mobile networks,” in Proc. 16th Int. Conf. on Transparent Optical Networks (ICTON), July 2014.

Jungnickel, V.

N. Gomes, P. Chanclou, P. Turnbull, A. Magee, and V. Jungnickel, “Fronthaul evolution: From CPRI to Ethernet,” Opt. Fiber Technol., vol. 26, pp. 50–58, 2015.
[Crossref]

V. Jungnickel, K. Habel, M. Parker, S. Walker, C. Bock, J. Ferrer Riera, V. Marques, and D. Levi, “Software-defined open architecture for front-and-backhaul in 5G mobile networks,” in Proc. 16th Int. Conf. on Transparent Optical Networks (ICTON), July 2014.

Kardaras, G.

A. Checko, H. Christiansen, H. Yan, Y. Scolari, G. Kardaras, M. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol. 17, pp. 405–426, 2015.
[Crossref]

Kondepu, K.

D. Chitimalla, K. Kondepu, L. Valcarenghi, and B. Mukherjee, “Reconfigurable and efficient fronthaul of 5G systems,” in IEEE Int. Conf. on Advanced Networks and Telecommuncations Systems (ANTS), Dec. 2015.

L. Valcarenghi, K. Kondepu, and P. Castoldi, “Analytical and experimental evaluation of CPRI over Ethernet dynamic rate reconfiguration,” in Proc. IEEE Int. Conf. on Communications (ICC), May 2016.

Korhonen, J.

J. Korhonen, “Practical approach to converged FH/BH network architecture and functional partitioning,” , 2016 [Online]. Available: http://sites.ieee.org/sagroups-1914/files/2016/08/tf1_1608_korhonen_practical_approach_2.pdf . Accessed Oct. 31, 2016.

Kubert, B.

G. Britton, B. Kubert, and J. Chapin, “RF over Ethernet for wireless infrastructure,” in Proc. Software Defined Radio Technical Conf., Nov. 2005.

Levi, D.

V. Jungnickel, K. Habel, M. Parker, S. Walker, C. Bock, J. Ferrer Riera, V. Marques, and D. Levi, “Software-defined open architecture for front-and-backhaul in 5G mobile networks,” in Proc. 16th Int. Conf. on Transparent Optical Networks (ICTON), July 2014.

Magee, A.

N. Gomes, P. Chanclou, P. Turnbull, A. Magee, and V. Jungnickel, “Fronthaul evolution: From CPRI to Ethernet,” Opt. Fiber Technol., vol. 26, pp. 50–58, 2015.
[Crossref]

Mancuso, V.

H. Ali-Ahmad, C. Cicconetti, A. Oliva, V. Mancuso, M. Sama, P. Seite, and S. Shanmugalingam, “An SDN-based network architecture for extremely dense wireless networks,” in IEEE SDN for Future Networks and Services, Nov. 2013, pp. 105–108.

Mao, J.

J. Mao, Z. Wu, and X. Wu, “A TDMA scheduling scheme for many-to-one communications in wireless sensor networks,” Comput. Commun., vol. 30, pp. 863–872, 2007.
[Crossref]

Marques, V.

V. Jungnickel, K. Habel, M. Parker, S. Walker, C. Bock, J. Ferrer Riera, V. Marques, and D. Levi, “Software-defined open architecture for front-and-backhaul in 5G mobile networks,” in Proc. 16th Int. Conf. on Transparent Optical Networks (ICTON), July 2014.

Mårtensson, J.

M. Fiorani, B. Skubic, J. Mårtensson, L. Valcarenghi, P. Castoldi, L. Wosinska, and P. Monti, “On the design of 5G transport networks,” Photon. Netw. Commun., vol. 30, pp. 403–415, 2015.
[Crossref]

Monti, P.

M. Fiorani, B. Skubic, J. Mårtensson, L. Valcarenghi, P. Castoldi, L. Wosinska, and P. Monti, “On the design of 5G transport networks,” Photon. Netw. Commun., vol. 30, pp. 403–415, 2015.
[Crossref]

Mukherjee, B.

D. Chitimalla, K. Kondepu, L. Valcarenghi, and B. Mukherjee, “Reconfigurable and efficient fronthaul of 5G systems,” in IEEE Int. Conf. on Advanced Networks and Telecommuncations Systems (ANTS), Dec. 2015.

Oliva, A.

H. Ali-Ahmad, C. Cicconetti, A. Oliva, V. Mancuso, M. Sama, P. Seite, and S. Shanmugalingam, “An SDN-based network architecture for extremely dense wireless networks,” in IEEE SDN for Future Networks and Services, Nov. 2013, pp. 105–108.

Parker, M.

V. Jungnickel, K. Habel, M. Parker, S. Walker, C. Bock, J. Ferrer Riera, V. Marques, and D. Levi, “Software-defined open architecture for front-and-backhaul in 5G mobile networks,” in Proc. 16th Int. Conf. on Transparent Optical Networks (ICTON), July 2014.

Pravin, V.

E. Sinem and V. Pravin, “TDMA scheduling algorithms for wireless sensor networks,” Wireless Netw., vol. 16, pp. 985–997, 2010.
[Crossref]

Ruiz, M.

A. Asensio, P. Saengudomlert, M. Ruiz, and L. Velasco, “Study of the centralization level of optical network-supported cloud RAN,” in Optical Network Design and Modeling (ONDM), May 2016.

Saengudomlert, P.

A. Asensio, P. Saengudomlert, M. Ruiz, and L. Velasco, “Study of the centralization level of optical network-supported cloud RAN,” in Optical Network Design and Modeling (ONDM), May 2016.

Sama, M.

H. Ali-Ahmad, C. Cicconetti, A. Oliva, V. Mancuso, M. Sama, P. Seite, and S. Shanmugalingam, “An SDN-based network architecture for extremely dense wireless networks,” in IEEE SDN for Future Networks and Services, Nov. 2013, pp. 105–108.

Scolari, Y.

A. Checko, H. Christiansen, H. Yan, Y. Scolari, G. Kardaras, M. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol. 17, pp. 405–426, 2015.
[Crossref]

Seite, P.

H. Ali-Ahmad, C. Cicconetti, A. Oliva, V. Mancuso, M. Sama, P. Seite, and S. Shanmugalingam, “An SDN-based network architecture for extremely dense wireless networks,” in IEEE SDN for Future Networks and Services, Nov. 2013, pp. 105–108.

Shanmugalingam, S.

H. Ali-Ahmad, C. Cicconetti, A. Oliva, V. Mancuso, M. Sama, P. Seite, and S. Shanmugalingam, “An SDN-based network architecture for extremely dense wireless networks,” in IEEE SDN for Future Networks and Services, Nov. 2013, pp. 105–108.

Sinem, E.

E. Sinem and V. Pravin, “TDMA scheduling algorithms for wireless sensor networks,” Wireless Netw., vol. 16, pp. 985–997, 2010.
[Crossref]

Skubic, B.

M. Fiorani, B. Skubic, J. Mårtensson, L. Valcarenghi, P. Castoldi, L. Wosinska, and P. Monti, “On the design of 5G transport networks,” Photon. Netw. Commun., vol. 30, pp. 403–415, 2015.
[Crossref]

Turnbull, P.

N. Gomes, P. Chanclou, P. Turnbull, A. Magee, and V. Jungnickel, “Fronthaul evolution: From CPRI to Ethernet,” Opt. Fiber Technol., vol. 26, pp. 50–58, 2015.
[Crossref]

Valcarenghi, L.

M. Fiorani, B. Skubic, J. Mårtensson, L. Valcarenghi, P. Castoldi, L. Wosinska, and P. Monti, “On the design of 5G transport networks,” Photon. Netw. Commun., vol. 30, pp. 403–415, 2015.
[Crossref]

L. Valcarenghi, K. Kondepu, and P. Castoldi, “Analytical and experimental evaluation of CPRI over Ethernet dynamic rate reconfiguration,” in Proc. IEEE Int. Conf. on Communications (ICC), May 2016.

D. Chitimalla, K. Kondepu, L. Valcarenghi, and B. Mukherjee, “Reconfigurable and efficient fronthaul of 5G systems,” in IEEE Int. Conf. on Advanced Networks and Telecommuncations Systems (ANTS), Dec. 2015.

Varga, B.

J. Farkas and B. Varga, “Applicability of Qbu and Qbv to fronthaul,” Ericson White Paper, 2015 [Online]. Available: http://www.ieee802.org/1/files/public/docs2015/cm-farkas-applicability-of-bu-and-bv-1115-v02.pdf . Accessed Oct. 31, 2016.

Velasco, L.

A. Asensio, P. Saengudomlert, M. Ruiz, and L. Velasco, “Study of the centralization level of optical network-supported cloud RAN,” in Optical Network Design and Modeling (ONDM), May 2016.

Walker, S.

V. Jungnickel, K. Habel, M. Parker, S. Walker, C. Bock, J. Ferrer Riera, V. Marques, and D. Levi, “Software-defined open architecture for front-and-backhaul in 5G mobile networks,” in Proc. 16th Int. Conf. on Transparent Optical Networks (ICTON), July 2014.

Wan, T.

T. Wan and P. Ashwood, “A performance study of CPRI over Ethernet,” , 2015 [Online]. Available: http://www.ieee1904.org/3/meeting_archive/2015/02/tf3_1502_ashwood_1a.pdf . Accessed Oct. 31, 2016.

T. Wan and P. Ashwood-Smith, “A performance study of CPRI over Ethernet with IEEE 802.1Qbu and 802.1Qbv enhancements,” in IEEE GLOBECOM, Dec. 2015.

Wosinska, L.

M. Fiorani, B. Skubic, J. Mårtensson, L. Valcarenghi, P. Castoldi, L. Wosinska, and P. Monti, “On the design of 5G transport networks,” Photon. Netw. Commun., vol. 30, pp. 403–415, 2015.
[Crossref]

Wu, X.

J. Mao, Z. Wu, and X. Wu, “A TDMA scheduling scheme for many-to-one communications in wireless sensor networks,” Comput. Commun., vol. 30, pp. 863–872, 2007.
[Crossref]

Wu, Z.

J. Mao, Z. Wu, and X. Wu, “A TDMA scheduling scheme for many-to-one communications in wireless sensor networks,” Comput. Commun., vol. 30, pp. 863–872, 2007.
[Crossref]

Yan, H.

A. Checko, H. Christiansen, H. Yan, Y. Scolari, G. Kardaras, M. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol. 17, pp. 405–426, 2015.
[Crossref]

Comput. Commun. (1)

J. Mao, Z. Wu, and X. Wu, “A TDMA scheduling scheme for many-to-one communications in wireless sensor networks,” Comput. Commun., vol. 30, pp. 863–872, 2007.
[Crossref]

IEEE Commun. Surv. Tutorials (1)

A. Checko, H. Christiansen, H. Yan, Y. Scolari, G. Kardaras, M. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutorials, vol. 17, pp. 405–426, 2015.
[Crossref]

Opt. Fiber Technol. (1)

N. Gomes, P. Chanclou, P. Turnbull, A. Magee, and V. Jungnickel, “Fronthaul evolution: From CPRI to Ethernet,” Opt. Fiber Technol., vol. 26, pp. 50–58, 2015.
[Crossref]

Photon. Netw. Commun. (1)

M. Fiorani, B. Skubic, J. Mårtensson, L. Valcarenghi, P. Castoldi, L. Wosinska, and P. Monti, “On the design of 5G transport networks,” Photon. Netw. Commun., vol. 30, pp. 403–415, 2015.
[Crossref]

Wireless Netw. (1)

E. Sinem and V. Pravin, “TDMA scheduling algorithms for wireless sensor networks,” Wireless Netw., vol. 16, pp. 985–997, 2010.
[Crossref]

Other (24)

J. Korhonen, “Practical approach to converged FH/BH network architecture and functional partitioning,” , 2016 [Online]. Available: http://sites.ieee.org/sagroups-1914/files/2016/08/tf1_1608_korhonen_practical_approach_2.pdf . Accessed Oct. 31, 2016.

Cisco Visual Networking Index, 2015 [Online]. Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html . Accessed Oct. 31, 2016.

V. Jungnickel, K. Habel, M. Parker, S. Walker, C. Bock, J. Ferrer Riera, V. Marques, and D. Levi, “Software-defined open architecture for front-and-backhaul in 5G mobile networks,” in Proc. 16th Int. Conf. on Transparent Optical Networks (ICTON), July 2014.

A. Asensio, P. Saengudomlert, M. Ruiz, and L. Velasco, “Study of the centralization level of optical network-supported cloud RAN,” in Optical Network Design and Modeling (ONDM), May 2016.

H. Ali-Ahmad, C. Cicconetti, A. Oliva, V. Mancuso, M. Sama, P. Seite, and S. Shanmugalingam, “An SDN-based network architecture for extremely dense wireless networks,” in IEEE SDN for Future Networks and Services, Nov. 2013, pp. 105–108.

H. Son and S. Shin, “Fronthaul size: Calculation of maximum distance between RRH and BBU,” Apr.2014 [Online]. Available: http://www.netmanias.com/en/post/blog/6276/c-ran-fronthaul-lte/fronthaul-size-calculation-of-maximum-distance-between-rrh-and-bbu . Accessed Oct. 31, 2016.

“Jitter measurement for voice over IP,” Voipfuture White Paper, 2009 [Online]. Available: http://www.voipfuture.com/wordpress/wp-content/uploads/2015/07/Voipfuture_WP_Jitter-Measurement-VoIP-Quality-Monitoring-Basics.pdf . Accessed Oct. 31, 2016.

J. Anuskiewicz, “Measuring jitter accuratley,” 2008 [Online]. Available: http://www.lightwaveonline.com/articles/2008/04/measuring-jitter-accurately-54886317.html . Accessed Oct. 31, 2016.

L. Valcarenghi, K. Kondepu, and P. Castoldi, “Analytical and experimental evaluation of CPRI over Ethernet dynamic rate reconfiguration,” in Proc. IEEE Int. Conf. on Communications (ICC), May 2016.

D. Chitimalla, K. Kondepu, L. Valcarenghi, and B. Mukherjee, “Reconfigurable and efficient fronthaul of 5G systems,” in IEEE Int. Conf. on Advanced Networks and Telecommuncations Systems (ANTS), Dec. 2015.

“IEEE P802.1Qbu—Bridges and bridged networks—Amendment: Enhancements for frame preemption,” July2015 [Online login required]. Available: http://www.ieee802.org/1/files/private/bu-drafts/d3/802-1Qbu-d3-0.pdf . Accessed Oct. 31, 2016.

“IEEE P802.1Qbv—Bridges and bridged networks—Amendment: Enhancements for scheduled traffic, Sept.2015 [Online login required]. Available: http://www.ieee802.org/1/files/private/bv-drafts/d3/802-1Qbv-d3-1.pdf . Accessed Oct. 31, 2016.

“A performance study of CPRI over Ethernet,” IEEE 1904.3 Working Group Meeting, Jan. 2015.

T. Wan and P. Ashwood-Smith, “A performance study of CPRI over Ethernet with IEEE 802.1Qbu and 802.1Qbv enhancements,” in IEEE GLOBECOM, Dec. 2015.

Next Generation Fronthaul Interface (1914) Working Group [Online]. Available: http://sites.ieee.org/sagroups-1914/ . Accessed Oct. 31, 2016.

“Next Generation Fronthaul Interface,” China Mobile White Paper, 2015 [Online]. Available: http://labs.chinamobile.com/cran/wp-content/uploads/White Paper of Next Generation Fronthaul Interface.PDF . Accessed Oct. 31, 2016.

“Common Public Radio Interface (CPRI) Specification V7,” 2015 [Online]. Available: http://www.cpri.info/downloads/CPRI_v_7_0_2015-10-09.pdf . Accessed Oct. 31, 2016.

Open Base Station Architecture Initiative (OBSAI), 2013 [Online]. Available: http://www.obsai.com/specifications.htm . Accessed Oct. 31, 2016.

Open Radio equipment Interface (ORI), 2014 [Online]. Available: http://www.etsi.org/technologies-clusters/technologies/ori . Accessed Oct. 31, 2016.

G. Britton, B. Kubert, and J. Chapin, “RF over Ethernet for wireless infrastructure,” in Proc. Software Defined Radio Technical Conf., Nov. 2005.

Fujitsu Network Communications, “The benefits of cloud-RAN architecture in mobile network expansion,” 2014 [Online]. Available: http://www.fujitsu.com/downloads/TEL/fnc/whitepapers/CloudRANwp.pdf . Accessed Oct. 31, 2016.

J. Huang, Ed., “Integrated mobile fronthaul and backhaul,” 2016 [Online]. Available: https://tools.ietf.org/pdf/draft-huang-detnet-xhaul-00.pdf . Accessed Oct. 31, 2016.

J. Farkas and B. Varga, “Applicability of Qbu and Qbv to fronthaul,” Ericson White Paper, 2015 [Online]. Available: http://www.ieee802.org/1/files/public/docs2015/cm-farkas-applicability-of-bu-and-bv-1115-v02.pdf . Accessed Oct. 31, 2016.

T. Wan and P. Ashwood, “A performance study of CPRI over Ethernet,” , 2015 [Online]. Available: http://www.ieee1904.org/3/meeting_archive/2015/02/tf3_1502_ashwood_1a.pdf . Accessed Oct. 31, 2016.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Frame structure of CPRI.
Fig. 2.
Fig. 2. CPRI-over-Ethernet fronthaul architecture for C-RAN.
Fig. 3.
Fig. 3. CPRI encapsulation over Ethernet.
Fig. 4.
Fig. 4. (a) Example shows jitter on flow 1. (b) Example shows how proper scheduling can eliminate jitter.
Fig. 5.
Fig. 5. FPGA pre-synthesis simulation of CoE encapsulation.
Fig. 6.
Fig. 6. Encapsulation delay with different RCPRI options and different LE sizes.
Fig. 7.
Fig. 7. Fronthaul distance supported in multihop scenario with LE=1250 bytes.
Fig. 8.
Fig. 8. Fronthaul distance supported in multihop scenario with LE=1500 bytes.
Fig. 9.
Fig. 9. Jitter versus load to Ethernet ratio for number of flows 2 to 5 and line rates 1 to 9.
Fig. 10.
Fig. 10. Jitter versus load to Ethernet ratio for number of flows 2 to 5 and line rates 5 to 9.
Fig. 11.
Fig. 11. Jitter versus load to Ethernet ratio for number of flows 1 to 3 and line rates 1 to 9.
Fig. 12.
Fig. 12. Jitter versus load to Ethernet ratio for number of flows 4 to 6 and line rates 1 to 9.

Tables (6)

Tables Icon

TABLE II CoE Parameters

Tables Icon

TABLE III Parameters for CoE Packet Scheduling

Tables Icon

Algorithm 1 Basic-Offset Algorithm

Tables Icon

Algorithm 2 Comb Fitting (C-FIT)

Tables Icon

Algorithm 3 First Available Timeslot (FAT) for Benchmark

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

LP=NB·RCPRI·TB.
Tencap=LPRCPRI=NB·TB.
TtotHOH=NE.LEH/RE=NE.TEOH,
Thop=LERE,
TtotEOH=TtotHOH+Thop.
TtotEOH=NELEH/RE+LE/RE,
Distance=(246  μsTtotEOH)/10  μs/km,
delayi,j=arrival timei+1,jarrival timei,j,Jitterj=max  idelayi,jmin  idelayi,j,Jitter=max  jJitterj,