Abstract

The deployment of new 5G wireless interfaces based on massive multiantenna transmission and beamforming is expected to have a significant impact on the complexity and power consumption of the transport network. This paper analyzes the energy performance of four radio access network (RAN) architectures, each one utilizing a different option for splitting the baseband processing functions. The radio segment is based on Long-Term Evolution (LTE) and 5G radio access technologies. The transport segment is based on optical wavelength division multiplexing, where coherent and direct detection transmissions are considered. The energy consumption of each RAN architecture is weighted against i) the benefits for the radio segment as a function of the level of centralization of the baseband processing functions and ii) the power consumption levels needed to accommodate the capacity generated at each base station. Results show that, with LTE radio interfaces, the energy consumption of the transport network amounts to only a few percent of the overall network power consumption. As a result, fully centralized LTE radio architectures are a viable option, with energy savings of at least 27% compared with conventional distributed architectures. On the other hand, with advanced 5G radio interfaces, centralized architectures, if not carefully designed, might become impractical due to the excessive energy consumption of the transport network (i.e., as a result of the huge capacity to be accommodated). This aspect can be mitigated via a careful joint design of the radio and the transport network (i.e., leveraging on appropriate optical transmission techniques and compromising where needed on the radio network performance).

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Next Generation Mobile Fronthaul and Midhaul Architectures [Invited]

Thomas Pfeiffer
J. Opt. Commun. Netw. 7(11) B38-B45 (2015)

Meeting the Requirements to Deploy Cloud RAN Over Optical Networks

L. Velasco, A. Castro, A. Asensio, M. Ruiz, G. Liu, C. Qin, R. Proietti, and S. J. B. Yoo
J. Opt. Commun. Netw. 9(3) B22-B32 (2017)

Energy Efficient Baseband Unit Aggregation in Cloud Radio and Optical Access Networks

Jiawei Zhang, Yuefeng Ji, Xiangzi Xu, Hui Li, Yongli Zhao, and Jie Zhang
J. Opt. Commun. Netw. 8(11) 893-901 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription