Abstract

NG-PON2 is the industry’s first multiple wavelength (per direction), standards-based passive optical network system that is compatible with power-split optical distribution networks. The physical media dependent layer recommendation (ITU-T G.989.2) is the result of over three years of collaborative work by members of the FSAN and ITU-T Study Group 15, Question 2 groups. This two-part paper provides the technical insight and rationales behind the recently approved standard. The first part of the paper focuses on optical link design topics, including the optical distribution network characteristics, wavelength plan, Raman fiber nonlinearity related degradation, and interchannel cross-talk tolerance. It also describes the wavelength-tuning capability of optical network units and its impact on the physical media dependent layer specification.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of a Symmetric 40  Gbit/s TWDM-PON Over 40  km Passive Reach Using 10  G Burst-Mode DML and EDC for Upstream Transmission [Invited]

Yong Guo, Songlin Zhu, Guohua Kuang, Yongjia Yin, Dezhi Zhang, and Xin Liu
J. Opt. Commun. Netw. 7(3) A363-A371 (2015)

Physical Layer Aspects of NG-PON2 Standards—Part 2: System Design and Technology Feasibility [Invited]

Yuanqiu Luo, Hal Roberts, Klaus Grobe, Maurizio Valvo, Derek Nesset, Kota Asaka, Harald Rohde, Joe Smith, Jun Shan Wey, and Frank Effenberger
J. Opt. Commun. Netw. 8(1) 43-52 (2016)

UDWDM-PON Using Low-Cost Coherent Transceivers With Limited Tunability and Heuristic DWA

Vicent Sales, Josep Segarra, Víctor Polo, J. Camilo Velásquez, and Josep Prat
J. Opt. Commun. Netw. 8(8) 582-599 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Full Service Access Network (FSAN) [Online]. Available: http://www.fsan.org.
  2. P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks (Invited Paper),” IEEE Netw. Mag., vol.  26, no. 2, pp. 8–14, 2012.
  3. “40-gigabit-capable passive optical networks (NG-PON2),” : G.989.1: General Requirements (2013); G.989.2: Physical Media Dependent Layer Specification (2014); G.989.3: Transmission Convergence Layer Specification (approved).
  4. D. Nesset, “NG-PON2 technology and standards,” J. Lightwave Technol., vol.  33, no. 5, pp. 1136–1143, 2015.
    [Crossref]
  5. “Gigabit-capable passive optical networks (GPON),” , 2008.
  6. “10-gigabit-capable passive optical networks (XG-PON),” , 2012.
  7. Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, and Y. Ma, “Time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2),” J. Lightwave Technol., vol.  31, no. 4, pp. 587–593, 2013.
    [Crossref]
  8. “Multichannel seeded DWDM applications with single-channel optical interfaces,” , 2012.
  9. H. Woesner and M. Maier, “Routing and resilience in AWG based WDM networks,” in TransiNet Workshop, HHI, 2002.
  10. C. Headley and G. Agrawal, Eds., Raman Amplification in Fiber Optical Communication Systems. Academic, 2004.
  11. F. Liu, C. J. Rasmussen, and R. J. S. Pedersen, “Experimental verification of a new model describing the influence of incomplete signal extinction ratio on the sensitivity degradation due to multiple interferometric crosstalk,” IEEE Photon. Technol. Lett., vol.  11, no. 1, pp. 137–139, 1999.
    [Crossref]

2015 (1)

2013 (1)

2012 (1)

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks (Invited Paper),” IEEE Netw. Mag., vol.  26, no. 2, pp. 8–14, 2012.

1999 (1)

F. Liu, C. J. Rasmussen, and R. J. S. Pedersen, “Experimental verification of a new model describing the influence of incomplete signal extinction ratio on the sensitivity degradation due to multiple interferometric crosstalk,” IEEE Photon. Technol. Lett., vol.  11, no. 1, pp. 137–139, 1999.
[Crossref]

Chanclou, P.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks (Invited Paper),” IEEE Netw. Mag., vol.  26, no. 2, pp. 8–14, 2012.

Cui, A.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks (Invited Paper),” IEEE Netw. Mag., vol.  26, no. 2, pp. 8–14, 2012.

Effenberger, F.

Geilhardt, F.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks (Invited Paper),” IEEE Netw. Mag., vol.  26, no. 2, pp. 8–14, 2012.

Liu, F.

F. Liu, C. J. Rasmussen, and R. J. S. Pedersen, “Experimental verification of a new model describing the influence of incomplete signal extinction ratio on the sensitivity degradation due to multiple interferometric crosstalk,” IEEE Photon. Technol. Lett., vol.  11, no. 1, pp. 137–139, 1999.
[Crossref]

Luo, Y.

Ma, Y.

Maier, M.

H. Woesner and M. Maier, “Routing and resilience in AWG based WDM networks,” in TransiNet Workshop, HHI, 2002.

Nakamura, H.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks (Invited Paper),” IEEE Netw. Mag., vol.  26, no. 2, pp. 8–14, 2012.

Nesset, D.

D. Nesset, “NG-PON2 technology and standards,” J. Lightwave Technol., vol.  33, no. 5, pp. 1136–1143, 2015.
[Crossref]

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks (Invited Paper),” IEEE Netw. Mag., vol.  26, no. 2, pp. 8–14, 2012.

Pedersen, R. J. S.

F. Liu, C. J. Rasmussen, and R. J. S. Pedersen, “Experimental verification of a new model describing the influence of incomplete signal extinction ratio on the sensitivity degradation due to multiple interferometric crosstalk,” IEEE Photon. Technol. Lett., vol.  11, no. 1, pp. 137–139, 1999.
[Crossref]

Peng, G.

Qian, Y.

Rasmussen, C. J.

F. Liu, C. J. Rasmussen, and R. J. S. Pedersen, “Experimental verification of a new model describing the influence of incomplete signal extinction ratio on the sensitivity degradation due to multiple interferometric crosstalk,” IEEE Photon. Technol. Lett., vol.  11, no. 1, pp. 137–139, 1999.
[Crossref]

Woesner, H.

H. Woesner and M. Maier, “Routing and resilience in AWG based WDM networks,” in TransiNet Workshop, HHI, 2002.

Yan, X.

Zhou, X.

IEEE Netw. Mag. (1)

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks (Invited Paper),” IEEE Netw. Mag., vol.  26, no. 2, pp. 8–14, 2012.

IEEE Photon. Technol. Lett. (1)

F. Liu, C. J. Rasmussen, and R. J. S. Pedersen, “Experimental verification of a new model describing the influence of incomplete signal extinction ratio on the sensitivity degradation due to multiple interferometric crosstalk,” IEEE Photon. Technol. Lett., vol.  11, no. 1, pp. 137–139, 1999.
[Crossref]

J. Lightwave Technol. (2)

Other (7)

“Multichannel seeded DWDM applications with single-channel optical interfaces,” , 2012.

H. Woesner and M. Maier, “Routing and resilience in AWG based WDM networks,” in TransiNet Workshop, HHI, 2002.

C. Headley and G. Agrawal, Eds., Raman Amplification in Fiber Optical Communication Systems. Academic, 2004.

“Gigabit-capable passive optical networks (GPON),” , 2008.

“10-gigabit-capable passive optical networks (XG-PON),” , 2012.

“40-gigabit-capable passive optical networks (NG-PON2),” : G.989.1: General Requirements (2013); G.989.2: Physical Media Dependent Layer Specification (2014); G.989.3: Transmission Convergence Layer Specification (approved).

Full Service Access Network (FSAN) [Online]. Available: http://www.fsan.org.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. WS-ODN with power splitter (PS, top) and WR-ODN with lumped cyclic AWG (CAWG, bottom). Also shown are relevant interface reference points of the access network.
Fig. 2.
Fig. 2. Hybrid ODN and WS-ODN comparison.
Fig. 3.
Fig. 3. Raman depletion loss versus distance under different operating conditions.
Fig. 4.
Fig. 4. Illustrating interferometric (beat-noise) and power addition cross-talk regimes.
Fig. 5.
Fig. 5. Worst-case ODN for NG-PON2 cross-talk.
Fig. 6.
Fig. 6. Worst-case ODN for the downstream power when not-enabled spectral density (WNE-PSD) specification in NG-PON.
Fig. 7.
Fig. 7. Out-of-channel power spectral density (OOC PSD) mask from G.989.2. CS: channel spacing.

Tables (5)

Tables Icon

TABLE I ODN Optical Path Loss Classes in NG-PON2

Tables Icon

TABLE II NG-PON2 Wavelength Plan

Tables Icon

TABLE III Tuning Time Classes

Tables Icon

TABLE IV Upstream Optical Path Penalty Values for 2.5 Gb/s

Tables Icon

TABLE V Launched Power Into ODN

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Penalty ( dB ) = 10 log ( 1 4 ε Q 2 1 + r ( 1 r ) 2 ) ,
BER = 1 4 erfc ( Q 2 ) .
r = ( r + 1 ) + 10 E / 10 ( r 1 ) ( r + 1 ) 10 E / 10 ( r 1 ) ,
P OOC ( dBm ) = P Tx ( dBm ) + ε OOC ( dB ) Δ ODN ( dB ) 10 log ( N OOC ) ,
P OOB ( dBm ) = P Tx ( dBm ) + ε OOB ( dB ) Δ ODN ( dB ) 10 log ( N OOB ) .
P WNE ( dBm ) = P Tx ( dBm ) + ε WNE ( dB ) Δ ODN ( dB ) 10 log ( N WNE ) .