Abstract

In this paper a novel concept of the multimode fiber-based passive optical network utilizing orthogonal frequency division multiple access (OFDMA) is presented. Usage of multimode fibers ensures effective optical beat interference mitigation, thus making wavelength control in the uplink not necessary. Several experimental results confirming proper operation and good performance of the proposed solution are provided. The orthogonal frequency division multiplexing (OFDM) transmission was tested in both the baseband and pass band of the multimode fiber. Several issues related to the proposed solution were addressed, namely, optical beat interference, modal noise, and the frequency response fluctuations of the multimode fiber links.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol., vol.  27, no. 3, pp. 189–204, 2009.
    [CrossRef]
  2. J. Guillory, K. Chikha, A. Pizzinat, P. Guignard, B. Charbonnier, J. Etrillard, and C. Algani, “WDM-FDM approach for a multiservice home network,” in OFC, 2013, paper NTu3J.2.
  3. L. Maksymiuk and B. Wisnicki, “Impact of the frequency response fluctuations of the multimode fiber on the OFDM transmission,” Microw. Opt. Technol. Lett. 55, 845–849, Apr. 2013.
    [CrossRef]
  4. J. M. Tang, P. M. Lane, and K. A. Shore, “High-speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol., vol.  24, no. 1, pp. 429–441, 2006.
    [CrossRef]
  5. E. Giacoumidis, X. Q. Jin, and J. M. Tang, “Statistical investigations of optical OFDM adaptive loading algorithm over 1000 worst-case MMFs,” in OFC/NFOEC, 2011, paper JWA89.
  6. N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10  Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, 2010.
    [CrossRef]
  7. M.-K. Hong, S.-M. Jung, I. Kartiwa, and S.-K. Han, “Slow adaptive OFDMA-PON through channel stabilization employing seed carrier clipping,” IEEE Photon. Technol. Lett., vol.  24, no. 24, pp. 2292–2295, 2012.
    [CrossRef]
  8. N. Cvijetic, M. Cvijetic, M. F. Huang, E. Ip, Y.-K. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol., vol.  30, no. 4, pp. 493–503, 2012.
    [CrossRef]
  9. S.-M. Jung, Y.-Y. Won, and S.-K. Han, “Optical beating interference reduction in DMT based passive optical network by using homodyne balanced detection technique,” in ICTC, 2013, pp. 703–704.
  10. S.-H. Cho, J. H. Lee, K. H. Doo, S. I. Myong, J. H. Lee, and S. S. Lee, “Investigation of upstream transmission performances with cost-effective transmitter front-end for ONU in IM/DD OFDMA-PON,” in ICTC, 2012, pp. 694–695.
  11. X. Xie, Y. Qiao, and Y. Ji, “The study of wavelength interval between adjacent ONUs in OFDMA-PON,” in ACP, 2010, pp. 621–622.
  12. I. Cano, M. C. Santos, X. Escayola, V. Polo, E. Giacoumidis, C. Kachris, I. Tomkos, and J. Prat, “An OFDMA-PON with non-preselected independent ONU sources and centralized feedback wavelength control: Dimensioning and experimental results,” in ICTON, 2012, pp. 1–4.
  13. X. Escayola, I. Cano, M. Santos, and J. Prat, “OFDM-PON performance with limited quantization,” in ICTON, 2013, pp. 1–4.
  14. H.-Y. Chen, M. Yuang, P.-L. Tien, D.-Z. Hsu, C.-C. Wei, Y.-S. Tsai, and J. Chen, “Design and demonstration of a colorless WDM-OFDMA PON system architecture achieving symmetric 20-Gb/s transmissions with residual interference compensation,” Opt. Express, vol.  21, no. 18, pp. 21097–21104, 2013.
    [CrossRef]
  15. M. C. Yuang, D.-Z. Hsu, P.-L. Tien, H.-Y. Chen, C.-C. Wei, S.-H. Chen, and J. Chen, “An energy and cost efficient WDM/OFDMA PON system: Design and demonstration,” J. Lightwave Technol., vol.  31, no. 16, pp. 2809–2816, 2013.
    [CrossRef]
  16. J. Siuzdak, M. Kowalczyk, L. Maksymiuk, and G. Stepniak, “Substantial OBI noise reduction in MM fiber network,” IEEE Photon. Technol. Lett., vol.  25, no. 14, pp. 1350–1353, 2013.
    [CrossRef]
  17. P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun., vol.  43, pp. 773–775 (1995).
    [CrossRef]
  18. C. Ruprecht, K. Habel, J. von Hoyningen-Huene, Y. Chen, N. Hanik, and W. Rosenkranz, “Timing advance tracking for coherent OFDMA-PON upstream system,” in ACP, 2013, paper AF1G.4.
  19. R. E. Epworth, “Phenomenon of modal noise in fiber systems,” in OFC, Washington, DC, Mar. 1979.
  20. L. Maksymiuk and J. Siuzdak, “Modeling of low-frequency modal noise induced by multimode couplers in cascade connections,” Opt. Appl., vol.  41, no. 3, pp. 649–660, 2011.
  21. H. Shihonara, “Modal-noise characteristics in aerial optical cables subjected to vibration,” J. Lightwave Technol., vol.  1, no. 4, pp. 535–541, Dec. 1983.
    [CrossRef]
  22. R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fiber depends on source spectrum and fiber dispersion,” J. Lightwave Technol., vol.  3, no. 1, pp. 7–12, Feb. 1985.
    [CrossRef]
  23. J. Siuzdak, G. Stepniak, M. Kowalczyk, and L. Maksymiuk, “Instability of the multimode fiber frequency response beyond the baseband for coherent sources,” IEEE Photon. Technol. Lett., vol.  21, no. 14, 993–995, 2009.
    [CrossRef]
  24. Y.-Y. Won, H.-C. Kwon, and S.-K. Han, “Reduction of optical beat interference using gain-saturated RSOA in upstream WDM/SCM optical links,” IET Optoelectron., vol.  1, no. 2, pp. 61–64, 2007.
    [CrossRef]
  25. S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Technique for the reduction of optical beat interference in subcarrier multiplexed systems,” in OFC, 1996, pp. 213–214.
  26. R. D. Feldman, K.-Y. Liou, G. Raybon, and R. F. Austin, “Reduction of optical beat interference in a subcarrier multiple-access passive optical network through the use of an amplified light-emitting diode,” IEEE Photon. Technol. Lett., vol.  8, no. 1, pp. 116–118, 1996.
    [CrossRef]

2013

2012

M.-K. Hong, S.-M. Jung, I. Kartiwa, and S.-K. Han, “Slow adaptive OFDMA-PON through channel stabilization employing seed carrier clipping,” IEEE Photon. Technol. Lett., vol.  24, no. 24, pp. 2292–2295, 2012.
[CrossRef]

N. Cvijetic, M. Cvijetic, M. F. Huang, E. Ip, Y.-K. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol., vol.  30, no. 4, pp. 493–503, 2012.
[CrossRef]

2011

L. Maksymiuk and J. Siuzdak, “Modeling of low-frequency modal noise induced by multimode couplers in cascade connections,” Opt. Appl., vol.  41, no. 3, pp. 649–660, 2011.

2010

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10  Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, 2010.
[CrossRef]

2009

J. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol., vol.  27, no. 3, pp. 189–204, 2009.
[CrossRef]

J. Siuzdak, G. Stepniak, M. Kowalczyk, and L. Maksymiuk, “Instability of the multimode fiber frequency response beyond the baseband for coherent sources,” IEEE Photon. Technol. Lett., vol.  21, no. 14, 993–995, 2009.
[CrossRef]

2007

Y.-Y. Won, H.-C. Kwon, and S.-K. Han, “Reduction of optical beat interference using gain-saturated RSOA in upstream WDM/SCM optical links,” IET Optoelectron., vol.  1, no. 2, pp. 61–64, 2007.
[CrossRef]

2006

1996

R. D. Feldman, K.-Y. Liou, G. Raybon, and R. F. Austin, “Reduction of optical beat interference in a subcarrier multiple-access passive optical network through the use of an amplified light-emitting diode,” IEEE Photon. Technol. Lett., vol.  8, no. 1, pp. 116–118, 1996.
[CrossRef]

1995

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun., vol.  43, pp. 773–775 (1995).
[CrossRef]

1985

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fiber depends on source spectrum and fiber dispersion,” J. Lightwave Technol., vol.  3, no. 1, pp. 7–12, Feb. 1985.
[CrossRef]

1983

H. Shihonara, “Modal-noise characteristics in aerial optical cables subjected to vibration,” J. Lightwave Technol., vol.  1, no. 4, pp. 535–541, Dec. 1983.
[CrossRef]

Algani, C.

J. Guillory, K. Chikha, A. Pizzinat, P. Guignard, B. Charbonnier, J. Etrillard, and C. Algani, “WDM-FDM approach for a multiservice home network,” in OFC, 2013, paper NTu3J.2.

Armstrong, J. J.

Austin, R. F.

R. D. Feldman, K.-Y. Liou, G. Raybon, and R. F. Austin, “Reduction of optical beat interference in a subcarrier multiple-access passive optical network through the use of an amplified light-emitting diode,” IEEE Photon. Technol. Lett., vol.  8, no. 1, pp. 116–118, 1996.
[CrossRef]

Bertholds, A.

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fiber depends on source spectrum and fiber dispersion,” J. Lightwave Technol., vol.  3, no. 1, pp. 7–12, Feb. 1985.
[CrossRef]

Bingham, J. A. C.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun., vol.  43, pp. 773–775 (1995).
[CrossRef]

Bodeep, G. E.

S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Technique for the reduction of optical beat interference in subcarrier multiplexed systems,” in OFC, 1996, pp. 213–214.

Cano, I.

I. Cano, M. C. Santos, X. Escayola, V. Polo, E. Giacoumidis, C. Kachris, I. Tomkos, and J. Prat, “An OFDMA-PON with non-preselected independent ONU sources and centralized feedback wavelength control: Dimensioning and experimental results,” in ICTON, 2012, pp. 1–4.

X. Escayola, I. Cano, M. Santos, and J. Prat, “OFDM-PON performance with limited quantization,” in ICTON, 2013, pp. 1–4.

Charbonnier, B.

J. Guillory, K. Chikha, A. Pizzinat, P. Guignard, B. Charbonnier, J. Etrillard, and C. Algani, “WDM-FDM approach for a multiservice home network,” in OFC, 2013, paper NTu3J.2.

Chen, H.-Y.

Chen, J.

Chen, S.-H.

Chen, Y.

C. Ruprecht, K. Habel, J. von Hoyningen-Huene, Y. Chen, N. Hanik, and W. Rosenkranz, “Timing advance tracking for coherent OFDMA-PON upstream system,” in ACP, 2013, paper AF1G.4.

Chikha, K.

J. Guillory, K. Chikha, A. Pizzinat, P. Guignard, B. Charbonnier, J. Etrillard, and C. Algani, “WDM-FDM approach for a multiservice home network,” in OFC, 2013, paper NTu3J.2.

Cho, S.-H.

S.-H. Cho, J. H. Lee, K. H. Doo, S. I. Myong, J. H. Lee, and S. S. Lee, “Investigation of upstream transmission performances with cost-effective transmitter front-end for ONU in IM/DD OFDMA-PON,” in ICTC, 2012, pp. 694–695.

Chow, P. S.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun., vol.  43, pp. 773–775 (1995).
[CrossRef]

Cioffi, J. M.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun., vol.  43, pp. 773–775 (1995).
[CrossRef]

Cvijetic, M.

Cvijetic, N.

N. Cvijetic, M. Cvijetic, M. F. Huang, E. Ip, Y.-K. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol., vol.  30, no. 4, pp. 493–503, 2012.
[CrossRef]

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10  Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, 2010.
[CrossRef]

Dandliker, R.

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fiber depends on source spectrum and fiber dispersion,” J. Lightwave Technol., vol.  3, no. 1, pp. 7–12, Feb. 1985.
[CrossRef]

Darcie, T. E.

S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Technique for the reduction of optical beat interference in subcarrier multiplexed systems,” in OFC, 1996, pp. 213–214.

Doo, K. H.

S.-H. Cho, J. H. Lee, K. H. Doo, S. I. Myong, J. H. Lee, and S. S. Lee, “Investigation of upstream transmission performances with cost-effective transmitter front-end for ONU in IM/DD OFDMA-PON,” in ICTC, 2012, pp. 694–695.

Epworth, R. E.

R. E. Epworth, “Phenomenon of modal noise in fiber systems,” in OFC, Washington, DC, Mar. 1979.

Escayola, X.

X. Escayola, I. Cano, M. Santos, and J. Prat, “OFDM-PON performance with limited quantization,” in ICTON, 2013, pp. 1–4.

I. Cano, M. C. Santos, X. Escayola, V. Polo, E. Giacoumidis, C. Kachris, I. Tomkos, and J. Prat, “An OFDMA-PON with non-preselected independent ONU sources and centralized feedback wavelength control: Dimensioning and experimental results,” in ICTON, 2012, pp. 1–4.

Etrillard, J.

J. Guillory, K. Chikha, A. Pizzinat, P. Guignard, B. Charbonnier, J. Etrillard, and C. Algani, “WDM-FDM approach for a multiservice home network,” in OFC, 2013, paper NTu3J.2.

Feldman, R. D.

R. D. Feldman, K.-Y. Liou, G. Raybon, and R. F. Austin, “Reduction of optical beat interference in a subcarrier multiple-access passive optical network through the use of an amplified light-emitting diode,” IEEE Photon. Technol. Lett., vol.  8, no. 1, pp. 116–118, 1996.
[CrossRef]

Giacoumidis, E.

E. Giacoumidis, X. Q. Jin, and J. M. Tang, “Statistical investigations of optical OFDM adaptive loading algorithm over 1000 worst-case MMFs,” in OFC/NFOEC, 2011, paper JWA89.

I. Cano, M. C. Santos, X. Escayola, V. Polo, E. Giacoumidis, C. Kachris, I. Tomkos, and J. Prat, “An OFDMA-PON with non-preselected independent ONU sources and centralized feedback wavelength control: Dimensioning and experimental results,” in ICTON, 2012, pp. 1–4.

Guignard, P.

J. Guillory, K. Chikha, A. Pizzinat, P. Guignard, B. Charbonnier, J. Etrillard, and C. Algani, “WDM-FDM approach for a multiservice home network,” in OFC, 2013, paper NTu3J.2.

Guillory, J.

J. Guillory, K. Chikha, A. Pizzinat, P. Guignard, B. Charbonnier, J. Etrillard, and C. Algani, “WDM-FDM approach for a multiservice home network,” in OFC, 2013, paper NTu3J.2.

Habel, K.

C. Ruprecht, K. Habel, J. von Hoyningen-Huene, Y. Chen, N. Hanik, and W. Rosenkranz, “Timing advance tracking for coherent OFDMA-PON upstream system,” in ACP, 2013, paper AF1G.4.

Han, S.-K.

M.-K. Hong, S.-M. Jung, I. Kartiwa, and S.-K. Han, “Slow adaptive OFDMA-PON through channel stabilization employing seed carrier clipping,” IEEE Photon. Technol. Lett., vol.  24, no. 24, pp. 2292–2295, 2012.
[CrossRef]

Y.-Y. Won, H.-C. Kwon, and S.-K. Han, “Reduction of optical beat interference using gain-saturated RSOA in upstream WDM/SCM optical links,” IET Optoelectron., vol.  1, no. 2, pp. 61–64, 2007.
[CrossRef]

S.-M. Jung, Y.-Y. Won, and S.-K. Han, “Optical beating interference reduction in DMT based passive optical network by using homodyne balanced detection technique,” in ICTC, 2013, pp. 703–704.

Hanik, N.

C. Ruprecht, K. Habel, J. von Hoyningen-Huene, Y. Chen, N. Hanik, and W. Rosenkranz, “Timing advance tracking for coherent OFDMA-PON upstream system,” in ACP, 2013, paper AF1G.4.

Hong, M.-K.

M.-K. Hong, S.-M. Jung, I. Kartiwa, and S.-K. Han, “Slow adaptive OFDMA-PON through channel stabilization employing seed carrier clipping,” IEEE Photon. Technol. Lett., vol.  24, no. 24, pp. 2292–2295, 2012.
[CrossRef]

Hsu, D.-Z.

Hu, J.

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10  Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, 2010.
[CrossRef]

Huang, M. F.

Huang, Y.-K.

Ip, E.

Ji, Y.

X. Xie, Y. Qiao, and Y. Ji, “The study of wavelength interval between adjacent ONUs in OFDMA-PON,” in ACP, 2010, pp. 621–622.

Jin, X. Q.

E. Giacoumidis, X. Q. Jin, and J. M. Tang, “Statistical investigations of optical OFDM adaptive loading algorithm over 1000 worst-case MMFs,” in OFC/NFOEC, 2011, paper JWA89.

Jung, S.-M.

M.-K. Hong, S.-M. Jung, I. Kartiwa, and S.-K. Han, “Slow adaptive OFDMA-PON through channel stabilization employing seed carrier clipping,” IEEE Photon. Technol. Lett., vol.  24, no. 24, pp. 2292–2295, 2012.
[CrossRef]

S.-M. Jung, Y.-Y. Won, and S.-K. Han, “Optical beating interference reduction in DMT based passive optical network by using homodyne balanced detection technique,” in ICTC, 2013, pp. 703–704.

Kachris, C.

I. Cano, M. C. Santos, X. Escayola, V. Polo, E. Giacoumidis, C. Kachris, I. Tomkos, and J. Prat, “An OFDMA-PON with non-preselected independent ONU sources and centralized feedback wavelength control: Dimensioning and experimental results,” in ICTON, 2012, pp. 1–4.

Kartiwa, I.

M.-K. Hong, S.-M. Jung, I. Kartiwa, and S.-K. Han, “Slow adaptive OFDMA-PON through channel stabilization employing seed carrier clipping,” IEEE Photon. Technol. Lett., vol.  24, no. 24, pp. 2292–2295, 2012.
[CrossRef]

Kowalczyk, M.

J. Siuzdak, M. Kowalczyk, L. Maksymiuk, and G. Stepniak, “Substantial OBI noise reduction in MM fiber network,” IEEE Photon. Technol. Lett., vol.  25, no. 14, pp. 1350–1353, 2013.
[CrossRef]

J. Siuzdak, G. Stepniak, M. Kowalczyk, and L. Maksymiuk, “Instability of the multimode fiber frequency response beyond the baseband for coherent sources,” IEEE Photon. Technol. Lett., vol.  21, no. 14, 993–995, 2009.
[CrossRef]

Kwon, H.-C.

Y.-Y. Won, H.-C. Kwon, and S.-K. Han, “Reduction of optical beat interference using gain-saturated RSOA in upstream WDM/SCM optical links,” IET Optoelectron., vol.  1, no. 2, pp. 61–64, 2007.
[CrossRef]

Lane, P. M.

Lee, J. H.

S.-H. Cho, J. H. Lee, K. H. Doo, S. I. Myong, J. H. Lee, and S. S. Lee, “Investigation of upstream transmission performances with cost-effective transmitter front-end for ONU in IM/DD OFDMA-PON,” in ICTC, 2012, pp. 694–695.

S.-H. Cho, J. H. Lee, K. H. Doo, S. I. Myong, J. H. Lee, and S. S. Lee, “Investigation of upstream transmission performances with cost-effective transmitter front-end for ONU in IM/DD OFDMA-PON,” in ICTC, 2012, pp. 694–695.

Lee, S. S.

S.-H. Cho, J. H. Lee, K. H. Doo, S. I. Myong, J. H. Lee, and S. S. Lee, “Investigation of upstream transmission performances with cost-effective transmitter front-end for ONU in IM/DD OFDMA-PON,” in ICTC, 2012, pp. 694–695.

Liou, K.-Y.

R. D. Feldman, K.-Y. Liou, G. Raybon, and R. F. Austin, “Reduction of optical beat interference in a subcarrier multiple-access passive optical network through the use of an amplified light-emitting diode,” IEEE Photon. Technol. Lett., vol.  8, no. 1, pp. 116–118, 1996.
[CrossRef]

Lu, X.

S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Technique for the reduction of optical beat interference in subcarrier multiplexed systems,” in OFC, 1996, pp. 213–214.

Maksymiuk, L.

J. Siuzdak, M. Kowalczyk, L. Maksymiuk, and G. Stepniak, “Substantial OBI noise reduction in MM fiber network,” IEEE Photon. Technol. Lett., vol.  25, no. 14, pp. 1350–1353, 2013.
[CrossRef]

L. Maksymiuk and B. Wisnicki, “Impact of the frequency response fluctuations of the multimode fiber on the OFDM transmission,” Microw. Opt. Technol. Lett. 55, 845–849, Apr. 2013.
[CrossRef]

L. Maksymiuk and J. Siuzdak, “Modeling of low-frequency modal noise induced by multimode couplers in cascade connections,” Opt. Appl., vol.  41, no. 3, pp. 649–660, 2011.

J. Siuzdak, G. Stepniak, M. Kowalczyk, and L. Maksymiuk, “Instability of the multimode fiber frequency response beyond the baseband for coherent sources,” IEEE Photon. Technol. Lett., vol.  21, no. 14, 993–995, 2009.
[CrossRef]

Maystre, F.

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fiber depends on source spectrum and fiber dispersion,” J. Lightwave Technol., vol.  3, no. 1, pp. 7–12, Feb. 1985.
[CrossRef]

Myong, S. I.

S.-H. Cho, J. H. Lee, K. H. Doo, S. I. Myong, J. H. Lee, and S. S. Lee, “Investigation of upstream transmission performances with cost-effective transmitter front-end for ONU in IM/DD OFDMA-PON,” in ICTC, 2012, pp. 694–695.

Pizzinat, A.

J. Guillory, K. Chikha, A. Pizzinat, P. Guignard, B. Charbonnier, J. Etrillard, and C. Algani, “WDM-FDM approach for a multiservice home network,” in OFC, 2013, paper NTu3J.2.

Polo, V.

I. Cano, M. C. Santos, X. Escayola, V. Polo, E. Giacoumidis, C. Kachris, I. Tomkos, and J. Prat, “An OFDMA-PON with non-preselected independent ONU sources and centralized feedback wavelength control: Dimensioning and experimental results,” in ICTON, 2012, pp. 1–4.

Prat, J.

I. Cano, M. C. Santos, X. Escayola, V. Polo, E. Giacoumidis, C. Kachris, I. Tomkos, and J. Prat, “An OFDMA-PON with non-preselected independent ONU sources and centralized feedback wavelength control: Dimensioning and experimental results,” in ICTON, 2012, pp. 1–4.

X. Escayola, I. Cano, M. Santos, and J. Prat, “OFDM-PON performance with limited quantization,” in ICTON, 2013, pp. 1–4.

Qian, D.

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10  Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, 2010.
[CrossRef]

Qiao, Y.

X. Xie, Y. Qiao, and Y. Ji, “The study of wavelength interval between adjacent ONUs in OFDMA-PON,” in ACP, 2010, pp. 621–622.

Raybon, G.

R. D. Feldman, K.-Y. Liou, G. Raybon, and R. F. Austin, “Reduction of optical beat interference in a subcarrier multiple-access passive optical network through the use of an amplified light-emitting diode,” IEEE Photon. Technol. Lett., vol.  8, no. 1, pp. 116–118, 1996.
[CrossRef]

Rosenkranz, W.

C. Ruprecht, K. Habel, J. von Hoyningen-Huene, Y. Chen, N. Hanik, and W. Rosenkranz, “Timing advance tracking for coherent OFDMA-PON upstream system,” in ACP, 2013, paper AF1G.4.

Ruprecht, C.

C. Ruprecht, K. Habel, J. von Hoyningen-Huene, Y. Chen, N. Hanik, and W. Rosenkranz, “Timing advance tracking for coherent OFDMA-PON upstream system,” in ACP, 2013, paper AF1G.4.

Santos, M.

X. Escayola, I. Cano, M. Santos, and J. Prat, “OFDM-PON performance with limited quantization,” in ICTON, 2013, pp. 1–4.

Santos, M. C.

I. Cano, M. C. Santos, X. Escayola, V. Polo, E. Giacoumidis, C. Kachris, I. Tomkos, and J. Prat, “An OFDMA-PON with non-preselected independent ONU sources and centralized feedback wavelength control: Dimensioning and experimental results,” in ICTON, 2012, pp. 1–4.

Shihonara, H.

H. Shihonara, “Modal-noise characteristics in aerial optical cables subjected to vibration,” J. Lightwave Technol., vol.  1, no. 4, pp. 535–541, Dec. 1983.
[CrossRef]

Shore, K. A.

Siuzdak, J.

J. Siuzdak, M. Kowalczyk, L. Maksymiuk, and G. Stepniak, “Substantial OBI noise reduction in MM fiber network,” IEEE Photon. Technol. Lett., vol.  25, no. 14, pp. 1350–1353, 2013.
[CrossRef]

L. Maksymiuk and J. Siuzdak, “Modeling of low-frequency modal noise induced by multimode couplers in cascade connections,” Opt. Appl., vol.  41, no. 3, pp. 649–660, 2011.

J. Siuzdak, G. Stepniak, M. Kowalczyk, and L. Maksymiuk, “Instability of the multimode fiber frequency response beyond the baseband for coherent sources,” IEEE Photon. Technol. Lett., vol.  21, no. 14, 993–995, 2009.
[CrossRef]

Stepniak, G.

J. Siuzdak, M. Kowalczyk, L. Maksymiuk, and G. Stepniak, “Substantial OBI noise reduction in MM fiber network,” IEEE Photon. Technol. Lett., vol.  25, no. 14, pp. 1350–1353, 2013.
[CrossRef]

J. Siuzdak, G. Stepniak, M. Kowalczyk, and L. Maksymiuk, “Instability of the multimode fiber frequency response beyond the baseband for coherent sources,” IEEE Photon. Technol. Lett., vol.  21, no. 14, 993–995, 2009.
[CrossRef]

Tang, J. M.

J. M. Tang, P. M. Lane, and K. A. Shore, “High-speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol., vol.  24, no. 1, pp. 429–441, 2006.
[CrossRef]

E. Giacoumidis, X. Q. Jin, and J. M. Tang, “Statistical investigations of optical OFDM adaptive loading algorithm over 1000 worst-case MMFs,” in OFC/NFOEC, 2011, paper JWA89.

Tien, P.-L.

Tomkos, I.

I. Cano, M. C. Santos, X. Escayola, V. Polo, E. Giacoumidis, C. Kachris, I. Tomkos, and J. Prat, “An OFDMA-PON with non-preselected independent ONU sources and centralized feedback wavelength control: Dimensioning and experimental results,” in ICTON, 2012, pp. 1–4.

Tsai, Y.-S.

von Hoyningen-Huene, J.

C. Ruprecht, K. Habel, J. von Hoyningen-Huene, Y. Chen, N. Hanik, and W. Rosenkranz, “Timing advance tracking for coherent OFDMA-PON upstream system,” in ACP, 2013, paper AF1G.4.

Wang, T.

N. Cvijetic, M. Cvijetic, M. F. Huang, E. Ip, Y.-K. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol., vol.  30, no. 4, pp. 493–503, 2012.
[CrossRef]

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10  Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, 2010.
[CrossRef]

Wei, C.-C.

Wisnicki, B.

L. Maksymiuk and B. Wisnicki, “Impact of the frequency response fluctuations of the multimode fiber on the OFDM transmission,” Microw. Opt. Technol. Lett. 55, 845–849, Apr. 2013.
[CrossRef]

Won, Y.-Y.

Y.-Y. Won, H.-C. Kwon, and S.-K. Han, “Reduction of optical beat interference using gain-saturated RSOA in upstream WDM/SCM optical links,” IET Optoelectron., vol.  1, no. 2, pp. 61–64, 2007.
[CrossRef]

S.-M. Jung, Y.-Y. Won, and S.-K. Han, “Optical beating interference reduction in DMT based passive optical network by using homodyne balanced detection technique,” in ICTC, 2013, pp. 703–704.

Woodward, S. L.

S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Technique for the reduction of optical beat interference in subcarrier multiplexed systems,” in OFC, 1996, pp. 213–214.

Xie, X.

X. Xie, Y. Qiao, and Y. Ji, “The study of wavelength interval between adjacent ONUs in OFDMA-PON,” in ACP, 2010, pp. 621–622.

Yuang, M.

Yuang, M. C.

IEEE J. Sel. Areas Commun.

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10  Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, 2010.
[CrossRef]

IEEE Photon. Technol. Lett.

M.-K. Hong, S.-M. Jung, I. Kartiwa, and S.-K. Han, “Slow adaptive OFDMA-PON through channel stabilization employing seed carrier clipping,” IEEE Photon. Technol. Lett., vol.  24, no. 24, pp. 2292–2295, 2012.
[CrossRef]

J. Siuzdak, M. Kowalczyk, L. Maksymiuk, and G. Stepniak, “Substantial OBI noise reduction in MM fiber network,” IEEE Photon. Technol. Lett., vol.  25, no. 14, pp. 1350–1353, 2013.
[CrossRef]

J. Siuzdak, G. Stepniak, M. Kowalczyk, and L. Maksymiuk, “Instability of the multimode fiber frequency response beyond the baseband for coherent sources,” IEEE Photon. Technol. Lett., vol.  21, no. 14, 993–995, 2009.
[CrossRef]

R. D. Feldman, K.-Y. Liou, G. Raybon, and R. F. Austin, “Reduction of optical beat interference in a subcarrier multiple-access passive optical network through the use of an amplified light-emitting diode,” IEEE Photon. Technol. Lett., vol.  8, no. 1, pp. 116–118, 1996.
[CrossRef]

IEEE Trans. Commun.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun., vol.  43, pp. 773–775 (1995).
[CrossRef]

IET Optoelectron.

Y.-Y. Won, H.-C. Kwon, and S.-K. Han, “Reduction of optical beat interference using gain-saturated RSOA in upstream WDM/SCM optical links,” IET Optoelectron., vol.  1, no. 2, pp. 61–64, 2007.
[CrossRef]

J. Lightwave Technol.

Microw. Opt. Technol. Lett.

L. Maksymiuk and B. Wisnicki, “Impact of the frequency response fluctuations of the multimode fiber on the OFDM transmission,” Microw. Opt. Technol. Lett. 55, 845–849, Apr. 2013.
[CrossRef]

Opt. Appl.

L. Maksymiuk and J. Siuzdak, “Modeling of low-frequency modal noise induced by multimode couplers in cascade connections,” Opt. Appl., vol.  41, no. 3, pp. 649–660, 2011.

Opt. Express

Other

S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Technique for the reduction of optical beat interference in subcarrier multiplexed systems,” in OFC, 1996, pp. 213–214.

S.-M. Jung, Y.-Y. Won, and S.-K. Han, “Optical beating interference reduction in DMT based passive optical network by using homodyne balanced detection technique,” in ICTC, 2013, pp. 703–704.

S.-H. Cho, J. H. Lee, K. H. Doo, S. I. Myong, J. H. Lee, and S. S. Lee, “Investigation of upstream transmission performances with cost-effective transmitter front-end for ONU in IM/DD OFDMA-PON,” in ICTC, 2012, pp. 694–695.

X. Xie, Y. Qiao, and Y. Ji, “The study of wavelength interval between adjacent ONUs in OFDMA-PON,” in ACP, 2010, pp. 621–622.

I. Cano, M. C. Santos, X. Escayola, V. Polo, E. Giacoumidis, C. Kachris, I. Tomkos, and J. Prat, “An OFDMA-PON with non-preselected independent ONU sources and centralized feedback wavelength control: Dimensioning and experimental results,” in ICTON, 2012, pp. 1–4.

X. Escayola, I. Cano, M. Santos, and J. Prat, “OFDM-PON performance with limited quantization,” in ICTON, 2013, pp. 1–4.

E. Giacoumidis, X. Q. Jin, and J. M. Tang, “Statistical investigations of optical OFDM adaptive loading algorithm over 1000 worst-case MMFs,” in OFC/NFOEC, 2011, paper JWA89.

J. Guillory, K. Chikha, A. Pizzinat, P. Guignard, B. Charbonnier, J. Etrillard, and C. Algani, “WDM-FDM approach for a multiservice home network,” in OFC, 2013, paper NTu3J.2.

C. Ruprecht, K. Habel, J. von Hoyningen-Huene, Y. Chen, N. Hanik, and W. Rosenkranz, “Timing advance tracking for coherent OFDMA-PON upstream system,” in ACP, 2013, paper AF1G.4.

R. E. Epworth, “Phenomenon of modal noise in fiber systems,” in OFC, Washington, DC, Mar. 1979.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Concept of the MMF-based home PON with OFDMA.

Fig. 2.
Fig. 2.

Exemplary frequency response of the MMF with baseband and pass-band regions denoted.

Fig. 3.
Fig. 3.

Schematic diagrams of the test setup realized in the laboratory for downlink (top) and uplink (bottom).

Fig. 4.
Fig. 4.

Diagram explaining the procedure of signal reception and processing.

Fig. 5.
Fig. 5.

Measurement of the SNR per subcarrier in the OFDM transmission performed in the topology depicted in Fig. 7; Fabry–Perot laser operating at 1310 nm used as a light source; different colors correspond to different numbers of couplers in a serial connection.

Fig. 6.
Fig. 6.

Measurement of the SNR per subcarrier in the OFDM transmission performed in the topology depicted in Fig. 7; VCSEL laser operating at 850 nm used as a light source; different colors correspond to a different number of couplers in a serial connection.

Fig. 7.
Fig. 7.

Diagram depicting a serial connection of couplers used in the experiment of modal noise measurement. AWG, arbitrary waveform generator; DSO, digital sampling oscilloscope.

Fig. 8.
Fig. 8.

Measurement of the SNR per OFDM subcarrier for two types of networks—magenta curve corresponds to SMF and blue one to MMF-based network (see Fig. 9). For reference there are provided SNR values in the case of only one channel being active (other light source temporarily off); these are depicted with green and red dots.

Fig. 9.
Fig. 9.

Schematic diagrams of network topologies used in the OFDM performance degradation according to OBI; in the MMF-based network MCP stands for mode conditioning patchcord—for reference see the text.

Fig. 10.
Fig. 10.

Network topology No. 1.

Fig. 11.
Fig. 11.

EVM versus subcarrier number in the uplink; results obtained in topology No. 1. Black curve corresponds to case 1 measurement, whereas magenta curve to case 2—for description please refer to the text. Blue and orange arrows denote subcarriers subscribed for channels A and B, respectively; see Fig. 10.

Fig. 12.
Fig. 12.

Magnitude of the OFDM spectra in the uplink; results obtained for topology No. 1, measurement case 1.

Fig. 13.
Fig. 13.

Magnitude of the OFDM spectra in the uplink; results obtained for topology No. 1, measurement case 2.

Fig. 14.
Fig. 14.

EVM versus subcarrier number in the downlink; results obtained in topology No. 1. Black curve, terminal A; magenta curve, terminal B; cyan-dotted curve, back-to-back (transmission over a short patchcord, attenuated optical power in front of the transmitter).

Fig. 15.
Fig. 15.

Network topology No. 2; MCP stands for mode conditioning patchcord—for reference see the text in Subsection IV.B.

Fig. 16.
Fig. 16.

EVM versus subcarrier number in the uplink; results obtained in topology No. 2; presented plots correspond to different measurement realizations (conducted in different time moments). Blue and orange arrows denote subcarriers subscribed for channels A and B, respectively; see Fig. 15.

Fig. 17.
Fig. 17.

Magnitude of the OFDM spectrum in the uplink—exemplary measurement realization; result obtained in topology No. 2.

Tables (1)

Tables Icon

TABLE I OFDM/OFDMA Signal Parameters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EVM(%)=1Ni=1N[(IiI˜i)2+(QiQ˜i)2]|vref|·100%,