Abstract

To reduce the peak-to-average power ratio (PAPR) of the optical orthogonal frequency-division multiplexing (OOFDM) signal, a novel null subcarrier shifting scheme is proposed in an intensity-modulated direct detection OFDM system. At the receiver, a constant subcarrier is used as the location information to implement demodulation accurately. Meanwhile, the computational complexity is degraded apparently by adopting the proposed scheme. The experimental results show that the PAPR reduction of the OFDM signal can reach about 2 dB at a complementary cumulative distribution function of 1×104, and the receiver sensitivity after 100 km single-mode fiber transmission at the bit error rate (BER) of 1×103 can be improved by about 1.5, 1.8, 2.1, and 2.6 dB when the launch power is 3, 5, 8, and 10 dBm, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM signals using selected mapping method and its application in optical millimeter-wave access system,” IEEE Photon. Technol. Lett., vol.  24, no. 15, pp. 1301–1303, 2012.
    [CrossRef]
  2. N. E. Jolley, H. Kee, P. Pickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550 nm 10 Gbit/s optical orthogonal frequency division multiplexed signal over 1000 m of multimode fibre using a directly modulated DFB,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2005, pp. 319–321.
  3. A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Anaheim, CA, Mar.5, 2006, paper PDP39.
  4. J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol.  20, no. 18, pp. 1545–1547, 2008.
    [CrossRef]
  5. H. S. Chung, S. H. Chang, and K. Kim, “Companding transform based SPM compensation in coherent optical OFDM transmission,” Opt. Express, vol.  19, pp. B702–B709, Dec. 2011.
    [CrossRef]
  6. X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol.  2, no. 5, pp. 131–133, 1998.
    [CrossRef]
  7. X. Wang, T. T. Tjhung, and C. S. Ng, “Reply to the comments on ‘reduction of peak-to-average power ratio of OFDM system using a companding technique’,” IEEE Trans. Broadcast., vol.  45, no. 4, pp. 420–422, Dec. 1999.
    [CrossRef]
  8. F. Li, J. Yu, Z. Cao, J. Xiao, H. Chen, and L. Chen, “Reducing the peak-to-average power ratio with companding transform coding in 60 GHz OFDM-ROF systems,” J. Opt. Commun. Netw., vol.  4, no. 3, pp. 202–209, 2012.
    [CrossRef]
  9. S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron. Lett., vol.  33, pp. 368–369, Feb. 1997.
    [CrossRef]
  10. R. W. Bami, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping,” Electron. Lett., vol.  32, pp. 2056–2057, Oct. 1996.
    [CrossRef]
  11. K. T. Wong, B. Wang, and J. C. Chen, “OFDM PAPR reduction by switching null subcarriers and data-subcarriers,” Electron. Lett., vol.  47, no. 1, pp. 62–63, 2011.
    [CrossRef]
  12. B. Wang, P. Ho, and C. Lin, “OFDM PAPR reduction by shifting null subcarriers among data subcarriers,” IEEE Commun. Lett., vol.  16, no. 9, pp. 1377–1379, 2012.
    [CrossRef]
  13. S. Ahmed and M. Kawai, “Dynamic null-data subcarrier switching for OFDM PAPR reduction with low computational overhead,” Electron. Lett., vol.  48, no. 9, pp. 498–499, 2012.
    [CrossRef]
  14. P. Boonsrimuang, K. Limwattanachai, P. PisitBoonsrimuang, and H. Kobayashi, “Proposal of new PAPR reduction method for OFDM signal by using permutation sequences,” in 14th Int. Conf. on Advanced Communication Technology (ICACT), 2012, pp. 342–345.

2012 (4)

Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM signals using selected mapping method and its application in optical millimeter-wave access system,” IEEE Photon. Technol. Lett., vol.  24, no. 15, pp. 1301–1303, 2012.
[CrossRef]

F. Li, J. Yu, Z. Cao, J. Xiao, H. Chen, and L. Chen, “Reducing the peak-to-average power ratio with companding transform coding in 60 GHz OFDM-ROF systems,” J. Opt. Commun. Netw., vol.  4, no. 3, pp. 202–209, 2012.
[CrossRef]

B. Wang, P. Ho, and C. Lin, “OFDM PAPR reduction by shifting null subcarriers among data subcarriers,” IEEE Commun. Lett., vol.  16, no. 9, pp. 1377–1379, 2012.
[CrossRef]

S. Ahmed and M. Kawai, “Dynamic null-data subcarrier switching for OFDM PAPR reduction with low computational overhead,” Electron. Lett., vol.  48, no. 9, pp. 498–499, 2012.
[CrossRef]

2011 (2)

K. T. Wong, B. Wang, and J. C. Chen, “OFDM PAPR reduction by switching null subcarriers and data-subcarriers,” Electron. Lett., vol.  47, no. 1, pp. 62–63, 2011.
[CrossRef]

H. S. Chung, S. H. Chang, and K. Kim, “Companding transform based SPM compensation in coherent optical OFDM transmission,” Opt. Express, vol.  19, pp. B702–B709, Dec. 2011.
[CrossRef]

2008 (1)

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol.  20, no. 18, pp. 1545–1547, 2008.
[CrossRef]

1999 (1)

X. Wang, T. T. Tjhung, and C. S. Ng, “Reply to the comments on ‘reduction of peak-to-average power ratio of OFDM system using a companding technique’,” IEEE Trans. Broadcast., vol.  45, no. 4, pp. 420–422, Dec. 1999.
[CrossRef]

1998 (1)

X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol.  2, no. 5, pp. 131–133, 1998.
[CrossRef]

1997 (1)

S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron. Lett., vol.  33, pp. 368–369, Feb. 1997.
[CrossRef]

1996 (1)

R. W. Bami, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping,” Electron. Lett., vol.  32, pp. 2056–2057, Oct. 1996.
[CrossRef]

Ahmed, S.

S. Ahmed and M. Kawai, “Dynamic null-data subcarrier switching for OFDM PAPR reduction with low computational overhead,” Electron. Lett., vol.  48, no. 9, pp. 498–499, 2012.
[CrossRef]

Armstrong, J.

A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Anaheim, CA, Mar.5, 2006, paper PDP39.

Bami, R. W.

R. W. Bami, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping,” Electron. Lett., vol.  32, pp. 2056–2057, Oct. 1996.
[CrossRef]

Boonsrimuang, P.

P. Boonsrimuang, K. Limwattanachai, P. PisitBoonsrimuang, and H. Kobayashi, “Proposal of new PAPR reduction method for OFDM signal by using permutation sequences,” in 14th Int. Conf. on Advanced Communication Technology (ICACT), 2012, pp. 342–345.

Cao, Z.

Chang, G. K.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol.  20, no. 18, pp. 1545–1547, 2008.
[CrossRef]

Chang, S. H.

Chen, H.

Chen, J. C.

K. T. Wong, B. Wang, and J. C. Chen, “OFDM PAPR reduction by switching null subcarriers and data-subcarriers,” Electron. Lett., vol.  47, no. 1, pp. 62–63, 2011.
[CrossRef]

Chen, L.

F. Li, J. Yu, Z. Cao, J. Xiao, H. Chen, and L. Chen, “Reducing the peak-to-average power ratio with companding transform coding in 60 GHz OFDM-ROF systems,” J. Opt. Commun. Netw., vol.  4, no. 3, pp. 202–209, 2012.
[CrossRef]

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol.  20, no. 18, pp. 1545–1547, 2008.
[CrossRef]

Chi, N.

Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM signals using selected mapping method and its application in optical millimeter-wave access system,” IEEE Photon. Technol. Lett., vol.  24, no. 15, pp. 1301–1303, 2012.
[CrossRef]

Chung, H. S.

Cimini, L. J.

X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol.  2, no. 5, pp. 131–133, 1998.
[CrossRef]

Cordina, K.

N. E. Jolley, H. Kee, P. Pickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550 nm 10 Gbit/s optical orthogonal frequency division multiplexed signal over 1000 m of multimode fibre using a directly modulated DFB,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2005, pp. 319–321.

Du, L.

A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Anaheim, CA, Mar.5, 2006, paper PDP39.

Fan, J.

Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM signals using selected mapping method and its application in optical millimeter-wave access system,” IEEE Photon. Technol. Lett., vol.  24, no. 15, pp. 1301–1303, 2012.
[CrossRef]

Fang, W.

Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM signals using selected mapping method and its application in optical millimeter-wave access system,” IEEE Photon. Technol. Lett., vol.  24, no. 15, pp. 1301–1303, 2012.
[CrossRef]

Fischer, R. F. H.

R. W. Bami, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping,” Electron. Lett., vol.  32, pp. 2056–2057, Oct. 1996.
[CrossRef]

Ho, P.

B. Wang, P. Ho, and C. Lin, “OFDM PAPR reduction by shifting null subcarriers among data subcarriers,” IEEE Commun. Lett., vol.  16, no. 9, pp. 1377–1379, 2012.
[CrossRef]

Huang, M. F.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol.  20, no. 18, pp. 1545–1547, 2008.
[CrossRef]

Huber, J. B.

S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron. Lett., vol.  33, pp. 368–369, Feb. 1997.
[CrossRef]

R. W. Bami, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping,” Electron. Lett., vol.  32, pp. 2056–2057, Oct. 1996.
[CrossRef]

Jolley, N. E.

N. E. Jolley, H. Kee, P. Pickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550 nm 10 Gbit/s optical orthogonal frequency division multiplexed signal over 1000 m of multimode fibre using a directly modulated DFB,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2005, pp. 319–321.

Kawai, M.

S. Ahmed and M. Kawai, “Dynamic null-data subcarrier switching for OFDM PAPR reduction with low computational overhead,” Electron. Lett., vol.  48, no. 9, pp. 498–499, 2012.
[CrossRef]

Kee, H.

N. E. Jolley, H. Kee, P. Pickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550 nm 10 Gbit/s optical orthogonal frequency division multiplexed signal over 1000 m of multimode fibre using a directly modulated DFB,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2005, pp. 319–321.

Kim, K.

Kobayashi, H.

P. Boonsrimuang, K. Limwattanachai, P. PisitBoonsrimuang, and H. Kobayashi, “Proposal of new PAPR reduction method for OFDM signal by using permutation sequences,” in 14th Int. Conf. on Advanced Communication Technology (ICACT), 2012, pp. 342–345.

Li, F.

Li, X.

X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol.  2, no. 5, pp. 131–133, 1998.
[CrossRef]

Limwattanachai, K.

P. Boonsrimuang, K. Limwattanachai, P. PisitBoonsrimuang, and H. Kobayashi, “Proposal of new PAPR reduction method for OFDM signal by using permutation sequences,” in 14th Int. Conf. on Advanced Communication Technology (ICACT), 2012, pp. 342–345.

Lin, C.

B. Wang, P. Ho, and C. Lin, “OFDM PAPR reduction by shifting null subcarriers among data subcarriers,” IEEE Commun. Lett., vol.  16, no. 9, pp. 1377–1379, 2012.
[CrossRef]

Lowery, A. J.

A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Anaheim, CA, Mar.5, 2006, paper PDP39.

Muller, S. H.

S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron. Lett., vol.  33, pp. 368–369, Feb. 1997.
[CrossRef]

Ng, C. S.

X. Wang, T. T. Tjhung, and C. S. Ng, “Reply to the comments on ‘reduction of peak-to-average power ratio of OFDM system using a companding technique’,” IEEE Trans. Broadcast., vol.  45, no. 4, pp. 420–422, Dec. 1999.
[CrossRef]

Pickard, P.

N. E. Jolley, H. Kee, P. Pickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550 nm 10 Gbit/s optical orthogonal frequency division multiplexed signal over 1000 m of multimode fibre using a directly modulated DFB,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2005, pp. 319–321.

PisitBoonsrimuang, P.

P. Boonsrimuang, K. Limwattanachai, P. PisitBoonsrimuang, and H. Kobayashi, “Proposal of new PAPR reduction method for OFDM signal by using permutation sequences,” in 14th Int. Conf. on Advanced Communication Technology (ICACT), 2012, pp. 342–345.

Qian, D.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol.  20, no. 18, pp. 1545–1547, 2008.
[CrossRef]

Shao, Y.

Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM signals using selected mapping method and its application in optical millimeter-wave access system,” IEEE Photon. Technol. Lett., vol.  24, no. 15, pp. 1301–1303, 2012.
[CrossRef]

Tang, J.

N. E. Jolley, H. Kee, P. Pickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550 nm 10 Gbit/s optical orthogonal frequency division multiplexed signal over 1000 m of multimode fibre using a directly modulated DFB,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2005, pp. 319–321.

Tjhung, T. T.

X. Wang, T. T. Tjhung, and C. S. Ng, “Reply to the comments on ‘reduction of peak-to-average power ratio of OFDM system using a companding technique’,” IEEE Trans. Broadcast., vol.  45, no. 4, pp. 420–422, Dec. 1999.
[CrossRef]

Wang, B.

B. Wang, P. Ho, and C. Lin, “OFDM PAPR reduction by shifting null subcarriers among data subcarriers,” IEEE Commun. Lett., vol.  16, no. 9, pp. 1377–1379, 2012.
[CrossRef]

K. T. Wong, B. Wang, and J. C. Chen, “OFDM PAPR reduction by switching null subcarriers and data-subcarriers,” Electron. Lett., vol.  47, no. 1, pp. 62–63, 2011.
[CrossRef]

Wang, X.

X. Wang, T. T. Tjhung, and C. S. Ng, “Reply to the comments on ‘reduction of peak-to-average power ratio of OFDM system using a companding technique’,” IEEE Trans. Broadcast., vol.  45, no. 4, pp. 420–422, Dec. 1999.
[CrossRef]

Wong, K. T.

K. T. Wong, B. Wang, and J. C. Chen, “OFDM PAPR reduction by switching null subcarriers and data-subcarriers,” Electron. Lett., vol.  47, no. 1, pp. 62–63, 2011.
[CrossRef]

Xiao, J.

Yu, J.

F. Li, J. Yu, Z. Cao, J. Xiao, H. Chen, and L. Chen, “Reducing the peak-to-average power ratio with companding transform coding in 60 GHz OFDM-ROF systems,” J. Opt. Commun. Netw., vol.  4, no. 3, pp. 202–209, 2012.
[CrossRef]

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol.  20, no. 18, pp. 1545–1547, 2008.
[CrossRef]

Electron. Lett. (4)

S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron. Lett., vol.  33, pp. 368–369, Feb. 1997.
[CrossRef]

R. W. Bami, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping,” Electron. Lett., vol.  32, pp. 2056–2057, Oct. 1996.
[CrossRef]

K. T. Wong, B. Wang, and J. C. Chen, “OFDM PAPR reduction by switching null subcarriers and data-subcarriers,” Electron. Lett., vol.  47, no. 1, pp. 62–63, 2011.
[CrossRef]

S. Ahmed and M. Kawai, “Dynamic null-data subcarrier switching for OFDM PAPR reduction with low computational overhead,” Electron. Lett., vol.  48, no. 9, pp. 498–499, 2012.
[CrossRef]

IEEE Commun. Lett. (2)

X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol.  2, no. 5, pp. 131–133, 1998.
[CrossRef]

B. Wang, P. Ho, and C. Lin, “OFDM PAPR reduction by shifting null subcarriers among data subcarriers,” IEEE Commun. Lett., vol.  16, no. 9, pp. 1377–1379, 2012.
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM signals using selected mapping method and its application in optical millimeter-wave access system,” IEEE Photon. Technol. Lett., vol.  24, no. 15, pp. 1301–1303, 2012.
[CrossRef]

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol.  20, no. 18, pp. 1545–1547, 2008.
[CrossRef]

IEEE Trans. Broadcast. (1)

X. Wang, T. T. Tjhung, and C. S. Ng, “Reply to the comments on ‘reduction of peak-to-average power ratio of OFDM system using a companding technique’,” IEEE Trans. Broadcast., vol.  45, no. 4, pp. 420–422, Dec. 1999.
[CrossRef]

J. Opt. Commun. Netw. (1)

Opt. Express (1)

Other (3)

N. E. Jolley, H. Kee, P. Pickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550 nm 10 Gbit/s optical orthogonal frequency division multiplexed signal over 1000 m of multimode fibre using a directly modulated DFB,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2005, pp. 319–321.

A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Anaheim, CA, Mar.5, 2006, paper PDP39.

P. Boonsrimuang, K. Limwattanachai, P. PisitBoonsrimuang, and H. Kobayashi, “Proposal of new PAPR reduction method for OFDM signal by using permutation sequences,” in 14th Int. Conf. on Advanced Communication Technology (ICACT), 2012, pp. 342–345.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Principle of a null-shifting scheme. (a) Subcarriers in the frequency domain before shifting, (b) subcarriers in the frequency domain after shifting for P=1, and (c) subcarriers in the frequency domain after shifting for P=2. NS, null subcarrier; DS, data subcarrier.

Fig. 2.
Fig. 2.

Structure of a frequency domain OFDM symbol with the proposed scheme: (a) before shifting and (b) after shifting. CS: constant subcarrier.

Fig. 3.
Fig. 3.

Time domain signals and the CCDFs of the OFDM signals. (a) Time domain signals of the original and proposed simple-shifting scheme and (b) CCDF of PAPR for three kinds of OFDM signals.

Fig. 4.
Fig. 4.

Structure of an IM/DD optical OFDM transmission system with a null-shifting scheme.

Fig. 5.
Fig. 5.

PAPR and BER performance of OFDM signals for different P: (a) relationship between the PAPR of OFDM signals and P and (b) relationship between BER performance and P.

Fig. 6.
Fig. 6.

Experimental setup of an IM/DD optical OFDM system with null-shifting scheme. ECL, external cavity laser; EDFA, erbium-doped fiber amplifier; ATT, attenuation; AWG, arbitrary wave-form generator; OBF, optical band pass filter; TDS, real time/digital storage oscilloscope.

Fig. 7.
Fig. 7.

Constellations and EVMs of OFDM signals when the received optical power is 15dBm after a 100 km fiber transmission.

Fig. 8.
Fig. 8.

100 km measured BERs versus different received optical powers with a launch power of 5 dBm.

Fig. 9.
Fig. 9.

100 km measured BERs versus different received optical powers at different launch powers.

Tables (2)

Tables Icon

TABLE I Comparisons of Computational Requirements

Tables Icon

TABLE II Key Parameters for the Simulated IM/DD OOFDM Link

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C=(1)h˜p+1*A,
abs(real(C))Aξ,abs(imag(C))ξ,