Abstract

In this paper, an extended 2D multiweight multilength optical orthogonal code (MWML-OOC) is proposed and analyzed using both Poisson and binomial distributions of multiple access interference (MAI). We also analyze the performance of 1D and 2D MWML-OOC that can support multirate transmission and quality-of-services (QoS) differentiation in the optical code-division multiple-access networks. The theory of the 1D MWML-OOC is reviewed where its bit-error rate (BER) performance analysis, based on the binomial model of MAI using the convolution technique, is presented and compared with the well-known Poisson model. The results indicated that the overall performance referred to as BER considering the binomial distribution of MAI is better than that obtained from Poisson-modeled MAI for both 1D and 2D MWML-OOCs. It was also found that the extended 2D MWML-OOC can support a greater number of users with reduced chip times and highly improve the BER performance compared with its 1D and 2D counterparts.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. Raddo, A. L. Sanches, J. V. dos Reis, and B.-H. V. Borges, “A new approach for evaluating the BER of a multirate, multiclass OFFH-CDMA system,” IEEE Commun. Lett., vol.  16, no. 2, pp. 259–261, Feb. 2012.
    [CrossRef]
  2. J. A. Salehi, “Code division multiple-access techniques in optical fiber networks I: Fundamental principles,” IEEE Trans. Commun., vol.  37, no. 8, pp. 824–833, Aug. 1989.
    [CrossRef]
  3. F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: Design, analysis, and applications,” IEEE Trans. Inf. Theory, vol.  35, no. 3, pp. 595–604, May 1989.
    [CrossRef]
  4. M. M. Karbassian and F. Kueppers, “Synchronous optical CDMA network capacity increase using transposed modified prime codes,” J. Lightwave Technol., vol.  28, no. 17, pp. 2603–2610, Sept. 2010.
    [CrossRef]
  5. S. V. Maric, Z. I. Kostic, and E. L. Titlebaum, “A new family of optical code sequences for use in spread-spectrum fiber-optic local area networks,” IEEE Trans. Commun., vol.  41, pp. 1217–1221, Aug. 1993.
    [CrossRef]
  6. A. Lalmahomed, M. M. Karbassian, and H. Ghafouri-Shiraz, “Performance analysis of enhanced-MPC in incoherent synchronous optical CDMA,” J. Lightwave Technol., vol.  28, no. 1, pp. 39–46, Jan. 2010.
    [CrossRef]
  7. J.-H. Wen, J.-Y. Lin, and C.-Y. Liu, “Modified prime-hop codes for optical CDMA systems,” IEE Proc.-Commun., vol.  150, no. 5, pp. 404–408, Oct. 2003.
    [CrossRef]
  8. W. C. Kwong, G.-C. Yang, V. Baby, C.-S. Bres, and P. R. Prucnal, “Multiple-wavelength optical orthogonal codes under prime-sequence permutations for optical CDMA,” IEEE Trans. Commun., vol  53, no. 1, pp. 117–123, Jan. 2005.
    [CrossRef]
  9. S. Shurong, H. Yin, Z. Wang, and A. Xu, “A new family of 2D optical orthogonal codes and analysis of its performance in optical CDMA access networks,” J. Lightwave Technol., vol.  24, no. 4, pp. 1646–1653, Apr. 2006.
    [CrossRef]
  10. W. C. Kwong and G. C. Yang, “Design of multilength optical orthogonal codes for optical CDMA multimedia networks,” IEEE Trans. Commun., vol.  50, no. 8, pp. 1258–1265, Aug. 2002.
    [CrossRef]
  11. J. Y. Lin, J. S. Jhou, and J. H. Wen, “Variable-length code construction for incoherent optical CDMA systems,” Opt. Fiber Technol., vol.  13, no. 2, pp. 180–190, Apr. 2007.
    [CrossRef]
  12. X. Li, P. Fan, N. Suehiro, and D. Wu, “Further constructions of optimal variable-weight optical orthogonal codes,” in Proc. 5th Annu. Workshop Signal Design and its Applications in Communications, 2011, pp. 130–133.
  13. F. R. Gu and J. Wu, “Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous optical CDMA systems,” J. Lightwave Technol., vol.  23, no. 2, pp. 740–748, Feb. 2005.
    [CrossRef]
  14. N. G. Tarhuni, T. O. Korhonen, E. Mutafungwa, and M. S. Elmusrati, “Multiclass optical orthogonal codes for multiservice optical CDMA networks,” J. Lightwave Technol., vol.  24. no. 2, pp. 694–704, Feb. 2006.
    [CrossRef]
  15. R. Omrani, G. Garg, P. V. Kumar, P. Elia, and P. Bhambhani, “Large families of asymptotically optimal two-dimensional optical orthogonal codes,” IEEE Trans. Inf. Theory, vol.  58, no. 2, pp. 1163–1185, Feb. 2012.
    [CrossRef]
  16. W. C. Kwong and G.-C. Yang, “Multiple-length, multiple-wavelength optical orthogonal codes for optical CDMA systems supporting multirate multimedia services,” IEEE J. Sel. Areas Commun., vol.  22, no. 9, pp. 1640–1647, Nov. 2004.
    [CrossRef]
  17. W. Liang, H. Yin, L. Qin, Z. Wang, and A. Xu, “A new family of 2D variable-weight optical orthogonal codes for OCDMA systems supporting multiple QoS and analysis of its performance,” Photonic Netw. Commun., vol.  16, no. 1, pp. 53–60, 2008.
    [CrossRef]
  18. H. Yin, W. Liang, and L. Ma, “Construction and performance analysis of 2D variable-length variable-weight optical orthogonal codes,” Photonic Netw. Commun., vol.  18, no. 1, pp. 122–128, 2009.
  19. V. Baby, W.-C. Kwong, C.-Y. Chang, G.-C. Yang, and P. R. Prucnal, “Performance analysis of variable-weight multilength optical codes for wavelength–time O-CDMA multimedia systems,” IEEE Trans. Commun., vol.  55, no. 7, pp. 1325–1333, July 2007.
    [CrossRef]
  20. C.-Y. Chang, H.-T. Chen, G.-C. Yang, and W.-C. Kwong, “Spectral efficiency study of QC-CHPCs in multirate optical CDMA system,” IEEE J. Sel. Areas Commun., vol.  25, no. 9, pp. 118–128, Dec. 2007.
    [CrossRef]
  21. H. Beyranvand and J. A. Salehi, “All-optical multiservice path switching in optical code switched GMPLS core network,” J. Lightwave Technol., vol.  27, no. 12, pp. 2001–2012, June 2009.
    [CrossRef]
  22. T. R. Raddo, A. L. Sanches, J. V. dos Resi, and B.-H. V. Borges, “Influence of the MAI distribution over the BER evaluation in a multirate, multiclass OOC-OCDMA system,” in Proc. Access Networks and In-house Communications, Toronto, Canada, June 2011, paper AtuB5.
  23. J. A. Salehi and C. A. Brackett, “Code division multiple-access techniques in optical fiber networks II: Systems performance analysis,” IEEE Trans. Commun, vol.  37, no. 8, pp. 834–842, Aug. 1989.
    [CrossRef]
  24. A. A. Shaar and P. A. Davies, “Prime sequences: Quasi-optimal sequences for OR channel code division multiplexing,” Electron. Lett., vol.  19, no. 21, pp. 888–890, Oct. 1983.
    [CrossRef]

2012 (2)

T. R. Raddo, A. L. Sanches, J. V. dos Reis, and B.-H. V. Borges, “A new approach for evaluating the BER of a multirate, multiclass OFFH-CDMA system,” IEEE Commun. Lett., vol.  16, no. 2, pp. 259–261, Feb. 2012.
[CrossRef]

R. Omrani, G. Garg, P. V. Kumar, P. Elia, and P. Bhambhani, “Large families of asymptotically optimal two-dimensional optical orthogonal codes,” IEEE Trans. Inf. Theory, vol.  58, no. 2, pp. 1163–1185, Feb. 2012.
[CrossRef]

2010 (2)

2009 (2)

H. Beyranvand and J. A. Salehi, “All-optical multiservice path switching in optical code switched GMPLS core network,” J. Lightwave Technol., vol.  27, no. 12, pp. 2001–2012, June 2009.
[CrossRef]

H. Yin, W. Liang, and L. Ma, “Construction and performance analysis of 2D variable-length variable-weight optical orthogonal codes,” Photonic Netw. Commun., vol.  18, no. 1, pp. 122–128, 2009.

2008 (1)

W. Liang, H. Yin, L. Qin, Z. Wang, and A. Xu, “A new family of 2D variable-weight optical orthogonal codes for OCDMA systems supporting multiple QoS and analysis of its performance,” Photonic Netw. Commun., vol.  16, no. 1, pp. 53–60, 2008.
[CrossRef]

2007 (3)

J. Y. Lin, J. S. Jhou, and J. H. Wen, “Variable-length code construction for incoherent optical CDMA systems,” Opt. Fiber Technol., vol.  13, no. 2, pp. 180–190, Apr. 2007.
[CrossRef]

V. Baby, W.-C. Kwong, C.-Y. Chang, G.-C. Yang, and P. R. Prucnal, “Performance analysis of variable-weight multilength optical codes for wavelength–time O-CDMA multimedia systems,” IEEE Trans. Commun., vol.  55, no. 7, pp. 1325–1333, July 2007.
[CrossRef]

C.-Y. Chang, H.-T. Chen, G.-C. Yang, and W.-C. Kwong, “Spectral efficiency study of QC-CHPCs in multirate optical CDMA system,” IEEE J. Sel. Areas Commun., vol.  25, no. 9, pp. 118–128, Dec. 2007.
[CrossRef]

2006 (2)

2005 (2)

W. C. Kwong, G.-C. Yang, V. Baby, C.-S. Bres, and P. R. Prucnal, “Multiple-wavelength optical orthogonal codes under prime-sequence permutations for optical CDMA,” IEEE Trans. Commun., vol  53, no. 1, pp. 117–123, Jan. 2005.
[CrossRef]

F. R. Gu and J. Wu, “Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous optical CDMA systems,” J. Lightwave Technol., vol.  23, no. 2, pp. 740–748, Feb. 2005.
[CrossRef]

2004 (1)

W. C. Kwong and G.-C. Yang, “Multiple-length, multiple-wavelength optical orthogonal codes for optical CDMA systems supporting multirate multimedia services,” IEEE J. Sel. Areas Commun., vol.  22, no. 9, pp. 1640–1647, Nov. 2004.
[CrossRef]

2003 (1)

J.-H. Wen, J.-Y. Lin, and C.-Y. Liu, “Modified prime-hop codes for optical CDMA systems,” IEE Proc.-Commun., vol.  150, no. 5, pp. 404–408, Oct. 2003.
[CrossRef]

2002 (1)

W. C. Kwong and G. C. Yang, “Design of multilength optical orthogonal codes for optical CDMA multimedia networks,” IEEE Trans. Commun., vol.  50, no. 8, pp. 1258–1265, Aug. 2002.
[CrossRef]

1993 (1)

S. V. Maric, Z. I. Kostic, and E. L. Titlebaum, “A new family of optical code sequences for use in spread-spectrum fiber-optic local area networks,” IEEE Trans. Commun., vol.  41, pp. 1217–1221, Aug. 1993.
[CrossRef]

1989 (3)

J. A. Salehi, “Code division multiple-access techniques in optical fiber networks I: Fundamental principles,” IEEE Trans. Commun., vol.  37, no. 8, pp. 824–833, Aug. 1989.
[CrossRef]

F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: Design, analysis, and applications,” IEEE Trans. Inf. Theory, vol.  35, no. 3, pp. 595–604, May 1989.
[CrossRef]

J. A. Salehi and C. A. Brackett, “Code division multiple-access techniques in optical fiber networks II: Systems performance analysis,” IEEE Trans. Commun, vol.  37, no. 8, pp. 834–842, Aug. 1989.
[CrossRef]

1983 (1)

A. A. Shaar and P. A. Davies, “Prime sequences: Quasi-optimal sequences for OR channel code division multiplexing,” Electron. Lett., vol.  19, no. 21, pp. 888–890, Oct. 1983.
[CrossRef]

Baby, V.

V. Baby, W.-C. Kwong, C.-Y. Chang, G.-C. Yang, and P. R. Prucnal, “Performance analysis of variable-weight multilength optical codes for wavelength–time O-CDMA multimedia systems,” IEEE Trans. Commun., vol.  55, no. 7, pp. 1325–1333, July 2007.
[CrossRef]

W. C. Kwong, G.-C. Yang, V. Baby, C.-S. Bres, and P. R. Prucnal, “Multiple-wavelength optical orthogonal codes under prime-sequence permutations for optical CDMA,” IEEE Trans. Commun., vol  53, no. 1, pp. 117–123, Jan. 2005.
[CrossRef]

Beyranvand, H.

Bhambhani, P.

R. Omrani, G. Garg, P. V. Kumar, P. Elia, and P. Bhambhani, “Large families of asymptotically optimal two-dimensional optical orthogonal codes,” IEEE Trans. Inf. Theory, vol.  58, no. 2, pp. 1163–1185, Feb. 2012.
[CrossRef]

Borges, B.-H. V.

T. R. Raddo, A. L. Sanches, J. V. dos Reis, and B.-H. V. Borges, “A new approach for evaluating the BER of a multirate, multiclass OFFH-CDMA system,” IEEE Commun. Lett., vol.  16, no. 2, pp. 259–261, Feb. 2012.
[CrossRef]

T. R. Raddo, A. L. Sanches, J. V. dos Resi, and B.-H. V. Borges, “Influence of the MAI distribution over the BER evaluation in a multirate, multiclass OOC-OCDMA system,” in Proc. Access Networks and In-house Communications, Toronto, Canada, June 2011, paper AtuB5.

Brackett, C. A.

J. A. Salehi and C. A. Brackett, “Code division multiple-access techniques in optical fiber networks II: Systems performance analysis,” IEEE Trans. Commun, vol.  37, no. 8, pp. 834–842, Aug. 1989.
[CrossRef]

Bres, C.-S.

W. C. Kwong, G.-C. Yang, V. Baby, C.-S. Bres, and P. R. Prucnal, “Multiple-wavelength optical orthogonal codes under prime-sequence permutations for optical CDMA,” IEEE Trans. Commun., vol  53, no. 1, pp. 117–123, Jan. 2005.
[CrossRef]

Chang, C.-Y.

V. Baby, W.-C. Kwong, C.-Y. Chang, G.-C. Yang, and P. R. Prucnal, “Performance analysis of variable-weight multilength optical codes for wavelength–time O-CDMA multimedia systems,” IEEE Trans. Commun., vol.  55, no. 7, pp. 1325–1333, July 2007.
[CrossRef]

C.-Y. Chang, H.-T. Chen, G.-C. Yang, and W.-C. Kwong, “Spectral efficiency study of QC-CHPCs in multirate optical CDMA system,” IEEE J. Sel. Areas Commun., vol.  25, no. 9, pp. 118–128, Dec. 2007.
[CrossRef]

Chen, H.-T.

C.-Y. Chang, H.-T. Chen, G.-C. Yang, and W.-C. Kwong, “Spectral efficiency study of QC-CHPCs in multirate optical CDMA system,” IEEE J. Sel. Areas Commun., vol.  25, no. 9, pp. 118–128, Dec. 2007.
[CrossRef]

Chung, F. R. K.

F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: Design, analysis, and applications,” IEEE Trans. Inf. Theory, vol.  35, no. 3, pp. 595–604, May 1989.
[CrossRef]

Davies, P. A.

A. A. Shaar and P. A. Davies, “Prime sequences: Quasi-optimal sequences for OR channel code division multiplexing,” Electron. Lett., vol.  19, no. 21, pp. 888–890, Oct. 1983.
[CrossRef]

dos Reis, J. V.

T. R. Raddo, A. L. Sanches, J. V. dos Reis, and B.-H. V. Borges, “A new approach for evaluating the BER of a multirate, multiclass OFFH-CDMA system,” IEEE Commun. Lett., vol.  16, no. 2, pp. 259–261, Feb. 2012.
[CrossRef]

dos Resi, J. V.

T. R. Raddo, A. L. Sanches, J. V. dos Resi, and B.-H. V. Borges, “Influence of the MAI distribution over the BER evaluation in a multirate, multiclass OOC-OCDMA system,” in Proc. Access Networks and In-house Communications, Toronto, Canada, June 2011, paper AtuB5.

Elia, P.

R. Omrani, G. Garg, P. V. Kumar, P. Elia, and P. Bhambhani, “Large families of asymptotically optimal two-dimensional optical orthogonal codes,” IEEE Trans. Inf. Theory, vol.  58, no. 2, pp. 1163–1185, Feb. 2012.
[CrossRef]

Elmusrati, M. S.

Fan, P.

X. Li, P. Fan, N. Suehiro, and D. Wu, “Further constructions of optimal variable-weight optical orthogonal codes,” in Proc. 5th Annu. Workshop Signal Design and its Applications in Communications, 2011, pp. 130–133.

Garg, G.

R. Omrani, G. Garg, P. V. Kumar, P. Elia, and P. Bhambhani, “Large families of asymptotically optimal two-dimensional optical orthogonal codes,” IEEE Trans. Inf. Theory, vol.  58, no. 2, pp. 1163–1185, Feb. 2012.
[CrossRef]

Ghafouri-Shiraz, H.

Gu, F. R.

Jhou, J. S.

J. Y. Lin, J. S. Jhou, and J. H. Wen, “Variable-length code construction for incoherent optical CDMA systems,” Opt. Fiber Technol., vol.  13, no. 2, pp. 180–190, Apr. 2007.
[CrossRef]

Karbassian, M. M.

Korhonen, T. O.

Kostic, Z. I.

S. V. Maric, Z. I. Kostic, and E. L. Titlebaum, “A new family of optical code sequences for use in spread-spectrum fiber-optic local area networks,” IEEE Trans. Commun., vol.  41, pp. 1217–1221, Aug. 1993.
[CrossRef]

Kueppers, F.

Kumar, P. V.

R. Omrani, G. Garg, P. V. Kumar, P. Elia, and P. Bhambhani, “Large families of asymptotically optimal two-dimensional optical orthogonal codes,” IEEE Trans. Inf. Theory, vol.  58, no. 2, pp. 1163–1185, Feb. 2012.
[CrossRef]

Kwong, W. C.

W. C. Kwong, G.-C. Yang, V. Baby, C.-S. Bres, and P. R. Prucnal, “Multiple-wavelength optical orthogonal codes under prime-sequence permutations for optical CDMA,” IEEE Trans. Commun., vol  53, no. 1, pp. 117–123, Jan. 2005.
[CrossRef]

W. C. Kwong and G.-C. Yang, “Multiple-length, multiple-wavelength optical orthogonal codes for optical CDMA systems supporting multirate multimedia services,” IEEE J. Sel. Areas Commun., vol.  22, no. 9, pp. 1640–1647, Nov. 2004.
[CrossRef]

W. C. Kwong and G. C. Yang, “Design of multilength optical orthogonal codes for optical CDMA multimedia networks,” IEEE Trans. Commun., vol.  50, no. 8, pp. 1258–1265, Aug. 2002.
[CrossRef]

Kwong, W.-C.

C.-Y. Chang, H.-T. Chen, G.-C. Yang, and W.-C. Kwong, “Spectral efficiency study of QC-CHPCs in multirate optical CDMA system,” IEEE J. Sel. Areas Commun., vol.  25, no. 9, pp. 118–128, Dec. 2007.
[CrossRef]

V. Baby, W.-C. Kwong, C.-Y. Chang, G.-C. Yang, and P. R. Prucnal, “Performance analysis of variable-weight multilength optical codes for wavelength–time O-CDMA multimedia systems,” IEEE Trans. Commun., vol.  55, no. 7, pp. 1325–1333, July 2007.
[CrossRef]

Lalmahomed, A.

Li, X.

X. Li, P. Fan, N. Suehiro, and D. Wu, “Further constructions of optimal variable-weight optical orthogonal codes,” in Proc. 5th Annu. Workshop Signal Design and its Applications in Communications, 2011, pp. 130–133.

Liang, W.

H. Yin, W. Liang, and L. Ma, “Construction and performance analysis of 2D variable-length variable-weight optical orthogonal codes,” Photonic Netw. Commun., vol.  18, no. 1, pp. 122–128, 2009.

W. Liang, H. Yin, L. Qin, Z. Wang, and A. Xu, “A new family of 2D variable-weight optical orthogonal codes for OCDMA systems supporting multiple QoS and analysis of its performance,” Photonic Netw. Commun., vol.  16, no. 1, pp. 53–60, 2008.
[CrossRef]

Lin, J. Y.

J. Y. Lin, J. S. Jhou, and J. H. Wen, “Variable-length code construction for incoherent optical CDMA systems,” Opt. Fiber Technol., vol.  13, no. 2, pp. 180–190, Apr. 2007.
[CrossRef]

Lin, J.-Y.

J.-H. Wen, J.-Y. Lin, and C.-Y. Liu, “Modified prime-hop codes for optical CDMA systems,” IEE Proc.-Commun., vol.  150, no. 5, pp. 404–408, Oct. 2003.
[CrossRef]

Liu, C.-Y.

J.-H. Wen, J.-Y. Lin, and C.-Y. Liu, “Modified prime-hop codes for optical CDMA systems,” IEE Proc.-Commun., vol.  150, no. 5, pp. 404–408, Oct. 2003.
[CrossRef]

Ma, L.

H. Yin, W. Liang, and L. Ma, “Construction and performance analysis of 2D variable-length variable-weight optical orthogonal codes,” Photonic Netw. Commun., vol.  18, no. 1, pp. 122–128, 2009.

Maric, S. V.

S. V. Maric, Z. I. Kostic, and E. L. Titlebaum, “A new family of optical code sequences for use in spread-spectrum fiber-optic local area networks,” IEEE Trans. Commun., vol.  41, pp. 1217–1221, Aug. 1993.
[CrossRef]

Mutafungwa, E.

Omrani, R.

R. Omrani, G. Garg, P. V. Kumar, P. Elia, and P. Bhambhani, “Large families of asymptotically optimal two-dimensional optical orthogonal codes,” IEEE Trans. Inf. Theory, vol.  58, no. 2, pp. 1163–1185, Feb. 2012.
[CrossRef]

Prucnal, P. R.

V. Baby, W.-C. Kwong, C.-Y. Chang, G.-C. Yang, and P. R. Prucnal, “Performance analysis of variable-weight multilength optical codes for wavelength–time O-CDMA multimedia systems,” IEEE Trans. Commun., vol.  55, no. 7, pp. 1325–1333, July 2007.
[CrossRef]

W. C. Kwong, G.-C. Yang, V. Baby, C.-S. Bres, and P. R. Prucnal, “Multiple-wavelength optical orthogonal codes under prime-sequence permutations for optical CDMA,” IEEE Trans. Commun., vol  53, no. 1, pp. 117–123, Jan. 2005.
[CrossRef]

Qin, L.

W. Liang, H. Yin, L. Qin, Z. Wang, and A. Xu, “A new family of 2D variable-weight optical orthogonal codes for OCDMA systems supporting multiple QoS and analysis of its performance,” Photonic Netw. Commun., vol.  16, no. 1, pp. 53–60, 2008.
[CrossRef]

Raddo, T. R.

T. R. Raddo, A. L. Sanches, J. V. dos Reis, and B.-H. V. Borges, “A new approach for evaluating the BER of a multirate, multiclass OFFH-CDMA system,” IEEE Commun. Lett., vol.  16, no. 2, pp. 259–261, Feb. 2012.
[CrossRef]

T. R. Raddo, A. L. Sanches, J. V. dos Resi, and B.-H. V. Borges, “Influence of the MAI distribution over the BER evaluation in a multirate, multiclass OOC-OCDMA system,” in Proc. Access Networks and In-house Communications, Toronto, Canada, June 2011, paper AtuB5.

Salehi, J. A.

H. Beyranvand and J. A. Salehi, “All-optical multiservice path switching in optical code switched GMPLS core network,” J. Lightwave Technol., vol.  27, no. 12, pp. 2001–2012, June 2009.
[CrossRef]

J. A. Salehi and C. A. Brackett, “Code division multiple-access techniques in optical fiber networks II: Systems performance analysis,” IEEE Trans. Commun, vol.  37, no. 8, pp. 834–842, Aug. 1989.
[CrossRef]

J. A. Salehi, “Code division multiple-access techniques in optical fiber networks I: Fundamental principles,” IEEE Trans. Commun., vol.  37, no. 8, pp. 824–833, Aug. 1989.
[CrossRef]

F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: Design, analysis, and applications,” IEEE Trans. Inf. Theory, vol.  35, no. 3, pp. 595–604, May 1989.
[CrossRef]

Sanches, A. L.

T. R. Raddo, A. L. Sanches, J. V. dos Reis, and B.-H. V. Borges, “A new approach for evaluating the BER of a multirate, multiclass OFFH-CDMA system,” IEEE Commun. Lett., vol.  16, no. 2, pp. 259–261, Feb. 2012.
[CrossRef]

T. R. Raddo, A. L. Sanches, J. V. dos Resi, and B.-H. V. Borges, “Influence of the MAI distribution over the BER evaluation in a multirate, multiclass OOC-OCDMA system,” in Proc. Access Networks and In-house Communications, Toronto, Canada, June 2011, paper AtuB5.

Shaar, A. A.

A. A. Shaar and P. A. Davies, “Prime sequences: Quasi-optimal sequences for OR channel code division multiplexing,” Electron. Lett., vol.  19, no. 21, pp. 888–890, Oct. 1983.
[CrossRef]

Shurong, S.

Suehiro, N.

X. Li, P. Fan, N. Suehiro, and D. Wu, “Further constructions of optimal variable-weight optical orthogonal codes,” in Proc. 5th Annu. Workshop Signal Design and its Applications in Communications, 2011, pp. 130–133.

Tarhuni, N. G.

Titlebaum, E. L.

S. V. Maric, Z. I. Kostic, and E. L. Titlebaum, “A new family of optical code sequences for use in spread-spectrum fiber-optic local area networks,” IEEE Trans. Commun., vol.  41, pp. 1217–1221, Aug. 1993.
[CrossRef]

Wang, Z.

W. Liang, H. Yin, L. Qin, Z. Wang, and A. Xu, “A new family of 2D variable-weight optical orthogonal codes for OCDMA systems supporting multiple QoS and analysis of its performance,” Photonic Netw. Commun., vol.  16, no. 1, pp. 53–60, 2008.
[CrossRef]

S. Shurong, H. Yin, Z. Wang, and A. Xu, “A new family of 2D optical orthogonal codes and analysis of its performance in optical CDMA access networks,” J. Lightwave Technol., vol.  24, no. 4, pp. 1646–1653, Apr. 2006.
[CrossRef]

Wei, V. K.

F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: Design, analysis, and applications,” IEEE Trans. Inf. Theory, vol.  35, no. 3, pp. 595–604, May 1989.
[CrossRef]

Wen, J. H.

J. Y. Lin, J. S. Jhou, and J. H. Wen, “Variable-length code construction for incoherent optical CDMA systems,” Opt. Fiber Technol., vol.  13, no. 2, pp. 180–190, Apr. 2007.
[CrossRef]

Wen, J.-H.

J.-H. Wen, J.-Y. Lin, and C.-Y. Liu, “Modified prime-hop codes for optical CDMA systems,” IEE Proc.-Commun., vol.  150, no. 5, pp. 404–408, Oct. 2003.
[CrossRef]

Wu, D.

X. Li, P. Fan, N. Suehiro, and D. Wu, “Further constructions of optimal variable-weight optical orthogonal codes,” in Proc. 5th Annu. Workshop Signal Design and its Applications in Communications, 2011, pp. 130–133.

Wu, J.

Xu, A.

W. Liang, H. Yin, L. Qin, Z. Wang, and A. Xu, “A new family of 2D variable-weight optical orthogonal codes for OCDMA systems supporting multiple QoS and analysis of its performance,” Photonic Netw. Commun., vol.  16, no. 1, pp. 53–60, 2008.
[CrossRef]

S. Shurong, H. Yin, Z. Wang, and A. Xu, “A new family of 2D optical orthogonal codes and analysis of its performance in optical CDMA access networks,” J. Lightwave Technol., vol.  24, no. 4, pp. 1646–1653, Apr. 2006.
[CrossRef]

Yang, G. C.

W. C. Kwong and G. C. Yang, “Design of multilength optical orthogonal codes for optical CDMA multimedia networks,” IEEE Trans. Commun., vol.  50, no. 8, pp. 1258–1265, Aug. 2002.
[CrossRef]

Yang, G.-C.

C.-Y. Chang, H.-T. Chen, G.-C. Yang, and W.-C. Kwong, “Spectral efficiency study of QC-CHPCs in multirate optical CDMA system,” IEEE J. Sel. Areas Commun., vol.  25, no. 9, pp. 118–128, Dec. 2007.
[CrossRef]

V. Baby, W.-C. Kwong, C.-Y. Chang, G.-C. Yang, and P. R. Prucnal, “Performance analysis of variable-weight multilength optical codes for wavelength–time O-CDMA multimedia systems,” IEEE Trans. Commun., vol.  55, no. 7, pp. 1325–1333, July 2007.
[CrossRef]

W. C. Kwong, G.-C. Yang, V. Baby, C.-S. Bres, and P. R. Prucnal, “Multiple-wavelength optical orthogonal codes under prime-sequence permutations for optical CDMA,” IEEE Trans. Commun., vol  53, no. 1, pp. 117–123, Jan. 2005.
[CrossRef]

W. C. Kwong and G.-C. Yang, “Multiple-length, multiple-wavelength optical orthogonal codes for optical CDMA systems supporting multirate multimedia services,” IEEE J. Sel. Areas Commun., vol.  22, no. 9, pp. 1640–1647, Nov. 2004.
[CrossRef]

Yin, H.

H. Yin, W. Liang, and L. Ma, “Construction and performance analysis of 2D variable-length variable-weight optical orthogonal codes,” Photonic Netw. Commun., vol.  18, no. 1, pp. 122–128, 2009.

W. Liang, H. Yin, L. Qin, Z. Wang, and A. Xu, “A new family of 2D variable-weight optical orthogonal codes for OCDMA systems supporting multiple QoS and analysis of its performance,” Photonic Netw. Commun., vol.  16, no. 1, pp. 53–60, 2008.
[CrossRef]

S. Shurong, H. Yin, Z. Wang, and A. Xu, “A new family of 2D optical orthogonal codes and analysis of its performance in optical CDMA access networks,” J. Lightwave Technol., vol.  24, no. 4, pp. 1646–1653, Apr. 2006.
[CrossRef]

Electron. Lett. (1)

A. A. Shaar and P. A. Davies, “Prime sequences: Quasi-optimal sequences for OR channel code division multiplexing,” Electron. Lett., vol.  19, no. 21, pp. 888–890, Oct. 1983.
[CrossRef]

IEE Proc.-Commun. (1)

J.-H. Wen, J.-Y. Lin, and C.-Y. Liu, “Modified prime-hop codes for optical CDMA systems,” IEE Proc.-Commun., vol.  150, no. 5, pp. 404–408, Oct. 2003.
[CrossRef]

IEEE Commun. Lett. (1)

T. R. Raddo, A. L. Sanches, J. V. dos Reis, and B.-H. V. Borges, “A new approach for evaluating the BER of a multirate, multiclass OFFH-CDMA system,” IEEE Commun. Lett., vol.  16, no. 2, pp. 259–261, Feb. 2012.
[CrossRef]

IEEE J. Sel. Areas Commun. (2)

W. C. Kwong and G.-C. Yang, “Multiple-length, multiple-wavelength optical orthogonal codes for optical CDMA systems supporting multirate multimedia services,” IEEE J. Sel. Areas Commun., vol.  22, no. 9, pp. 1640–1647, Nov. 2004.
[CrossRef]

C.-Y. Chang, H.-T. Chen, G.-C. Yang, and W.-C. Kwong, “Spectral efficiency study of QC-CHPCs in multirate optical CDMA system,” IEEE J. Sel. Areas Commun., vol.  25, no. 9, pp. 118–128, Dec. 2007.
[CrossRef]

IEEE Trans. Commun (1)

J. A. Salehi and C. A. Brackett, “Code division multiple-access techniques in optical fiber networks II: Systems performance analysis,” IEEE Trans. Commun, vol.  37, no. 8, pp. 834–842, Aug. 1989.
[CrossRef]

IEEE Trans. Commun. (5)

V. Baby, W.-C. Kwong, C.-Y. Chang, G.-C. Yang, and P. R. Prucnal, “Performance analysis of variable-weight multilength optical codes for wavelength–time O-CDMA multimedia systems,” IEEE Trans. Commun., vol.  55, no. 7, pp. 1325–1333, July 2007.
[CrossRef]

J. A. Salehi, “Code division multiple-access techniques in optical fiber networks I: Fundamental principles,” IEEE Trans. Commun., vol.  37, no. 8, pp. 824–833, Aug. 1989.
[CrossRef]

S. V. Maric, Z. I. Kostic, and E. L. Titlebaum, “A new family of optical code sequences for use in spread-spectrum fiber-optic local area networks,” IEEE Trans. Commun., vol.  41, pp. 1217–1221, Aug. 1993.
[CrossRef]

W. C. Kwong, G.-C. Yang, V. Baby, C.-S. Bres, and P. R. Prucnal, “Multiple-wavelength optical orthogonal codes under prime-sequence permutations for optical CDMA,” IEEE Trans. Commun., vol  53, no. 1, pp. 117–123, Jan. 2005.
[CrossRef]

W. C. Kwong and G. C. Yang, “Design of multilength optical orthogonal codes for optical CDMA multimedia networks,” IEEE Trans. Commun., vol.  50, no. 8, pp. 1258–1265, Aug. 2002.
[CrossRef]

IEEE Trans. Inf. Theory (2)

R. Omrani, G. Garg, P. V. Kumar, P. Elia, and P. Bhambhani, “Large families of asymptotically optimal two-dimensional optical orthogonal codes,” IEEE Trans. Inf. Theory, vol.  58, no. 2, pp. 1163–1185, Feb. 2012.
[CrossRef]

F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: Design, analysis, and applications,” IEEE Trans. Inf. Theory, vol.  35, no. 3, pp. 595–604, May 1989.
[CrossRef]

J. Lightwave Technol. (6)

Opt. Fiber Technol. (1)

J. Y. Lin, J. S. Jhou, and J. H. Wen, “Variable-length code construction for incoherent optical CDMA systems,” Opt. Fiber Technol., vol.  13, no. 2, pp. 180–190, Apr. 2007.
[CrossRef]

Photonic Netw. Commun. (2)

W. Liang, H. Yin, L. Qin, Z. Wang, and A. Xu, “A new family of 2D variable-weight optical orthogonal codes for OCDMA systems supporting multiple QoS and analysis of its performance,” Photonic Netw. Commun., vol.  16, no. 1, pp. 53–60, 2008.
[CrossRef]

H. Yin, W. Liang, and L. Ma, “Construction and performance analysis of 2D variable-length variable-weight optical orthogonal codes,” Photonic Netw. Commun., vol.  18, no. 1, pp. 122–128, 2009.

Other (2)

T. R. Raddo, A. L. Sanches, J. V. dos Resi, and B.-H. V. Borges, “Influence of the MAI distribution over the BER evaluation in a multirate, multiclass OOC-OCDMA system,” in Proc. Access Networks and In-house Communications, Toronto, Canada, June 2011, paper AtuB5.

X. Li, P. Fan, N. Suehiro, and D. Wu, “Further constructions of optimal variable-weight optical orthogonal codes,” in Proc. 5th Annu. Workshop Signal Design and its Applications in Communications, 2011, pp. 130–133.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

BER performance of a single-class 1D strict OOC as a function of the normalized decision threshold with nine simultaneous users. N=1000,W=11.

Fig. 2.
Fig. 2.

BER for a three-class 1D MWML-OOC as a function of the number of users in the low-QoS class.

Fig. 3.
Fig. 3.

BER for a two-class 1D MWML-OOC as a function of the code-length of the low-QoS class.

Fig. 4.
Fig. 4.

BER for a two-class 1D MWML-OOC as a function of the code-weight of class-2 (low QoS).

Fig. 5.
Fig. 5.

BER comparison between the convolution technique and the CBD method.

Fig. 6.
Fig. 6.

BER performance for a two-class 2D MWML-OOC as a function of the number of class-1 users.

Fig. 7.
Fig. 7.

BER performance comparison between 2D MWML-OOC and 2D VLVW-OOC.

Tables (2)

Tables Icon

TABLE I 2D Code Sequences Based on 1100100000000 and P=7

Tables Icon

TABLE II 2D Code Sequence Based on 1010000 and P=7

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

q=1QKqWq(Wq1)NQ11,
P(E)12[1eRn=0μ1Rnn!],
R=q=1QKqpq¯q.
pq¯q=Wq¯Wq2Nq.
P(Ij(q)=k)={Wq¯Wq2Nqfork=10fork=0,
PI(q¯)(I)=P(I1(1))*P(I2(1))**P(IK1(1))**P(I2(q¯))*P(I3(q¯))**P(IKq(q¯))**P(I1(Q))*P(I2(Q))**P(IKQ(Q)),
PEq¯=Pr(ZTh|b=0)Pr(b=0)=12i=Thq=1QKq1PI(q¯)(i),
P(Ii(1)=k)={W122N1fork=10fork=0,
P(Ij(2)=k)={W1W22N2fork=10fork=0,
PI(1)(I)=P(I2(1))*P(I3(1))**P(IK1(1))*P(I1(2))*P(I2(2))**P(IK2(2)).
PE1=12i=W1K1+K21PI(1)(i).
PE2=12i=W2K1+K21PI(2)(i).
PE1=12l1+l2=W1K1+K21(K11l1)(p11)l1(1p11)K11l1·(K2l2)(p12)l2(1p12)K2l2,
PE2=12l1+l2=W2K1+K21(K1l1)(p21)l1(1p21)K11l1·(K21l2)(p22)l2(1p22)K21l2,
ΦOOC=q=1QΦq,
Max(W1,W2,,Wq,,WQ)P,
p11=PW12(PΦ11)+(P1)(W11)22PN1(P2Φ11),
p22=PW22(PΦ21)+(P1)(W21)22PN2(P2Φ21),
q120=W1W22N2·Φ2Φ2P2+W1W22N2·1W2·Φ2W1(P1)Φ2P2.
q12i=W1W22N2·1W2·Φ2W1PΦ2P2.
p12=1Pq120+P1Pq12i=W1W2+W12(P1)2N2P3+P1P·W122N2P.
p21=W1W2+W22(P1)2N1P3+P1P·W222N1P.
P(Ii(1)=k)={p11fork=10fork=0,
P(Ij(2)=k)={p12fork=10fork=0.
P(Ij(1)=k)={p21fork=10fork=0,
P(Ij(2)=k)={p22fork=10fork=0,