Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Energy Efficient RWA Strategies for WDM Optical Networks

Not Accessible

Your library or personal account may give you access

Abstract

We consider the energy minimization problem in optical networks from an algorithmic perspective. Our objective is to plan optical WDM networks so as to minimize the energy expended, by reducing the number of energy-consuming components, such as amplifiers, regenerators, add/drop terminals, optical fibers, etc. We initially present an algorithm for solving the energy-aware routing and wavelength assignment problem based on an integer linear programming formulation that incorporates energy consumption and physical impairments (through a maximum transmission reach parameter) into routing and wavelength assignment. We then present a second algorithm that decomposes the problem and uses a linear programming relaxation to address the problem in large scale networks. Simulations are performed to evaluate and compare the performance of the proposed algorithms. In previously published works, energy minimization derives mainly from the reduction of the electronic processing of the traffic and the bypass in the optical domain, while the energy consumed by the optical devices is usually neglected. We focus on the optical layer and show that energy reductions can be obtained in that layer also.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Energy-Efficient Routing and Wavelength Assignment in Translucent Optical Networks

Angelo Coiro, Marco Listanti, and Francesco Matera
J. Opt. Commun. Netw. 6(10) 843-857 (2014)

Design for Energy-Efficient IP Over WDM Networks With Joint Lightpath Bypass and Router-Card Sleeping Strategies

Yunlei Lui, Gangxiang Shen, and Weidong Shao
J. Opt. Commun. Netw. 5(11) 1122-1138 (2013)

Energy-Efficient Resilience in Translucent Optical Networks With Mixed Regenerator Placement

Xiaoliang Chen, Fan Ji, Yanan Wu, and Zuqing Zhu
J. Opt. Commun. Netw. 5(7) 741-750 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.