Abstract

A dual parallel Mach–Zehnder modulator (DPMZM) used for electro-optic conversion of multi-band orthogonal frequency-division multiplexing (OFDM) ultra-wideband (UWB) radio signals in intensity modulated direct detection optical communication systems is optimized theoretically and through numerical simulation. The optimum DPMZM parameters that allow simultaneous mitigation of the second and third order distortion components created by the joint electro-optic converter and photodiode nonlinearities are identified. The corresponding minimum optical signal-to-noise ratio (OSNR) required to achieve a bit error ratio of 109 is also evaluated. An analytical expression showing the relation between the optimum DPMZM parameters under extended voltage levels of the OFDM-UWB signals applied to the DPMZM is proposed and validated. It is shown that the DPMZM performance presents high robustness to deviations from the optimum DPMZM parameters identified. Additionally, it is shown that similar minimum required OSNR levels are obtained with the optimized DPMZM and when the electro-optic conversion is realized by a single MZM.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Jazayerifar, B. Cabon, and J. Salehi, “Transmission of multi-band OFDM and impulse radio ultra-wideband signals over single mode fiber,” J. Lightwave Technol., vol. 26, no. 15, pp. 2594–2603, Aug.2008.
    [CrossRef]
  2. T. Alves and A. Cartaxo, “Performance degradation due to OFDM-UWB radio signal transmission along dispersive single-mode fiber,” IEEE Photon. Technol. Lett., vol. 21, no. 3, pp. 158–160, Feb.2009.
    [CrossRef]
  3. A. Billabert, F. Deshours, L. Moreno, C. Algani, and C. Rumelhard, “Modulator non linearity influence on UWB signal performance over RoF link,” in Proc. of the 6-th European Microwave Integrated Circuits Conf., Manchester, UK, 2011, pp. 688–691.
  4. T. Alves and A. Cartaxo, “Distribution of double-sideband OFDM-UWB radio signals in dispersion compensated long-reach PONs,” J. Lightwave Technol., vol. 29, no. 16, pp. 2467–2474, Aug.2011.
    [CrossRef]
  5. D. Morgan, Z. Ma, J. Kim, M. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3852–3860, Oct.2006.
    [CrossRef]
  6. Z. Liu, M. Violas, and N. Carvalho, “Digital predistortion for RSOAs as external modulators in radio over fiber system,” Opt. Express, vol. 19, no. 18, pp. 17641–17646, Aug.2011.
    [CrossRef] [PubMed]
  7. J. Chou, O. Boyraz, and B. Jalali, “Adaptive optical post distortion linearization,” Opt. Express, vol. 13, no. 15, pp. 5711–5718, July2005.
    [CrossRef] [PubMed]
  8. Y. Moon, J. Jang, W. Choi, and Y. Choi, “Simultaneous noise and distortion reduction of a broadband optical feedforward transmitter for multi-service operation in radio-over-fiber systems,” Opt. Express, vol. 15, no. 19, pp. 12167–12173, Sept.2007.
    [CrossRef] [PubMed]
  9. A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, “Highly linear integrated optical transmitter for subcarrier multiplexed systems,” IEEE Photon. Technol. Lett., vol. 21, no. 7, pp. 438–440, Apr.2009.
    [CrossRef]
  10. M. Morant, R. Llorente, J. Hauden, T. Quinlan, A. Mottet, and S. Walker, “Dual-drive LiNbO3 interferometric Mach–Zehnder architecture with extended linear regime for high peak-to-average OFDM-based communication system,” Opt. Express, vol. 19, no. 26, pp. B450–B456, Nov.2011.
    [CrossRef] [PubMed]
  11. C. Cox, Analog Optical Links: Theory and Practice. Cambridge University Press, Cambridge, 2004, pp. 201–262.
  12. S. Korotky and R. Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Commun., vol. 8, no. 7, pp. 1377–1381, Sept.1990.
    [CrossRef]
  13. W. Burns, “Linearized optical modulator with fifth order correction,” J. Lightwave Technol., vol. 13, no. 8, pp. 1724–1727, Aug.1995.
    [CrossRef]
  14. R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett., vol. 20, no. 11, pp. 945–947, June2008.
    [CrossRef]
  15. M. Yee, V. Pham, Y. Guo, L. Ong, and B. Luo, “Performance evaluation of MB-OFDM ultra-wideband signals over single mode fiber,” in Proc. Int. Conf. Ultra Wideband, Singapore, 2007, pp. 674–677.
  16. T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio signals distribution in long-reach PONs using Mach–Zehnder and linearized modulators,” IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1311–1320, June2011.
    [CrossRef]
  17. G. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 12, pp. 2642–2649, Dec.1994.
    [CrossRef]
  18. E. Ackerman, “Broad-band linearization of a Mach–Zehnder electrooptic modulator,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 12, pp. 2271–2279, Dec.1999.
    [CrossRef]
  19. Application Note for LN Modulators [Online]. Available: http://www.fsan.org/task-groups/ngpon/ (consulted in October 2012).
  20. G. Agrawal, Lightwave Technology - Components and Devices. John Wiley & Sons, New Jersey, 2004, pp. 49–92.
  21. J. Brooks, G. Maurer, and R. Becker, “Implementation and evaluation of a dual parallel linearization system for AM-SCM video transmission,” J. Lightwave Technol., vol. 11, no. 1, pp. 34–41, Jan.1993.
    [CrossRef]
  22. European Project: Fully-converged quintuple-play integrated optical-wireless access architectures [Online]. Available: http://www.ict-fiver.eu/index.php.
  23. ECMA-368, High Rate Ultra Wideband PHY and MAC Standard, 2nd Edition, Geneva, Switzerland, Dec.2007.
  24. T. Alves and A. Cartaxo, “Semi-analytical approach for performance evaluation of direct-detection OFDM optical communication systems,” Opt. Express, vol. 17, no. 21, pp. 18714–18729, Oct.2009.
    [CrossRef]

2011 (4)

M. Morant, R. Llorente, J. Hauden, T. Quinlan, A. Mottet, and S. Walker, “Dual-drive LiNbO3 interferometric Mach–Zehnder architecture with extended linear regime for high peak-to-average OFDM-based communication system,” Opt. Express, vol. 19, no. 26, pp. B450–B456, Nov.2011.
[CrossRef] [PubMed]

T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio signals distribution in long-reach PONs using Mach–Zehnder and linearized modulators,” IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1311–1320, June2011.
[CrossRef]

T. Alves and A. Cartaxo, “Distribution of double-sideband OFDM-UWB radio signals in dispersion compensated long-reach PONs,” J. Lightwave Technol., vol. 29, no. 16, pp. 2467–2474, Aug.2011.
[CrossRef]

Z. Liu, M. Violas, and N. Carvalho, “Digital predistortion for RSOAs as external modulators in radio over fiber system,” Opt. Express, vol. 19, no. 18, pp. 17641–17646, Aug.2011.
[CrossRef] [PubMed]

2009 (3)

T. Alves and A. Cartaxo, “Semi-analytical approach for performance evaluation of direct-detection OFDM optical communication systems,” Opt. Express, vol. 17, no. 21, pp. 18714–18729, Oct.2009.
[CrossRef]

T. Alves and A. Cartaxo, “Performance degradation due to OFDM-UWB radio signal transmission along dispersive single-mode fiber,” IEEE Photon. Technol. Lett., vol. 21, no. 3, pp. 158–160, Feb.2009.
[CrossRef]

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, “Highly linear integrated optical transmitter for subcarrier multiplexed systems,” IEEE Photon. Technol. Lett., vol. 21, no. 7, pp. 438–440, Apr.2009.
[CrossRef]

2008 (2)

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett., vol. 20, no. 11, pp. 945–947, June2008.
[CrossRef]

M. Jazayerifar, B. Cabon, and J. Salehi, “Transmission of multi-band OFDM and impulse radio ultra-wideband signals over single mode fiber,” J. Lightwave Technol., vol. 26, no. 15, pp. 2594–2603, Aug.2008.
[CrossRef]

2007 (1)

2006 (1)

D. Morgan, Z. Ma, J. Kim, M. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3852–3860, Oct.2006.
[CrossRef]

2005 (1)

1999 (1)

E. Ackerman, “Broad-band linearization of a Mach–Zehnder electrooptic modulator,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 12, pp. 2271–2279, Dec.1999.
[CrossRef]

1995 (1)

W. Burns, “Linearized optical modulator with fifth order correction,” J. Lightwave Technol., vol. 13, no. 8, pp. 1724–1727, Aug.1995.
[CrossRef]

1994 (1)

G. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 12, pp. 2642–2649, Dec.1994.
[CrossRef]

1993 (1)

J. Brooks, G. Maurer, and R. Becker, “Implementation and evaluation of a dual parallel linearization system for AM-SCM video transmission,” J. Lightwave Technol., vol. 11, no. 1, pp. 34–41, Jan.1993.
[CrossRef]

1990 (1)

S. Korotky and R. Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Commun., vol. 8, no. 7, pp. 1377–1381, Sept.1990.
[CrossRef]

Ackerman, E.

E. Ackerman, “Broad-band linearization of a Mach–Zehnder electrooptic modulator,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 12, pp. 2271–2279, Dec.1999.
[CrossRef]

Agrawal, G.

G. Agrawal, Lightwave Technology - Components and Devices. John Wiley & Sons, New Jersey, 2004, pp. 49–92.

Algani, C.

A. Billabert, F. Deshours, L. Moreno, C. Algani, and C. Rumelhard, “Modulator non linearity influence on UWB signal performance over RoF link,” in Proc. of the 6-th European Microwave Integrated Circuits Conf., Manchester, UK, 2011, pp. 688–691.

Alves, T.

T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio signals distribution in long-reach PONs using Mach–Zehnder and linearized modulators,” IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1311–1320, June2011.
[CrossRef]

T. Alves and A. Cartaxo, “Distribution of double-sideband OFDM-UWB radio signals in dispersion compensated long-reach PONs,” J. Lightwave Technol., vol. 29, no. 16, pp. 2467–2474, Aug.2011.
[CrossRef]

T. Alves and A. Cartaxo, “Performance degradation due to OFDM-UWB radio signal transmission along dispersive single-mode fiber,” IEEE Photon. Technol. Lett., vol. 21, no. 3, pp. 158–160, Feb.2009.
[CrossRef]

T. Alves and A. Cartaxo, “Semi-analytical approach for performance evaluation of direct-detection OFDM optical communication systems,” Opt. Express, vol. 17, no. 21, pp. 18714–18729, Oct.2009.
[CrossRef]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett., vol. 20, no. 11, pp. 945–947, June2008.
[CrossRef]

Becker, R.

J. Brooks, G. Maurer, and R. Becker, “Implementation and evaluation of a dual parallel linearization system for AM-SCM video transmission,” J. Lightwave Technol., vol. 11, no. 1, pp. 34–41, Jan.1993.
[CrossRef]

Beltran, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett., vol. 20, no. 11, pp. 945–947, June2008.
[CrossRef]

Betts, G.

G. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 12, pp. 2642–2649, Dec.1994.
[CrossRef]

Billabert, A.

A. Billabert, F. Deshours, L. Moreno, C. Algani, and C. Rumelhard, “Modulator non linearity influence on UWB signal performance over RoF link,” in Proc. of the 6-th European Microwave Integrated Circuits Conf., Manchester, UK, 2011, pp. 688–691.

Boyraz, O.

Brooks, J.

J. Brooks, G. Maurer, and R. Becker, “Implementation and evaluation of a dual parallel linearization system for AM-SCM video transmission,” J. Lightwave Technol., vol. 11, no. 1, pp. 34–41, Jan.1993.
[CrossRef]

Burns, W.

W. Burns, “Linearized optical modulator with fifth order correction,” J. Lightwave Technol., vol. 13, no. 8, pp. 1724–1727, Aug.1995.
[CrossRef]

Cabon, B.

Cartaxo, A.

T. Alves and A. Cartaxo, “Distribution of double-sideband OFDM-UWB radio signals in dispersion compensated long-reach PONs,” J. Lightwave Technol., vol. 29, no. 16, pp. 2467–2474, Aug.2011.
[CrossRef]

T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio signals distribution in long-reach PONs using Mach–Zehnder and linearized modulators,” IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1311–1320, June2011.
[CrossRef]

T. Alves and A. Cartaxo, “Performance degradation due to OFDM-UWB radio signal transmission along dispersive single-mode fiber,” IEEE Photon. Technol. Lett., vol. 21, no. 3, pp. 158–160, Feb.2009.
[CrossRef]

T. Alves and A. Cartaxo, “Semi-analytical approach for performance evaluation of direct-detection OFDM optical communication systems,” Opt. Express, vol. 17, no. 21, pp. 18714–18729, Oct.2009.
[CrossRef]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett., vol. 20, no. 11, pp. 945–947, June2008.
[CrossRef]

Carvalho, N.

Choi, W.

Choi, Y.

Chou, J.

Cox, C.

C. Cox, Analog Optical Links: Theory and Practice. Cambridge University Press, Cambridge, 2004, pp. 201–262.

Deshours, F.

A. Billabert, F. Deshours, L. Moreno, C. Algani, and C. Rumelhard, “Modulator non linearity influence on UWB signal performance over RoF link,” in Proc. of the 6-th European Microwave Integrated Circuits Conf., Manchester, UK, 2011, pp. 688–691.

Ferreira, A.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, “Highly linear integrated optical transmitter for subcarrier multiplexed systems,” IEEE Photon. Technol. Lett., vol. 21, no. 7, pp. 438–440, Apr.2009.
[CrossRef]

Fonseca, D.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, “Highly linear integrated optical transmitter for subcarrier multiplexed systems,” IEEE Photon. Technol. Lett., vol. 21, no. 7, pp. 438–440, Apr.2009.
[CrossRef]

Guo, Y.

M. Yee, V. Pham, Y. Guo, L. Ong, and B. Luo, “Performance evaluation of MB-OFDM ultra-wideband signals over single mode fiber,” in Proc. Int. Conf. Ultra Wideband, Singapore, 2007, pp. 674–677.

Hauden, J.

M. Morant, R. Llorente, J. Hauden, T. Quinlan, A. Mottet, and S. Walker, “Dual-drive LiNbO3 interferometric Mach–Zehnder architecture with extended linear regime for high peak-to-average OFDM-based communication system,” Opt. Express, vol. 19, no. 26, pp. B450–B456, Nov.2011.
[CrossRef] [PubMed]

Jalali, B.

Jang, J.

Jazayerifar, M.

Kim, J.

D. Morgan, Z. Ma, J. Kim, M. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3852–3860, Oct.2006.
[CrossRef]

Korotky, S.

S. Korotky and R. Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Commun., vol. 8, no. 7, pp. 1377–1381, Sept.1990.
[CrossRef]

Liu, Z.

Llorente, R.

M. Morant, R. Llorente, J. Hauden, T. Quinlan, A. Mottet, and S. Walker, “Dual-drive LiNbO3 interferometric Mach–Zehnder architecture with extended linear regime for high peak-to-average OFDM-based communication system,” Opt. Express, vol. 19, no. 26, pp. B450–B456, Nov.2011.
[CrossRef] [PubMed]

T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio signals distribution in long-reach PONs using Mach–Zehnder and linearized modulators,” IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1311–1320, June2011.
[CrossRef]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett., vol. 20, no. 11, pp. 945–947, June2008.
[CrossRef]

Luo, B.

M. Yee, V. Pham, Y. Guo, L. Ong, and B. Luo, “Performance evaluation of MB-OFDM ultra-wideband signals over single mode fiber,” in Proc. Int. Conf. Ultra Wideband, Singapore, 2007, pp. 674–677.

Ma, Z.

D. Morgan, Z. Ma, J. Kim, M. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3852–3860, Oct.2006.
[CrossRef]

Marti, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett., vol. 20, no. 11, pp. 945–947, June2008.
[CrossRef]

Maurer, G.

J. Brooks, G. Maurer, and R. Becker, “Implementation and evaluation of a dual parallel linearization system for AM-SCM video transmission,” J. Lightwave Technol., vol. 11, no. 1, pp. 34–41, Jan.1993.
[CrossRef]

Monteiro, P.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, “Highly linear integrated optical transmitter for subcarrier multiplexed systems,” IEEE Photon. Technol. Lett., vol. 21, no. 7, pp. 438–440, Apr.2009.
[CrossRef]

Moon, Y.

Morant, M.

M. Morant, R. Llorente, J. Hauden, T. Quinlan, A. Mottet, and S. Walker, “Dual-drive LiNbO3 interferometric Mach–Zehnder architecture with extended linear regime for high peak-to-average OFDM-based communication system,” Opt. Express, vol. 19, no. 26, pp. B450–B456, Nov.2011.
[CrossRef] [PubMed]

T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio signals distribution in long-reach PONs using Mach–Zehnder and linearized modulators,” IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1311–1320, June2011.
[CrossRef]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett., vol. 20, no. 11, pp. 945–947, June2008.
[CrossRef]

Moreno, L.

A. Billabert, F. Deshours, L. Moreno, C. Algani, and C. Rumelhard, “Modulator non linearity influence on UWB signal performance over RoF link,” in Proc. of the 6-th European Microwave Integrated Circuits Conf., Manchester, UK, 2011, pp. 688–691.

Morgan, D.

D. Morgan, Z. Ma, J. Kim, M. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3852–3860, Oct.2006.
[CrossRef]

Mottet, A.

M. Morant, R. Llorente, J. Hauden, T. Quinlan, A. Mottet, and S. Walker, “Dual-drive LiNbO3 interferometric Mach–Zehnder architecture with extended linear regime for high peak-to-average OFDM-based communication system,” Opt. Express, vol. 19, no. 26, pp. B450–B456, Nov.2011.
[CrossRef] [PubMed]

Ong, L.

M. Yee, V. Pham, Y. Guo, L. Ong, and B. Luo, “Performance evaluation of MB-OFDM ultra-wideband signals over single mode fiber,” in Proc. Int. Conf. Ultra Wideband, Singapore, 2007, pp. 674–677.

Pastalan, J.

D. Morgan, Z. Ma, J. Kim, M. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3852–3860, Oct.2006.
[CrossRef]

Perez, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett., vol. 20, no. 11, pp. 945–947, June2008.
[CrossRef]

Pham, V.

M. Yee, V. Pham, Y. Guo, L. Ong, and B. Luo, “Performance evaluation of MB-OFDM ultra-wideband signals over single mode fiber,” in Proc. Int. Conf. Ultra Wideband, Singapore, 2007, pp. 674–677.

Quinlan, T.

M. Morant, R. Llorente, J. Hauden, T. Quinlan, A. Mottet, and S. Walker, “Dual-drive LiNbO3 interferometric Mach–Zehnder architecture with extended linear regime for high peak-to-average OFDM-based communication system,” Opt. Express, vol. 19, no. 26, pp. B450–B456, Nov.2011.
[CrossRef] [PubMed]

Ribeiro, R.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, “Highly linear integrated optical transmitter for subcarrier multiplexed systems,” IEEE Photon. Technol. Lett., vol. 21, no. 7, pp. 438–440, Apr.2009.
[CrossRef]

Ridder, R.

S. Korotky and R. Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Commun., vol. 8, no. 7, pp. 1377–1381, Sept.1990.
[CrossRef]

Rumelhard, C.

A. Billabert, F. Deshours, L. Moreno, C. Algani, and C. Rumelhard, “Modulator non linearity influence on UWB signal performance over RoF link,” in Proc. of the 6-th European Microwave Integrated Circuits Conf., Manchester, UK, 2011, pp. 688–691.

Salehi, J.

Silveira, T.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, “Highly linear integrated optical transmitter for subcarrier multiplexed systems,” IEEE Photon. Technol. Lett., vol. 21, no. 7, pp. 438–440, Apr.2009.
[CrossRef]

Violas, M.

Walker, S.

M. Morant, R. Llorente, J. Hauden, T. Quinlan, A. Mottet, and S. Walker, “Dual-drive LiNbO3 interferometric Mach–Zehnder architecture with extended linear regime for high peak-to-average OFDM-based communication system,” Opt. Express, vol. 19, no. 26, pp. B450–B456, Nov.2011.
[CrossRef] [PubMed]

Yee, M.

M. Yee, V. Pham, Y. Guo, L. Ong, and B. Luo, “Performance evaluation of MB-OFDM ultra-wideband signals over single mode fiber,” in Proc. Int. Conf. Ultra Wideband, Singapore, 2007, pp. 674–677.

Zierdt, M.

D. Morgan, Z. Ma, J. Kim, M. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3852–3860, Oct.2006.
[CrossRef]

IEEE J. Sel. Areas Commun. (2)

S. Korotky and R. Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Commun., vol. 8, no. 7, pp. 1377–1381, Sept.1990.
[CrossRef]

T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio signals distribution in long-reach PONs using Mach–Zehnder and linearized modulators,” IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1311–1320, June2011.
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, “Highly linear integrated optical transmitter for subcarrier multiplexed systems,” IEEE Photon. Technol. Lett., vol. 21, no. 7, pp. 438–440, Apr.2009.
[CrossRef]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett., vol. 20, no. 11, pp. 945–947, June2008.
[CrossRef]

T. Alves and A. Cartaxo, “Performance degradation due to OFDM-UWB radio signal transmission along dispersive single-mode fiber,” IEEE Photon. Technol. Lett., vol. 21, no. 3, pp. 158–160, Feb.2009.
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

G. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 12, pp. 2642–2649, Dec.1994.
[CrossRef]

E. Ackerman, “Broad-band linearization of a Mach–Zehnder electrooptic modulator,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 12, pp. 2271–2279, Dec.1999.
[CrossRef]

IEEE Trans. Signal Process. (1)

D. Morgan, Z. Ma, J. Kim, M. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3852–3860, Oct.2006.
[CrossRef]

J. Lightwave Technol. (4)

J. Brooks, G. Maurer, and R. Becker, “Implementation and evaluation of a dual parallel linearization system for AM-SCM video transmission,” J. Lightwave Technol., vol. 11, no. 1, pp. 34–41, Jan.1993.
[CrossRef]

W. Burns, “Linearized optical modulator with fifth order correction,” J. Lightwave Technol., vol. 13, no. 8, pp. 1724–1727, Aug.1995.
[CrossRef]

M. Jazayerifar, B. Cabon, and J. Salehi, “Transmission of multi-band OFDM and impulse radio ultra-wideband signals over single mode fiber,” J. Lightwave Technol., vol. 26, no. 15, pp. 2594–2603, Aug.2008.
[CrossRef]

T. Alves and A. Cartaxo, “Distribution of double-sideband OFDM-UWB radio signals in dispersion compensated long-reach PONs,” J. Lightwave Technol., vol. 29, no. 16, pp. 2467–2474, Aug.2011.
[CrossRef]

Opt. Express (5)

Other (7)

A. Billabert, F. Deshours, L. Moreno, C. Algani, and C. Rumelhard, “Modulator non linearity influence on UWB signal performance over RoF link,” in Proc. of the 6-th European Microwave Integrated Circuits Conf., Manchester, UK, 2011, pp. 688–691.

European Project: Fully-converged quintuple-play integrated optical-wireless access architectures [Online]. Available: http://www.ict-fiver.eu/index.php.

ECMA-368, High Rate Ultra Wideband PHY and MAC Standard, 2nd Edition, Geneva, Switzerland, Dec.2007.

M. Yee, V. Pham, Y. Guo, L. Ong, and B. Luo, “Performance evaluation of MB-OFDM ultra-wideband signals over single mode fiber,” in Proc. Int. Conf. Ultra Wideband, Singapore, 2007, pp. 674–677.

C. Cox, Analog Optical Links: Theory and Practice. Cambridge University Press, Cambridge, 2004, pp. 201–262.

Application Note for LN Modulators [Online]. Available: http://www.fsan.org/task-groups/ngpon/ (consulted in October 2012).

G. Agrawal, Lightwave Technology - Components and Devices. John Wiley & Sons, New Jersey, 2004, pp. 49–92.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic diagram of the architecture of the DPMZM.

Fig. 2
Fig. 2

The RF power of the fundamental and distortion components as a function of the RF power applied to the upper MZM of the DPMZM considering (a) V b , 1 = 0 . 5 V π , V b , 2 = 0 . 5 V π , V b , 3 = 0 . 5 V π , α = 2 . 3 , η 1 = 0 . 03 , η 2 = 0 . 25 , and (b) V b , 1 = 0 . 5 V π , V b , 2 = 1 . 5 V π , V b , 3 = 0 . 5 V π , α = 0 . 25 , η 1 = 0 . 99 , η 2 = 0 . 64 .

Fig. 3
Fig. 3

Contour plot of (a) MSFDR and (b) RF output power of the fundamental component as a function of the bias voltage and of the modulation index when a single MZM is employed to perform the electro-optic conversion.

Fig. 4
Fig. 4

Contour plot of the MSFDR, in decibels, as a function of the modulation index and of the ratio between the voltage signals applied to the inner MZMs. The MSFDR results were obtained for a voltage ratio step of 0.25.

Fig. 5
Fig. 5

(Color online) Contour plot of the MSFDR, in decibels, as a function of the power crossover efficiencies of the first and the second directional couplers of the DPMZM for a modulation index of 5%. Continuous thick line: relation between the power crossover efficiencies and the voltage ratio given by Eq. (3). Dashed thick line: relation between the power crossover efficiencies and the voltage ratio given by Eq. (5). The continuous and dashed thick lines are overlapped.

Fig. 6
Fig. 6

(Color online) Contour plot of the MSFDR, in decibels, as a function of the power crossover efficiencies of the first and the second directional couplers of the DPMZM for a modulation index of 45%. Continuous thick line: relation between the power crossover efficiencies and the voltage ratio given by Eq. (3). Dashed thick line: relation between the power crossover efficiencies and the voltage ratio given by Eq. (5).

Fig. 7
Fig. 7

F ( m , α ) as a function of the modulation index for different voltage ratio levels between the signals applied to the inner MZMs of the DPMZM. Results obtained from F IMD3 , B ( m , α ) (continuous lines), F IMD3 , T ( m , α ) (dashed lines), and F H 3 ( m , α ) (marks).

Fig. 8
Fig. 8

Block diagram of the downstream transmission of OFDM-UWB radio signals along WDM LR-PONs.

Fig. 9
Fig. 9

The minimum OSNR required to achieve BER = 1 0 9 as a function of the modulation index. The electro-optic conversion is performed by a single MZM.

Fig. 10
Fig. 10

The minimum OSNR, in decibels, required to achieve BER = 1 0 9 as a function of the modulation index and the voltage ratio between the RF signals applied to the inner MZMs of the DPMZM for (a) η 2 evaluated from Eq. (3), (b) η 2 evaluated from Eq. (5), (c) η 2 = 0 . 01 , and (d) η 2 = 0 . 02 . In all the results η 1 = 0 . 9 .

Fig. 11
Fig. 11

The power crossover efficiency of the output directional coupler, η 2 , corresponding to the minimum OSNR levels of Figs. 10(a) and 10(b) obtained from (a) Eq. (3) and (b) Eq. (5).

Fig. 12
Fig. 12

(a) The minimum OSNR required to achieve BER = 1 0 9 as a function of the voltage ratio between the RF signals applied to the inner MZMs of the DPMZM. (b) Optimum modulation indices corresponding to the minimum OSNR levels of (a). The results obtained for η 2 estimated from Eq. (3) (circles), η 2 estimated from Eq. (5) (squares), η 2 = 0 . 01 (diamonds), and η 2 = 0 . 02 (triangles).

Fig. 13
Fig. 13

The minimum OSNR required to achieve BER = 1 0 9 as a function of the power crossover efficiency of the second directional coupler of the DPMZM, for α = 0 . 3 .

Fig. 14
Fig. 14

(Color online) Normalized spectra of the multi-band OFDM-UWB signal at the input and output of the PIN shown in Fig. 8, considering the electro-optical conversion realized by the single MZM and by the DPMZM, and in the absence of noise. For the single MZM, the modulation index is 15%. For the DPMZM, the modulation index is 58%, α = 0 . 275 , η 1 = 0 . 9 . ν 0 is the optical carrier frequency.

Fig. 15
Fig. 15

(a) The BER as a function of the subcarrier index. (b) The amplitude response of the equalizer of the worst OFDM-UWB received band. (c) The received constellation without noise for the single MZM. (d) The received constellation without noise for the DPMZM. (e) The noise variance of the I component of the first OFDM-UWB symbol at the FFT block output as a function of the subcarrier index. (f) The equivalent noise variance of the I component of the first OFDM-UWB symbol at the equalizer output as a function of the subcarrier index. In (a), (b), (e), and (f), the OSNR is 25.2 dB and the results are obtained for the single MZM (continuous line) and for the DPMZM (dashed line).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

| e out ( t ) E i | 2 = | cos [ π 2 V π ( V b + v RF ( t ) ) ] | 2 ,
MSFDR ( m ) = 10 log 10 [ P fund ( m ) P dist ( m ) ] [dB] ,
η 2 1 η 2 1 η 1 η 1 = J 1 ( 2 π m α ) J 2 ( 2 π m α ) J 1 ( 2 π m ) J 2 ( 2 π m ) ,
η 2 1 η 2 1 η 1 η 1 = J 0 ( 2 π m α ) J 3 ( 2 π m α ) J 0 ( 2 π m ) J 3 ( 2 π m ) .
η 2 1 η 2 1 η 1 η 1 = α 3 .
F IMD3 , B ( m , α ) = J 1 ( 2 π m α ) J 2 ( 2 π m α ) J 1 ( 2 π m ) J 2 ( 2 π m ) ,
F IMD3 , T ( m , α ) = α 3 .
F H 3 ( m , α ) = J 0 ( 2 π m α ) J 3 ( 2 π m α ) J 0 ( 2 π m ) J 3 ( 2 π m ) .