Abstract

We demonstrate a remotely seeded flexible passive optical network (PON) with multiple low-speed subscribers but only a single optical line terminal transceiver operating at a data rate of 31.25Gbits/s. The scheme is based on a colorless frequency division multiplexing (FDM)-PON with centralized wavelength control. Multiplexing and demultiplexing in the optical network unit (ONU) is performed in the electronic domain and relies either on FDM with Nyquist sinc-pulse shaping or on orthogonal frequency division multiplexing (OFDM). This way the ONU can perform processing at low speed in the baseband. Further, the ONU is colorless by means of a remote seed for upstream transmission and a remote local oscillator for heterodyne reception, all of which helps in keeping maintenance and costs for an ONU potentially low and will simplify wavelength allocation in a future software defined network architecture. To extend the reach, semiconductor optical amplifiers are used for optical amplification in the downstream and upstream.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol., vol.  24, pp. 4568–4583, 2006.
    [CrossRef]
  2. N. Cvijetic, A. Tanaka, P. N. Ji, S. Murakami, K. Sethuraman, and T. Wang, “First OpenFlow-based software-defined λ-flow architecture for flex-grid OFDMA mobile backhaul over passive optical networks with filterless direct detection ONUs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper PDP5B.2.
  3. L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S. W. Wong, “Next-generation optical access networks,” J. Lightwave Technol., vol.  25, no. 11, pp. 3428–3442, Nov. 2007.
    [CrossRef]
  4. H. Chow, D. Suvakovic, D. van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, C. Van Praet, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” in European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.B.1.
  5. C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. D. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express, vol.  20, pp. B7–B14, 2012.
    [CrossRef]
  6. T. Komljenovic, D. Babić, and Z. Sipus, “47-km 1.25-Gbps transmission using a self-seeded transmitter with a modulation averaging reflector,” Opt. Express, vol.  20, pp. 17386–17392, 2012.
    [CrossRef]
  7. E. Wong, K. L. Lee, and T. B. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol., vol.  25, pp. 67–74, 2007.
    [CrossRef]
  8. S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol., vol.  22, no. 11, pp. 2582–2591, Nov. 2004.
    [CrossRef]
  9. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express, vol.  16, pp. 841–859, 2008.
    [CrossRef]
  10. R. Schmogrow, M. Winter, D. Hillerkuss, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM transmitter beyond 100 Gbit/s,” Opt. Express, vol.  19, pp. 12740–12749, 2011.
    [CrossRef]
  11. R. Schmogrow, R. Bouziane, M. Meyer, P. A. Milder, P. C. Schindler, R. I. Killey, P. Bayvel, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM or Nyquist pulse generation—which performs better with limited resources?” Opt. Express, vol.  20, pp. B543–B551, 2012.
    [CrossRef]
  12. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol., vol.  29, no. 1, pp. 53–61, Jan. 2011.
    [CrossRef]
  13. Z. Dong, J. Yu, H.-C. Chien, N. Chi, L. Chen, and G.-K. Chang, “Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection,” Opt. Express, vol.  19, pp. 11100–11105, 2011.
    [CrossRef]
  14. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express, vol.  20, pp. 317–337, 2012.
    [CrossRef]
  15. R. Schmogrow, S. Wolf, B. Baeuerle, D. Hillerkuss, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Nyquist frequency division multiplexing for optical communications,” in CLEO: Science and Innovations, 2012, paper CTh1H.2.
  16. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol., vol.  30, no. 4, pp. 384–398, Feb. 2012.
    [CrossRef]
  17. B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, and C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express, vol.  18, pp. 2137–2143, 2010.
    [CrossRef]
  18. N. Cvijetic, M.-F. Huang, E. Ip, Y. Shao, Y.-K. Huang, M. Cvijetic, and T. Wang, “1.92 Tb/s coherent DWDM-OFDMA-PON with no high-speed ONU-side electronics over 100 km SSMF and 1∶64 passive split,” Opt. Express, vol.  19, pp. 24540–24545, 2011.
    [CrossRef]
  19. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett., vol.  21, no. 17, pp. 1265–1267, Sept. 2009.
    [CrossRef]
  20. N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol.  48, no. 7, pp. 70–77, July 2010.
    [CrossRef]
  21. N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, Aug. 2010.
    [CrossRef]
  22. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, Y.-M. Lin, and S. Chi, “Demonstration of high spectral efficient OFDM-QAM long reach passive optical network,” in 34th European Conf. on Optical Communication, 2008, paper Th.2.F.5.
  23. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM transmission in metro/access networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OMV.
  24. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol.  28, no. 4, pp. 484–493, Feb. 2010.
    [CrossRef]
  25. E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10 Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express, vol.  20, pp. 21089–21100, 2012.
    [CrossRef]
  26. C. H. Yeh, C. W. Chow, H. Y. Chen, and B. W. Chen, “Using adaptive four-band OFDM modulation with 40 Gb/s downstream and 10 Gb/s upstream signals for next generation long-reach PON,” Opt. Express, vol.  19, pp. 26150–26160, 2011.
    [CrossRef]
  27. W. Ji and Z. Kang, “Design of WDM RoF PON based on OFDM and optical heterodyne,” J. Opt. Commun. Netw., vol.  5, pp. 652–657, 2013.
    [CrossRef]
  28. B. Liu, X. Xin, L. Zhang, and J. Yu, “Performance investigation and demonstration of colorless upstream transmission in ECDM-OFDM-PON,” Opt. Express, vol.  19, pp. 14542–14548, 2011.
  29. C. Zhang, C. Chen, Y. Feng, and K. Qiu, “Experimental demonstration of novel source-free ONUs in bidirectional RF up-converted optical OFDM-PON utilizing polarization multiplexing,” Opt. Express, vol.  20, pp. 6230–6235, 2012.
    [CrossRef]
  30. L. Zhang, X. Xin, B. Liu, J. Yu, and Q. Zhang, “A novel ECDM-OFDM-PON architecture for next-generation optical access network,” Opt. Express, vol.  18, pp. 18347–18353, 2010.
    [CrossRef]
  31. I. Lu, H. Chen, C. Wei, Y. Chi, Y. Li, D. Hsu, G. Lin, and J. Chen, “20 Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper JTh2A.70.
  32. Z. Cao, F. Li, C. M. Okonkwo, H. P. Van den Boom, E. Tangdiongga, Q. Tang, J. Tang, J. Yu, L. Chen, and A. M. J. Koonen, “A synchronized signaling insertion and detection scheme for reconfigurable optical OFDM access networks,” J. Lightwave Technol., vol.  30, no. 24, pp. 3972–3979, Dec. 2012.
    [CrossRef]
  33. X. Q. Jin, E. Hugues-Salas, R. P. Giddings, J. L. Wei, J. Groenewald, and J. M. Tang, “First real-time experimental demonstrations of 11.25 Gb/s optical OFDMA PONs with adaptive dynamic bandwidth allocation,” Opt. Express, vol.  19, pp. 20557–20570, 2011.
    [CrossRef]
  34. R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett., vol.  22, no. 21, pp. 1601–1603, Nov. 2010.
    [CrossRef]
  35. R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J., vol.  3, pp. 1039–1053, 2011.
    [CrossRef]
  36. Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T), GPON Standards G.984 Series.
  37. I. N. Cano, M. C. Santos, and J. Prat, “Optimum carrier to signal power ratio for remote heterodyne DD-OFDM in PONs,” IEEE Photon. Technol. Lett., vol.  25, no. 13, pp. 1242–1245, July 2013.
    [CrossRef]
  38. Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T), .
  39. B. Charbonnier, N. Brochier, and P. Chanclou, “Reflective polarisation independent Mach-Zehnder modulator for FDMA/OFDMA PON,” Electron. Lett., vol.  46, no. 25, pp. 1682–1683, Dec. 2010.
    [CrossRef]
  40. B. Charbonnier, S. Menezo, P. O’Brien, A. Lebreton, J. M. Fedeli, and B. Ben-Bakir, “Silicon photonics for next generation FDM/FDMA PON,” J. Opt. Commun. Netw., vol.  4, no. 9, pp. A29–A37, Sept. 2012.
    [CrossRef]
  41. R. M. Schmogrow, M. Meyer, P. C. Schindler, A. Josten, S. Ben-Ezra, C. Koos, W. Freude, and J. Leuthold, “252 Gbit/s real-time Nyquist pulse generation by reducing the oversampling factor to 1.33,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper OTu2I.1.

2013 (2)

I. N. Cano, M. C. Santos, and J. Prat, “Optimum carrier to signal power ratio for remote heterodyne DD-OFDM in PONs,” IEEE Photon. Technol. Lett., vol.  25, no. 13, pp. 1242–1245, July 2013.
[CrossRef]

W. Ji and Z. Kang, “Design of WDM RoF PON based on OFDM and optical heterodyne,” J. Opt. Commun. Netw., vol.  5, pp. 652–657, 2013.
[CrossRef]

2012 (9)

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express, vol.  20, pp. 317–337, 2012.
[CrossRef]

N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol., vol.  30, no. 4, pp. 384–398, Feb. 2012.
[CrossRef]

C. Zhang, C. Chen, Y. Feng, and K. Qiu, “Experimental demonstration of novel source-free ONUs in bidirectional RF up-converted optical OFDM-PON utilizing polarization multiplexing,” Opt. Express, vol.  20, pp. 6230–6235, 2012.
[CrossRef]

B. Charbonnier, S. Menezo, P. O’Brien, A. Lebreton, J. M. Fedeli, and B. Ben-Bakir, “Silicon photonics for next generation FDM/FDMA PON,” J. Opt. Commun. Netw., vol.  4, no. 9, pp. A29–A37, Sept. 2012.
[CrossRef]

T. Komljenovic, D. Babić, and Z. Sipus, “47-km 1.25-Gbps transmission using a self-seeded transmitter with a modulation averaging reflector,” Opt. Express, vol.  20, pp. 17386–17392, 2012.
[CrossRef]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10 Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express, vol.  20, pp. 21089–21100, 2012.
[CrossRef]

C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. D. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express, vol.  20, pp. B7–B14, 2012.
[CrossRef]

R. Schmogrow, R. Bouziane, M. Meyer, P. A. Milder, P. C. Schindler, R. I. Killey, P. Bayvel, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM or Nyquist pulse generation—which performs better with limited resources?” Opt. Express, vol.  20, pp. B543–B551, 2012.
[CrossRef]

Z. Cao, F. Li, C. M. Okonkwo, H. P. Van den Boom, E. Tangdiongga, Q. Tang, J. Tang, J. Yu, L. Chen, and A. M. J. Koonen, “A synchronized signaling insertion and detection scheme for reconfigurable optical OFDM access networks,” J. Lightwave Technol., vol.  30, no. 24, pp. 3972–3979, Dec. 2012.
[CrossRef]

2011 (8)

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J., vol.  3, pp. 1039–1053, 2011.
[CrossRef]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol., vol.  29, no. 1, pp. 53–61, Jan. 2011.
[CrossRef]

Z. Dong, J. Yu, H.-C. Chien, N. Chi, L. Chen, and G.-K. Chang, “Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection,” Opt. Express, vol.  19, pp. 11100–11105, 2011.
[CrossRef]

R. Schmogrow, M. Winter, D. Hillerkuss, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM transmitter beyond 100 Gbit/s,” Opt. Express, vol.  19, pp. 12740–12749, 2011.
[CrossRef]

B. Liu, X. Xin, L. Zhang, and J. Yu, “Performance investigation and demonstration of colorless upstream transmission in ECDM-OFDM-PON,” Opt. Express, vol.  19, pp. 14542–14548, 2011.

X. Q. Jin, E. Hugues-Salas, R. P. Giddings, J. L. Wei, J. Groenewald, and J. M. Tang, “First real-time experimental demonstrations of 11.25 Gb/s optical OFDMA PONs with adaptive dynamic bandwidth allocation,” Opt. Express, vol.  19, pp. 20557–20570, 2011.
[CrossRef]

N. Cvijetic, M.-F. Huang, E. Ip, Y. Shao, Y.-K. Huang, M. Cvijetic, and T. Wang, “1.92 Tb/s coherent DWDM-OFDMA-PON with no high-speed ONU-side electronics over 100 km SSMF and 1∶64 passive split,” Opt. Express, vol.  19, pp. 24540–24545, 2011.
[CrossRef]

C. H. Yeh, C. W. Chow, H. Y. Chen, and B. W. Chen, “Using adaptive four-band OFDM modulation with 40 Gb/s downstream and 10 Gb/s upstream signals for next generation long-reach PON,” Opt. Express, vol.  19, pp. 26150–26160, 2011.
[CrossRef]

2010 (7)

B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, and C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express, vol.  18, pp. 2137–2143, 2010.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol.  28, no. 4, pp. 484–493, Feb. 2010.
[CrossRef]

L. Zhang, X. Xin, B. Liu, J. Yu, and Q. Zhang, “A novel ECDM-OFDM-PON architecture for next-generation optical access network,” Opt. Express, vol.  18, pp. 18347–18353, 2010.
[CrossRef]

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol.  48, no. 7, pp. 70–77, July 2010.
[CrossRef]

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, Aug. 2010.
[CrossRef]

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett., vol.  22, no. 21, pp. 1601–1603, Nov. 2010.
[CrossRef]

B. Charbonnier, N. Brochier, and P. Chanclou, “Reflective polarisation independent Mach-Zehnder modulator for FDMA/OFDMA PON,” Electron. Lett., vol.  46, no. 25, pp. 1682–1683, Dec. 2010.
[CrossRef]

2009 (1)

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett., vol.  21, no. 17, pp. 1265–1267, Sept. 2009.
[CrossRef]

2008 (1)

2007 (2)

2006 (1)

2004 (1)

Ahn, J.-G.

Anderson, T. B.

Anthapadmanabhan, N. P.

C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. D. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express, vol.  20, pp. B7–B14, 2012.
[CrossRef]

H. Chow, D. Suvakovic, D. van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, C. Van Praet, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” in European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.B.1.

Babic, D.

Baeuerle, B.

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express, vol.  20, pp. 317–337, 2012.
[CrossRef]

R. Schmogrow, S. Wolf, B. Baeuerle, D. Hillerkuss, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Nyquist frequency division multiplexing for optical communications,” in CLEO: Science and Innovations, 2012, paper CTh1H.2.

Bao, H.

Bayvel, P.

Becker, J.

Ben-Bakir, B.

Ben-Ezra, S.

Bimberg, D.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J., vol.  3, pp. 1039–1053, 2011.
[CrossRef]

Boislaigue, R.

C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. D. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express, vol.  20, pp. B7–B14, 2012.
[CrossRef]

H. Chow, D. Suvakovic, D. van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, C. Van Praet, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” in European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.B.1.

Bonk, R.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J., vol.  3, pp. 1039–1053, 2011.
[CrossRef]

Bosco, G.

Bouziane, R.

Brochier, N.

B. Charbonnier, N. Brochier, and P. Chanclou, “Reflective polarisation independent Mach-Zehnder modulator for FDMA/OFDMA PON,” Electron. Lett., vol.  46, no. 25, pp. 1682–1683, Dec. 2010.
[CrossRef]

Cano, I. N.

I. N. Cano, M. C. Santos, and J. Prat, “Optimum carrier to signal power ratio for remote heterodyne DD-OFDM in PONs,” IEEE Photon. Technol. Lett., vol.  25, no. 13, pp. 1242–1245, July 2013.
[CrossRef]

Cao, Z.

Carena, A.

Chanclou, P.

B. Charbonnier, N. Brochier, and P. Chanclou, “Reflective polarisation independent Mach-Zehnder modulator for FDMA/OFDMA PON,” Electron. Lett., vol.  46, no. 25, pp. 1682–1683, Dec. 2010.
[CrossRef]

Chang, G.-K.

Charbonnier, B.

B. Charbonnier, S. Menezo, P. O’Brien, A. Lebreton, J. M. Fedeli, and B. Ben-Bakir, “Silicon photonics for next generation FDM/FDMA PON,” J. Opt. Commun. Netw., vol.  4, no. 9, pp. A29–A37, Sept. 2012.
[CrossRef]

B. Charbonnier, N. Brochier, and P. Chanclou, “Reflective polarisation independent Mach-Zehnder modulator for FDMA/OFDMA PON,” Electron. Lett., vol.  46, no. 25, pp. 1682–1683, Dec. 2010.
[CrossRef]

Chen, B. W.

Chen, C.

Chen, H.

I. Lu, H. Chen, C. Wei, Y. Chi, Y. Li, D. Hsu, G. Lin, and J. Chen, “20 Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper JTh2A.70.

Chen, H. Y.

Chen, J.

I. Lu, H. Chen, C. Wei, Y. Chi, Y. Li, D. Hsu, G. Lin, and J. Chen, “20 Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper JTh2A.70.

Chen, L.

Cheng, N.

Chi, N.

Chi, S.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, Y.-M. Lin, and S. Chi, “Demonstration of high spectral efficient OFDM-QAM long reach passive optical network,” in 34th European Conf. on Optical Communication, 2008, paper Th.2.F.5.

Chi, Y.

I. Lu, H. Chen, C. Wei, Y. Chi, Y. Li, D. Hsu, G. Lin, and J. Chen, “20 Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper JTh2A.70.

Chien, H.-C.

Chow, C. W.

C. H. Yeh, C. W. Chow, H. Y. Chen, and B. W. Chen, “Using adaptive four-band OFDM modulation with 40 Gb/s downstream and 10 Gb/s upstream signals for next generation long-reach PON,” Opt. Express, vol.  19, pp. 26150–26160, 2011.
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, Y.-M. Lin, and S. Chi, “Demonstration of high spectral efficient OFDM-QAM long reach passive optical network,” in 34th European Conf. on Optical Communication, 2008, paper Th.2.F.5.

Chow, H.

C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. D. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express, vol.  20, pp. B7–B14, 2012.
[CrossRef]

H. Chow, D. Suvakovic, D. van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, C. Van Praet, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” in European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.B.1.

Curri, V.

Cvijetic, M.

Cvijetic, N.

N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol., vol.  30, no. 4, pp. 384–398, Feb. 2012.
[CrossRef]

N. Cvijetic, M.-F. Huang, E. Ip, Y. Shao, Y.-K. Huang, M. Cvijetic, and T. Wang, “1.92 Tb/s coherent DWDM-OFDMA-PON with no high-speed ONU-side electronics over 100 km SSMF and 1∶64 passive split,” Opt. Express, vol.  19, pp. 24540–24545, 2011.
[CrossRef]

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol.  48, no. 7, pp. 70–77, July 2010.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol.  28, no. 4, pp. 484–493, Feb. 2010.
[CrossRef]

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, Aug. 2010.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett., vol.  21, no. 17, pp. 1265–1267, Sept. 2009.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM transmission in metro/access networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OMV.

N. Cvijetic, A. Tanaka, P. N. Ji, S. Murakami, K. Sethuraman, and T. Wang, “First OpenFlow-based software-defined λ-flow architecture for flex-grid OFDMA mobile backhaul over passive optical networks with filterless direct detection ONUs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper PDP5B.2.

Dong, Z.

Dreschmann, M.

Dupas, A.

C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. D. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express, vol.  20, pp. B7–B14, 2012.
[CrossRef]

H. Chow, D. Suvakovic, D. van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, C. Van Praet, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” in European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.B.1.

Farah, R.

C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. D. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express, vol.  20, pp. B7–B14, 2012.
[CrossRef]

H. Chow, D. Suvakovic, D. van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, C. Van Praet, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” in European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.B.1.

Fedeli, J. M.

Feng, Y.

Forghieri, F.

Freude, W.

R. Schmogrow, R. Bouziane, M. Meyer, P. A. Milder, P. C. Schindler, R. I. Killey, P. Bayvel, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM or Nyquist pulse generation—which performs better with limited resources?” Opt. Express, vol.  20, pp. B543–B551, 2012.
[CrossRef]

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express, vol.  20, pp. 317–337, 2012.
[CrossRef]

R. Schmogrow, M. Winter, D. Hillerkuss, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM transmitter beyond 100 Gbit/s,” Opt. Express, vol.  19, pp. 12740–12749, 2011.
[CrossRef]

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J., vol.  3, pp. 1039–1053, 2011.
[CrossRef]

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett., vol.  22, no. 21, pp. 1601–1603, Nov. 2010.
[CrossRef]

R. Schmogrow, S. Wolf, B. Baeuerle, D. Hillerkuss, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Nyquist frequency division multiplexing for optical communications,” in CLEO: Science and Innovations, 2012, paper CTh1H.2.

R. M. Schmogrow, M. Meyer, P. C. Schindler, A. Josten, S. Ben-Ezra, C. Koos, W. Freude, and J. Leuthold, “252 Gbit/s real-time Nyquist pulse generation by reducing the oversampling factor to 1.33,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper OTu2I.1.

Galaro, J.

C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. D. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express, vol.  20, pp. B7–B14, 2012.
[CrossRef]

H. Chow, D. Suvakovic, D. van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, C. Van Praet, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” in European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.B.1.

Giddings, R. P.

Groenewald, J.

Guetlein, J.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J., vol.  3, pp. 1039–1053, 2011.
[CrossRef]

Gutierrez, D.

Hillerkuss, D.

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express, vol.  20, pp. 317–337, 2012.
[CrossRef]

R. Schmogrow, M. Winter, D. Hillerkuss, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM transmitter beyond 100 Gbit/s,” Opt. Express, vol.  19, pp. 12740–12749, 2011.
[CrossRef]

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett., vol.  22, no. 21, pp. 1601–1603, Nov. 2010.
[CrossRef]

R. Schmogrow, S. Wolf, B. Baeuerle, D. Hillerkuss, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Nyquist frequency division multiplexing for optical communications,” in CLEO: Science and Innovations, 2012, paper CTh1H.2.

Hong, Y.

Hsu, D.

I. Lu, H. Chen, C. Wei, Y. Chi, Y. Li, D. Hsu, G. Lin, and J. Chen, “20 Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper JTh2A.70.

Hu, J.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol.  28, no. 4, pp. 484–493, Feb. 2010.
[CrossRef]

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol.  48, no. 7, pp. 70–77, July 2010.
[CrossRef]

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, Aug. 2010.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett., vol.  21, no. 17, pp. 1265–1267, Sept. 2009.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM transmission in metro/access networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OMV.

Huang, M.-F.

Huang, Y.-K.

Huebner, M.

Hugues-Salas, E.

Ip, E.

Jeong, K.-T.

Ji, P. N.

N. Cvijetic, A. Tanaka, P. N. Ji, S. Murakami, K. Sethuraman, and T. Wang, “First OpenFlow-based software-defined λ-flow architecture for flex-grid OFDMA mobile backhaul over passive optical networks with filterless direct detection ONUs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper PDP5B.2.

Ji, W.

Jin, X. Q.

Josten, A.

R. M. Schmogrow, M. Meyer, P. C. Schindler, A. Josten, S. Ben-Ezra, C. Koos, W. Freude, and J. Leuthold, “252 Gbit/s real-time Nyquist pulse generation by reducing the oversampling factor to 1.33,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper OTu2I.1.

Kang, Z.

Kazovsky, L. G.

Killey, R. I.

Kim, B. Y.

Komljenovic, T.

Koonen, A. M. J.

Koos, C.

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express, vol.  20, pp. 317–337, 2012.
[CrossRef]

R. Schmogrow, R. Bouziane, M. Meyer, P. A. Milder, P. C. Schindler, R. I. Killey, P. Bayvel, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM or Nyquist pulse generation—which performs better with limited resources?” Opt. Express, vol.  20, pp. B543–B551, 2012.
[CrossRef]

R. Schmogrow, M. Winter, D. Hillerkuss, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM transmitter beyond 100 Gbit/s,” Opt. Express, vol.  19, pp. 12740–12749, 2011.
[CrossRef]

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J., vol.  3, pp. 1039–1053, 2011.
[CrossRef]

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett., vol.  22, no. 21, pp. 1601–1603, Nov. 2010.
[CrossRef]

R. Schmogrow, S. Wolf, B. Baeuerle, D. Hillerkuss, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Nyquist frequency division multiplexing for optical communications,” in CLEO: Science and Innovations, 2012, paper CTh1H.2.

R. M. Schmogrow, M. Meyer, P. C. Schindler, A. Josten, S. Ben-Ezra, C. Koos, W. Freude, and J. Leuthold, “252 Gbit/s real-time Nyquist pulse generation by reducing the oversampling factor to 1.33,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper OTu2I.1.

Lau, M. D.

Lau, M. F.

H. Chow, D. Suvakovic, D. van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, C. Van Praet, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” in European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.B.1.

Lebreton, A.

Lee, C.-H.

Lee, K. L.

Leuthold, J.

R. Schmogrow, R. Bouziane, M. Meyer, P. A. Milder, P. C. Schindler, R. I. Killey, P. Bayvel, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM or Nyquist pulse generation—which performs better with limited resources?” Opt. Express, vol.  20, pp. B543–B551, 2012.
[CrossRef]

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express, vol.  20, pp. 317–337, 2012.
[CrossRef]

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J., vol.  3, pp. 1039–1053, 2011.
[CrossRef]

R. Schmogrow, M. Winter, D. Hillerkuss, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM transmitter beyond 100 Gbit/s,” Opt. Express, vol.  19, pp. 12740–12749, 2011.
[CrossRef]

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett., vol.  22, no. 21, pp. 1601–1603, Nov. 2010.
[CrossRef]

R. Schmogrow, S. Wolf, B. Baeuerle, D. Hillerkuss, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Nyquist frequency division multiplexing for optical communications,” in CLEO: Science and Innovations, 2012, paper CTh1H.2.

R. M. Schmogrow, M. Meyer, P. C. Schindler, A. Josten, S. Ben-Ezra, C. Koos, W. Freude, and J. Leuthold, “252 Gbit/s real-time Nyquist pulse generation by reducing the oversampling factor to 1.33,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper OTu2I.1.

Li, F.

Li, Y.

I. Lu, H. Chen, C. Wei, Y. Chi, Y. Li, D. Hsu, G. Lin, and J. Chen, “20 Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper JTh2A.70.

Lin, G.

I. Lu, H. Chen, C. Wei, Y. Chi, Y. Li, D. Hsu, G. Lin, and J. Chen, “20 Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper JTh2A.70.

Lin, Y.-M.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, Y.-M. Lin, and S. Chi, “Demonstration of high spectral efficient OFDM-QAM long reach passive optical network,” in 34th European Conf. on Optical Communication, 2008, paper Th.2.F.5.

Liu, B.

Lu, I.

I. Lu, H. Chen, C. Wei, Y. Chi, Y. Li, D. Hsu, G. Lin, and J. Chen, “20 Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper JTh2A.70.

Ludwig, A.

Menezo, S.

Meuer, C.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J., vol.  3, pp. 1039–1053, 2011.
[CrossRef]

Meyer, J.

Meyer, M.

Milder, P. A.

Murakami, S.

N. Cvijetic, A. Tanaka, P. N. Ji, S. Murakami, K. Sethuraman, and T. Wang, “First OpenFlow-based software-defined λ-flow architecture for flex-grid OFDMA mobile backhaul over passive optical networks with filterless direct detection ONUs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper PDP5B.2.

Nebendahl, B.

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express, vol.  20, pp. 317–337, 2012.
[CrossRef]

R. Schmogrow, M. Winter, D. Hillerkuss, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM transmitter beyond 100 Gbit/s,” Opt. Express, vol.  19, pp. 12740–12749, 2011.
[CrossRef]

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett., vol.  22, no. 21, pp. 1601–1603, Nov. 2010.
[CrossRef]

R. Schmogrow, S. Wolf, B. Baeuerle, D. Hillerkuss, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Nyquist frequency division multiplexing for optical communications,” in CLEO: Science and Innovations, 2012, paper CTh1H.2.

O’Brien, P.

Okonkwo, C. M.

Park, H.-J.

Park, S.-J.

Poggiolini, P.

Prat, J.

I. N. Cano, M. C. Santos, and J. Prat, “Optimum carrier to signal power ratio for remote heterodyne DD-OFDM in PONs,” IEEE Photon. Technol. Lett., vol.  25, no. 13, pp. 1242–1245, July 2013.
[CrossRef]

Qian, D.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol.  48, no. 7, pp. 70–77, July 2010.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol.  28, no. 4, pp. 484–493, Feb. 2010.
[CrossRef]

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, Aug. 2010.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett., vol.  21, no. 17, pp. 1265–1267, Sept. 2009.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM transmission in metro/access networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OMV.

Qiu, K.

Qua, G.

C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. D. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express, vol.  20, pp. B7–B14, 2012.
[CrossRef]

H. Chow, D. Suvakovic, D. van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, C. Van Praet, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” in European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.B.1.

Quinlan, T.

Santos, M. C.

I. N. Cano, M. C. Santos, and J. Prat, “Optimum carrier to signal power ratio for remote heterodyne DD-OFDM in PONs,” IEEE Photon. Technol. Lett., vol.  25, no. 13, pp. 1242–1245, July 2013.
[CrossRef]

Schindler, P. C.

R. Schmogrow, R. Bouziane, M. Meyer, P. A. Milder, P. C. Schindler, R. I. Killey, P. Bayvel, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM or Nyquist pulse generation—which performs better with limited resources?” Opt. Express, vol.  20, pp. B543–B551, 2012.
[CrossRef]

R. M. Schmogrow, M. Meyer, P. C. Schindler, A. Josten, S. Ben-Ezra, C. Koos, W. Freude, and J. Leuthold, “252 Gbit/s real-time Nyquist pulse generation by reducing the oversampling factor to 1.33,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper OTu2I.1.

Schmeckebier, H.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J., vol.  3, pp. 1039–1053, 2011.
[CrossRef]

Schmogrow, R.

Schmogrow, R. M.

R. M. Schmogrow, M. Meyer, P. C. Schindler, A. Josten, S. Ben-Ezra, C. Koos, W. Freude, and J. Leuthold, “252 Gbit/s real-time Nyquist pulse generation by reducing the oversampling factor to 1.33,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper OTu2I.1.

Sethuraman, K.

N. Cvijetic, A. Tanaka, P. N. Ji, S. Murakami, K. Sethuraman, and T. Wang, “First OpenFlow-based software-defined λ-flow architecture for flex-grid OFDMA mobile backhaul over passive optical networks with filterless direct detection ONUs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper PDP5B.2.

Shao, Y.

Shaw, W.-T.

Shieh, W.

Shih, F. Y.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, Y.-M. Lin, and S. Chi, “Demonstration of high spectral efficient OFDM-QAM long reach passive optical network,” in 34th European Conf. on Optical Communication, 2008, paper Th.2.F.5.

Sipus, Z.

Song, K.-H.

Sorin, W. V.

Suvakovic, D.

C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. D. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express, vol.  20, pp. B7–B14, 2012.
[CrossRef]

H. Chow, D. Suvakovic, D. van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, C. Van Praet, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” in European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.B.1.

Tanaka, A.

N. Cvijetic, A. Tanaka, P. N. Ji, S. Murakami, K. Sethuraman, and T. Wang, “First OpenFlow-based software-defined λ-flow architecture for flex-grid OFDMA mobile backhaul over passive optical networks with filterless direct detection ONUs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper PDP5B.2.

Tang, J.

Tang, J. M.

Tang, Q.

Tang, Y.

Tangdiongga, E.

Torfs, G.

C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. D. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express, vol.  20, pp. B7–B14, 2012.
[CrossRef]

H. Chow, D. Suvakovic, D. van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, C. Van Praet, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” in European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.B.1.

Vallaitis, T.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J., vol.  3, pp. 1039–1053, 2011.
[CrossRef]

Van den Boom, H. P.

Van Praet, C.

C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. D. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express, vol.  20, pp. B7–B14, 2012.
[CrossRef]

H. Chow, D. Suvakovic, D. van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, C. Van Praet, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” in European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.B.1.

Van Veen, D.

C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. D. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express, vol.  20, pp. B7–B14, 2012.
[CrossRef]

H. Chow, D. Suvakovic, D. van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, C. Van Praet, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” in European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.B.1.

Vetter, P.

C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. D. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express, vol.  20, pp. B7–B14, 2012.
[CrossRef]

H. Chow, D. Suvakovic, D. van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, C. Van Praet, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” in European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.B.1.

Walker, S.

Wang, C. H.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, Y.-M. Lin, and S. Chi, “Demonstration of high spectral efficient OFDM-QAM long reach passive optical network,” in 34th European Conf. on Optical Communication, 2008, paper Th.2.F.5.

Wang, T.

N. Cvijetic, M.-F. Huang, E. Ip, Y. Shao, Y.-K. Huang, M. Cvijetic, and T. Wang, “1.92 Tb/s coherent DWDM-OFDMA-PON with no high-speed ONU-side electronics over 100 km SSMF and 1∶64 passive split,” Opt. Express, vol.  19, pp. 24540–24545, 2011.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol.  28, no. 4, pp. 484–493, Feb. 2010.
[CrossRef]

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, Aug. 2010.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett., vol.  21, no. 17, pp. 1265–1267, Sept. 2009.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM transmission in metro/access networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OMV.

N. Cvijetic, A. Tanaka, P. N. Ji, S. Murakami, K. Sethuraman, and T. Wang, “First OpenFlow-based software-defined λ-flow architecture for flex-grid OFDMA mobile backhaul over passive optical networks with filterless direct detection ONUs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper PDP5B.2.

Wei, C.

I. Lu, H. Chen, C. Wei, Y. Chi, Y. Li, D. Hsu, G. Lin, and J. Chen, “20 Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper JTh2A.70.

Wei, J. L.

Winter, M.

Wolf, S.

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express, vol.  20, pp. 317–337, 2012.
[CrossRef]

R. Schmogrow, S. Wolf, B. Baeuerle, D. Hillerkuss, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Nyquist frequency division multiplexing for optical communications,” in CLEO: Science and Innovations, 2012, paper CTh1H.2.

Wong, E.

Wong, S. W.

Xin, X.

Yeh, C. H.

C. H. Yeh, C. W. Chow, H. Y. Chen, and B. W. Chen, “Using adaptive four-band OFDM modulation with 40 Gb/s downstream and 10 Gb/s upstream signals for next generation long-reach PON,” Opt. Express, vol.  19, pp. 26150–26160, 2011.
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, Y.-M. Lin, and S. Chi, “Demonstration of high spectral efficient OFDM-QAM long reach passive optical network,” in 34th European Conf. on Optical Communication, 2008, paper Th.2.F.5.

Yin, X.

C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. D. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express, vol.  20, pp. B7–B14, 2012.
[CrossRef]

H. Chow, D. Suvakovic, D. van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, C. Van Praet, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” in European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.B.1.

Yu, C.

Yu, J.

Zhang, C.

Zhang, L.

Zhang, Q.

Electron. Lett. (1)

B. Charbonnier, N. Brochier, and P. Chanclou, “Reflective polarisation independent Mach-Zehnder modulator for FDMA/OFDMA PON,” Electron. Lett., vol.  46, no. 25, pp. 1682–1683, Dec. 2010.
[CrossRef]

IEEE Commun. Mag. (1)

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag., vol.  48, no. 7, pp. 70–77, July 2010.
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, Aug. 2010.
[CrossRef]

IEEE Photon. J. (1)

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photon. J., vol.  3, pp. 1039–1053, 2011.
[CrossRef]

IEEE Photon. Technol. Lett. (3)

I. N. Cano, M. C. Santos, and J. Prat, “Optimum carrier to signal power ratio for remote heterodyne DD-OFDM in PONs,” IEEE Photon. Technol. Lett., vol.  25, no. 13, pp. 1242–1245, July 2013.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett., vol.  21, no. 17, pp. 1265–1267, Sept. 2009.
[CrossRef]

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett., vol.  22, no. 21, pp. 1601–1603, Nov. 2010.
[CrossRef]

J. Lightwave Technol. (8)

S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol., vol.  22, no. 11, pp. 2582–2591, Nov. 2004.
[CrossRef]

C.-H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol., vol.  24, pp. 4568–4583, 2006.
[CrossRef]

E. Wong, K. L. Lee, and T. B. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol., vol.  25, pp. 67–74, 2007.
[CrossRef]

L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S. W. Wong, “Next-generation optical access networks,” J. Lightwave Technol., vol.  25, no. 11, pp. 3428–3442, Nov. 2007.
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol., vol.  28, no. 4, pp. 484–493, Feb. 2010.
[CrossRef]

N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol., vol.  30, no. 4, pp. 384–398, Feb. 2012.
[CrossRef]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol., vol.  29, no. 1, pp. 53–61, Jan. 2011.
[CrossRef]

Z. Cao, F. Li, C. M. Okonkwo, H. P. Van den Boom, E. Tangdiongga, Q. Tang, J. Tang, J. Yu, L. Chen, and A. M. J. Koonen, “A synchronized signaling insertion and detection scheme for reconfigurable optical OFDM access networks,” J. Lightwave Technol., vol.  30, no. 24, pp. 3972–3979, Dec. 2012.
[CrossRef]

J. Opt. Commun. Netw. (2)

Opt. Express (15)

T. Komljenovic, D. Babić, and Z. Sipus, “47-km 1.25-Gbps transmission using a self-seeded transmitter with a modulation averaging reflector,” Opt. Express, vol.  20, pp. 17386–17392, 2012.
[CrossRef]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10 Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express, vol.  20, pp. 21089–21100, 2012.
[CrossRef]

C. Van Praet, H. Chow, D. Suvakovic, D. Van Veen, A. Dupas, R. Boislaigue, R. Farah, M. D. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” Opt. Express, vol.  20, pp. B7–B14, 2012.
[CrossRef]

R. Schmogrow, R. Bouziane, M. Meyer, P. A. Milder, P. C. Schindler, R. I. Killey, P. Bayvel, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM or Nyquist pulse generation—which performs better with limited resources?” Opt. Express, vol.  20, pp. B543–B551, 2012.
[CrossRef]

Z. Dong, J. Yu, H.-C. Chien, N. Chi, L. Chen, and G.-K. Chang, “Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection,” Opt. Express, vol.  19, pp. 11100–11105, 2011.
[CrossRef]

R. Schmogrow, M. Winter, D. Hillerkuss, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM transmitter beyond 100 Gbit/s,” Opt. Express, vol.  19, pp. 12740–12749, 2011.
[CrossRef]

B. Liu, X. Xin, L. Zhang, and J. Yu, “Performance investigation and demonstration of colorless upstream transmission in ECDM-OFDM-PON,” Opt. Express, vol.  19, pp. 14542–14548, 2011.

X. Q. Jin, E. Hugues-Salas, R. P. Giddings, J. L. Wei, J. Groenewald, and J. M. Tang, “First real-time experimental demonstrations of 11.25 Gb/s optical OFDMA PONs with adaptive dynamic bandwidth allocation,” Opt. Express, vol.  19, pp. 20557–20570, 2011.
[CrossRef]

N. Cvijetic, M.-F. Huang, E. Ip, Y. Shao, Y.-K. Huang, M. Cvijetic, and T. Wang, “1.92 Tb/s coherent DWDM-OFDMA-PON with no high-speed ONU-side electronics over 100 km SSMF and 1∶64 passive split,” Opt. Express, vol.  19, pp. 24540–24545, 2011.
[CrossRef]

C. H. Yeh, C. W. Chow, H. Y. Chen, and B. W. Chen, “Using adaptive four-band OFDM modulation with 40 Gb/s downstream and 10 Gb/s upstream signals for next generation long-reach PON,” Opt. Express, vol.  19, pp. 26150–26160, 2011.
[CrossRef]

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express, vol.  20, pp. 317–337, 2012.
[CrossRef]

C. Zhang, C. Chen, Y. Feng, and K. Qiu, “Experimental demonstration of novel source-free ONUs in bidirectional RF up-converted optical OFDM-PON utilizing polarization multiplexing,” Opt. Express, vol.  20, pp. 6230–6235, 2012.
[CrossRef]

L. Zhang, X. Xin, B. Liu, J. Yu, and Q. Zhang, “A novel ECDM-OFDM-PON architecture for next-generation optical access network,” Opt. Express, vol.  18, pp. 18347–18353, 2010.
[CrossRef]

B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, and C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express, vol.  18, pp. 2137–2143, 2010.
[CrossRef]

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express, vol.  16, pp. 841–859, 2008.
[CrossRef]

Other (9)

Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T), .

Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T), GPON Standards G.984 Series.

N. Cvijetic, A. Tanaka, P. N. Ji, S. Murakami, K. Sethuraman, and T. Wang, “First OpenFlow-based software-defined λ-flow architecture for flex-grid OFDMA mobile backhaul over passive optical networks with filterless direct detection ONUs,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper PDP5B.2.

H. Chow, D. Suvakovic, D. van Veen, A. Dupas, R. Boislaigue, R. Farah, M. F. Lau, J. Galaro, G. Qua, N. P. Anthapadmanabhan, G. Torfs, C. Van Praet, X. Yin, and P. Vetter, “Demonstration of low-power bit-interleaving TDM PON,” in European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.B.1.

R. Schmogrow, S. Wolf, B. Baeuerle, D. Hillerkuss, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Nyquist frequency division multiplexing for optical communications,” in CLEO: Science and Innovations, 2012, paper CTh1H.2.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, Y.-M. Lin, and S. Chi, “Demonstration of high spectral efficient OFDM-QAM long reach passive optical network,” in 34th European Conf. on Optical Communication, 2008, paper Th.2.F.5.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM transmission in metro/access networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2009, paper OMV.

I. Lu, H. Chen, C. Wei, Y. Chi, Y. Li, D. Hsu, G. Lin, and J. Chen, “20 Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper JTh2A.70.

R. M. Schmogrow, M. Meyer, P. C. Schindler, A. Josten, S. Ben-Ezra, C. Koos, W. Freude, and J. Leuthold, “252 Gbit/s real-time Nyquist pulse generation by reducing the oversampling factor to 1.33,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., 2013, paper OTu2I.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Network topology of a colorless FDMA-PON. Two lasers with frequencies fDS and fUS supply the downstream (DS) and upstream (US) paths in the network. A modulator (“Carrier Generator”) generates two lines for each laser: one line serves as a local oscillator (DS-LO, US-LO) and the other as an optical carrier (DS-Seed, US-Seed) for data transmission. DS signal (DS-Sig), DS-LO, and US-Seed are broadcast to the optical distribution network (ODN). Each ONU receives the whole DS spectrum, but demodulates only its own assigned subband. The US signal (US-Sig) is upconverted by the same electrical LO as is used for the DS downconversion, and the upconverted signal is encoded on the carrier US-Seed. All ONUs together contribute to the aggregate optical US spectrum, which is coherently received as a whole at the OLT using the previously mentioned US-LO. Some characteristic points in the figure are marked by A–H for later use (compare Figs. 2 and 3).

Fig. 2.
Fig. 2.

Spectral design of the network. (A) From two lasers with frequencies fDS and fUS, a modulator generates two pairs of spectral lines with a spacing of 37.5 GHz. DS-LO and US-LO serve as the local oscillator (LO) for the ONU-received DS-Sig and for the OLT-received US-Sig, respectively. (B) The OLT encodes its DS-Sig of bandwidth B onto the DS-Seed and transmits the DS-Sig along with DS-LO and US-Seed. (C) In the ONUs the DS-Sig is remotely heterodyned using DS-LO as a local oscillator. Unwanted mixing products are removed by an electrical high-pass filter (HP). The desired electrical subband is selected and downconverted with an IQ mixer [in this example using an LO (frequency f1)]. Electrical low-pass filters (LP) reject neighboring subbands and reduce the noise bandwidth to the selected signal subband. (D) The US baseband signal is upconverted by the same electrical LO (frequency f1) as before. (E) This upconverted signal is modulated onto the US-Seed by a polarization-insensitive modulator. The partial spectra above and below the US-Seed are complex conjugate to each other. (F) The aggregate US of all ONUs has again a bandwidth B and is coherently received at the OLT using the US-LO as a local oscillator.

Fig. 3.
Fig. 3.

Experimental Setup. The setup consists of one OLT (left-hand side) and two ONUs (ONU 1 and ONU 2, right-hand side). They are connected by an emulated optical distribution network (ODN). The optical and electrical spectra at characteristic points A–H for the DS and US path are given as well. Within the OLT, in the carrier generator (orange shading), two external cavity laser (ECL) lines are modulated by an MZM biased at the quadrature point and driven with a sinusoid at 18.75 GHz, thereby generating two lines spaced by 37.5 GHz. They are singled out by an optical programmable filter (Waveshaper), which also suppresses any residual carrier and higher order modulation products. Spectrum A shows the superimposed spectra of all output ports of the filter. DS-Seed is mapped to the upper port and fed to the transmitter, DS-LO and US-Seed are mapped onto the same output (middle position at Waveshaper), and US-LO is mapped on the lower output and fed directly to the receiver (superimposed spectra in inset A). In the transmitter (shaded gray), an AWG provides the DS QPSK data (spectrum G1), which are encoded onto the optical carrier (DS-Seed) by an optical IQ modulator (spectrum in inset G2 is offset with respect to frequency fDS-Seed). In the receiver (shaded blue), the LO for US reception is fed directly to the OMA, which acts as a coherent receiver frontend for subsequent offline processing. An FBG in front of the OMA blocks the US-Seed from the ONU and suppresses fiber backreflections. The ODN is emulated by a standard single-mode fiber of up to 75 km length and by a VOA. The ONU is connected to the ODN by an optical circulator. The output of the circulator is split in its DS and US frequency bands by an AWGR (output port spectra in inset B). Each frequency band is separately amplified by an SOA. The DS spectrum is received by a photodiode, whose photocurrent signal is amplified and downconverted to the baseband with an IQ mixer. The baseband signals (reconstructed power spectrum in inset C) are captured with a real-time oscilloscope (8 GHz, 25GSa/s) and processed offline. The US data (spectrum H) are provided by an AWG (6.25GSa/s, 10 bits) and are electrically upconverted with the same electrical LO as used for the DS. The upconverted signal is modulated with an EAM onto the optical carrier that is supplied by the OLT (US-Seed). The signal is boosted by an SOA and combined with the US of ONU 2. The aggregate US-Sig is recirculated to the OLT (spectrum F) and received at the OLT by an optical single-polarization 90° hybrid.

Fig. 4.
Fig. 4.

Average electrical signal power [spectrum in Fig. 2(C) for Bf2B] as a function of the power ratio Q=PDS-LO/PDS-Sig. The total DS power PDS=PDS-Sig+PDS-LO is fixed to 0 dBm. The average electrical signal power is largest for PDS-Sig=PDS-LO, Q corresponding to 0 dB.

Fig. 5.
Fig. 5.

BER as a function of ONU receiver input power. The IPDR of the receiver is the power ratio of the highest and lowest input powers for the chosen acceptable BER of 4.5×103 (dotted line). The black and cyan curves show the back-to-back measurements for two different ONUs and hence two different electrical LO frequencies. The blue and green curves represent the very same ONUs with 75 km of SSMF in addition to the VOA. The upper boundary is set by SOA nonlinearities, but is not reached due to power restrictions. The lower limit is determined by thermal noise of the electrical broadband electrical amplifiers. The IPDR is larger than 15.4 and 19.2 dB for ONU 1 and ONU 2, respectively. Constellation diagrams for the lower and upper boundaries and the best performing receiver input power are given.

Fig. 6.
Fig. 6.

BER as a function of ONU transmitter output power after the ONU booster SOA. The dynamic range is defined as the power ratio of the highest and lowest transmitter output power for the chosen acceptable BER of 4.5×103 (dotted line), measured at the OLT receiver. It is seen that the OLT receiver does not impose power limitations inside the investigated range. Constellation diagrams are given for the measured powers marked with circles.