Abstract

We propose a new dynamic bandwidth allocation (DBA) method for long-reach passive optical networks that can reduce the upstream latency. With this method, an optical line terminal allocates bandwidth to long-distance (up to 100 km) optical network units (ONUs) with a transmission request prediction and reduces the latency of the long-distance ONUs. This has no influence on the latency of short-distance ONUs even if they coexist with long-distance ONUs. The results of real machine experiments show that this new DBA method achieves a smaller latency with long-distance ONUs than the conventional DBA technique, and that there is no influence on short-distance ONUs. The latency time and jitter are kept below 1300μs and 1000μs, respectively, for both long- and short-distance ONUs. The experimental results also reveal the effect of the proposed method on bandwidth utilization efficiency and fairness. The degradation in bandwidth utilization efficiency when one long-distance ONU is added is small (0.3%), and the fairness index degradation is negligible (less than 0.1%), when the parameters are optimized. These results indicate the validity of the proposed DBA method.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Shinohara, “Broadband access in Japan: Rapidly growing FTTH market,” IEEE Commun. Mag., vol. 43, no. 9, pp. 72–78, Sept.2005.
    [CrossRef]
  2. IEEE Std 802.3-2008, “Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) access method and Physical Layer specifications” [Online]. Available: http://standards.ieee.org/getieee802/download/802.3-2008_section5.pdf.
  3. IEEE Std. 802.3av-2009, “Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) access method and Physical Layer specifications, Amendment 1: Physical Layer Specifications and Management Parameters for 10 Gb/s Passive Optical Networks” [Online]. Available: http://standards.ieee.org/getieee802/download/802.3av-2009.pdf.
  4. IEEE P1904.1 Service Interoperability of Ethernet Passive Optical Network Working Group [Online]. Available: http://grouper.ieee.org/groups/1904/1/.
  5. M. Tsubokawa and K. Kumozaki, “Evolution of next generation access,” in Proc. of IEEE GLOBECOM, New Orleans, Nov. 2008.
  6. K.-I. Suzuki, Y. Fukada, D. Nesset, and R. Davey, “Amplified gigabit PON systems,” J. Opt. Netw., vol. 6, no. 5, pp. 422–433, 2007.
    [CrossRef]
  7. IEEE 802.3 Extended EPON Task Force [Online]. Available: http://ieee802.org/3/EXTND_EPON/index.html.
  8. H. Song, B.-W. Kim, and B. Mukherjee, “Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms,” IEEE Commun. Surv. Tutorials, vol. 12, no. 1, pp. 112–23, 2010.
    [CrossRef]
  9. M. Fujiwara, T. Imai, K. Taguchi, K.-I. Suzuki, H. Ishii, and N. Yoshimoto, “Field trial of 79.5-dB loss budget, 100-km reach 10G-EPON system using ALC burst-mode SOAs and EDC,” in Proc. of IEEE/OSA OFC/NFOEC, 2012, PDP5D.8.
  10. G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, no. 1, pp. 89–107, Aug.2002.
    [CrossRef]
  11. T. Tatsuta, N. Oota, N. Miki, and K. Kumozaki, “Design philosophy and performance of a GE-PON system for mass deployment,” J. Opt. Netw., vol. 6, no. 6, pp. 689–700, 2007.
    [CrossRef]
  12. M. P. McGarry, M. Maier, and M. Reisslein, “Ethernet PONs: A survey of dynamic bandwidth allocation (DBA) algorithms,” IEEE Opt. Commun., vol. 42, no. 8, pp. S8–S15, Aug.2004.
    [CrossRef]
  13. D. Murayama, N. Oota, K.-I. Suzuki, and N. Yoshimoto, “Diversity DBA technique for fairly handling various types of EPON ONU,” in Proc. of IEEE ICC, 2011.
  14. B. Kantarci and H. T. Mouftah, “Bandwidth distribution solutions for performance enhancement in long-reach passive optical networks,” IEEE Commun. Surv. Tutorials, vol. 14, no. 3, pp. 714–733, 2012.
  15. C.-H. Chang, N. M. Alvarez, P. Kourtessis, and J. M. Senior, “Dynamic bandwidth assignment for multi-service access in long-reach GPON,” in Proc. of IEEE ECOC, 2007.
  16. H. Song, B.-W. Kim, and B. Mukherjee, “Multi-thread polling: A dynamic bandwidth distribution scheme in long-reach PON,” IEEE J. Sel. Areas Commun., vol. 27, no. 2, pp. 134–142, Feb.2009.
    [CrossRef]
  17. T. Jimenez, N. Merayo, P. Fernandez, R. J. Duran, I. de Miguel, R. M. Lorenzo, and E. J. Abril, “Implementation of a PID controller for the bandwidth assignment in long-reach PONs,” J. Opt. Commun. Netw., vol. 4, no. 5, pp. 392–401, May2012.
    [CrossRef]
  18. P. P. Iannone and K. C. Reichmann, “Strategic and tactical uses for extended PON,” in Proc. of IEEE/OSA OFC, 2008, Invited Talk.
  19. D. Murayama, N. Oota, K.-I. Suzuki, and N. Yoshimoto, “Low latency dynamic bandwidth allocation for 100 km long reach 10G-EPON,” in Proc. of IEEE CQR, 2012.
  20. R. Jain, G. Babic, B. Nagendra, and C. Lam, “Fairness, call establishment latency and other performance metrics,” Tech. Rep. ATM_Forum/96-1173, ATM Forum Document, Aug.1996.

2012 (2)

B. Kantarci and H. T. Mouftah, “Bandwidth distribution solutions for performance enhancement in long-reach passive optical networks,” IEEE Commun. Surv. Tutorials, vol. 14, no. 3, pp. 714–733, 2012.

T. Jimenez, N. Merayo, P. Fernandez, R. J. Duran, I. de Miguel, R. M. Lorenzo, and E. J. Abril, “Implementation of a PID controller for the bandwidth assignment in long-reach PONs,” J. Opt. Commun. Netw., vol. 4, no. 5, pp. 392–401, May2012.
[CrossRef]

2010 (1)

H. Song, B.-W. Kim, and B. Mukherjee, “Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms,” IEEE Commun. Surv. Tutorials, vol. 12, no. 1, pp. 112–23, 2010.
[CrossRef]

2009 (1)

H. Song, B.-W. Kim, and B. Mukherjee, “Multi-thread polling: A dynamic bandwidth distribution scheme in long-reach PON,” IEEE J. Sel. Areas Commun., vol. 27, no. 2, pp. 134–142, Feb.2009.
[CrossRef]

2007 (2)

2005 (1)

H. Shinohara, “Broadband access in Japan: Rapidly growing FTTH market,” IEEE Commun. Mag., vol. 43, no. 9, pp. 72–78, Sept.2005.
[CrossRef]

2004 (1)

M. P. McGarry, M. Maier, and M. Reisslein, “Ethernet PONs: A survey of dynamic bandwidth allocation (DBA) algorithms,” IEEE Opt. Commun., vol. 42, no. 8, pp. S8–S15, Aug.2004.
[CrossRef]

2002 (1)

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, no. 1, pp. 89–107, Aug.2002.
[CrossRef]

Abril, E. J.

T. Jimenez, N. Merayo, P. Fernandez, R. J. Duran, I. de Miguel, R. M. Lorenzo, and E. J. Abril, “Implementation of a PID controller for the bandwidth assignment in long-reach PONs,” J. Opt. Commun. Netw., vol. 4, no. 5, pp. 392–401, May2012.
[CrossRef]

Alvarez, N. M.

C.-H. Chang, N. M. Alvarez, P. Kourtessis, and J. M. Senior, “Dynamic bandwidth assignment for multi-service access in long-reach GPON,” in Proc. of IEEE ECOC, 2007.

Babic, G.

R. Jain, G. Babic, B. Nagendra, and C. Lam, “Fairness, call establishment latency and other performance metrics,” Tech. Rep. ATM_Forum/96-1173, ATM Forum Document, Aug.1996.

Chang, C.-H.

C.-H. Chang, N. M. Alvarez, P. Kourtessis, and J. M. Senior, “Dynamic bandwidth assignment for multi-service access in long-reach GPON,” in Proc. of IEEE ECOC, 2007.

Davey, R.

de Miguel, I.

T. Jimenez, N. Merayo, P. Fernandez, R. J. Duran, I. de Miguel, R. M. Lorenzo, and E. J. Abril, “Implementation of a PID controller for the bandwidth assignment in long-reach PONs,” J. Opt. Commun. Netw., vol. 4, no. 5, pp. 392–401, May2012.
[CrossRef]

Duran, R. J.

T. Jimenez, N. Merayo, P. Fernandez, R. J. Duran, I. de Miguel, R. M. Lorenzo, and E. J. Abril, “Implementation of a PID controller for the bandwidth assignment in long-reach PONs,” J. Opt. Commun. Netw., vol. 4, no. 5, pp. 392–401, May2012.
[CrossRef]

Fernandez, P.

T. Jimenez, N. Merayo, P. Fernandez, R. J. Duran, I. de Miguel, R. M. Lorenzo, and E. J. Abril, “Implementation of a PID controller for the bandwidth assignment in long-reach PONs,” J. Opt. Commun. Netw., vol. 4, no. 5, pp. 392–401, May2012.
[CrossRef]

Fujiwara, M.

M. Fujiwara, T. Imai, K. Taguchi, K.-I. Suzuki, H. Ishii, and N. Yoshimoto, “Field trial of 79.5-dB loss budget, 100-km reach 10G-EPON system using ALC burst-mode SOAs and EDC,” in Proc. of IEEE/OSA OFC/NFOEC, 2012, PDP5D.8.

Fukada, Y.

Iannone, P. P.

P. P. Iannone and K. C. Reichmann, “Strategic and tactical uses for extended PON,” in Proc. of IEEE/OSA OFC, 2008, Invited Talk.

Imai, T.

M. Fujiwara, T. Imai, K. Taguchi, K.-I. Suzuki, H. Ishii, and N. Yoshimoto, “Field trial of 79.5-dB loss budget, 100-km reach 10G-EPON system using ALC burst-mode SOAs and EDC,” in Proc. of IEEE/OSA OFC/NFOEC, 2012, PDP5D.8.

Ishii, H.

M. Fujiwara, T. Imai, K. Taguchi, K.-I. Suzuki, H. Ishii, and N. Yoshimoto, “Field trial of 79.5-dB loss budget, 100-km reach 10G-EPON system using ALC burst-mode SOAs and EDC,” in Proc. of IEEE/OSA OFC/NFOEC, 2012, PDP5D.8.

Jain, R.

R. Jain, G. Babic, B. Nagendra, and C. Lam, “Fairness, call establishment latency and other performance metrics,” Tech. Rep. ATM_Forum/96-1173, ATM Forum Document, Aug.1996.

Jimenez, T.

T. Jimenez, N. Merayo, P. Fernandez, R. J. Duran, I. de Miguel, R. M. Lorenzo, and E. J. Abril, “Implementation of a PID controller for the bandwidth assignment in long-reach PONs,” J. Opt. Commun. Netw., vol. 4, no. 5, pp. 392–401, May2012.
[CrossRef]

Kantarci, B.

B. Kantarci and H. T. Mouftah, “Bandwidth distribution solutions for performance enhancement in long-reach passive optical networks,” IEEE Commun. Surv. Tutorials, vol. 14, no. 3, pp. 714–733, 2012.

Kim, B.-W.

H. Song, B.-W. Kim, and B. Mukherjee, “Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms,” IEEE Commun. Surv. Tutorials, vol. 12, no. 1, pp. 112–23, 2010.
[CrossRef]

H. Song, B.-W. Kim, and B. Mukherjee, “Multi-thread polling: A dynamic bandwidth distribution scheme in long-reach PON,” IEEE J. Sel. Areas Commun., vol. 27, no. 2, pp. 134–142, Feb.2009.
[CrossRef]

Kourtessis, P.

C.-H. Chang, N. M. Alvarez, P. Kourtessis, and J. M. Senior, “Dynamic bandwidth assignment for multi-service access in long-reach GPON,” in Proc. of IEEE ECOC, 2007.

Kramer, G.

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, no. 1, pp. 89–107, Aug.2002.
[CrossRef]

Kumozaki, K.

T. Tatsuta, N. Oota, N. Miki, and K. Kumozaki, “Design philosophy and performance of a GE-PON system for mass deployment,” J. Opt. Netw., vol. 6, no. 6, pp. 689–700, 2007.
[CrossRef]

M. Tsubokawa and K. Kumozaki, “Evolution of next generation access,” in Proc. of IEEE GLOBECOM, New Orleans, Nov. 2008.

Lam, C.

R. Jain, G. Babic, B. Nagendra, and C. Lam, “Fairness, call establishment latency and other performance metrics,” Tech. Rep. ATM_Forum/96-1173, ATM Forum Document, Aug.1996.

Lorenzo, R. M.

T. Jimenez, N. Merayo, P. Fernandez, R. J. Duran, I. de Miguel, R. M. Lorenzo, and E. J. Abril, “Implementation of a PID controller for the bandwidth assignment in long-reach PONs,” J. Opt. Commun. Netw., vol. 4, no. 5, pp. 392–401, May2012.
[CrossRef]

Maier, M.

M. P. McGarry, M. Maier, and M. Reisslein, “Ethernet PONs: A survey of dynamic bandwidth allocation (DBA) algorithms,” IEEE Opt. Commun., vol. 42, no. 8, pp. S8–S15, Aug.2004.
[CrossRef]

McGarry, M. P.

M. P. McGarry, M. Maier, and M. Reisslein, “Ethernet PONs: A survey of dynamic bandwidth allocation (DBA) algorithms,” IEEE Opt. Commun., vol. 42, no. 8, pp. S8–S15, Aug.2004.
[CrossRef]

Merayo, N.

T. Jimenez, N. Merayo, P. Fernandez, R. J. Duran, I. de Miguel, R. M. Lorenzo, and E. J. Abril, “Implementation of a PID controller for the bandwidth assignment in long-reach PONs,” J. Opt. Commun. Netw., vol. 4, no. 5, pp. 392–401, May2012.
[CrossRef]

Miki, N.

Mouftah, H. T.

B. Kantarci and H. T. Mouftah, “Bandwidth distribution solutions for performance enhancement in long-reach passive optical networks,” IEEE Commun. Surv. Tutorials, vol. 14, no. 3, pp. 714–733, 2012.

Mukherjee, B.

H. Song, B.-W. Kim, and B. Mukherjee, “Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms,” IEEE Commun. Surv. Tutorials, vol. 12, no. 1, pp. 112–23, 2010.
[CrossRef]

H. Song, B.-W. Kim, and B. Mukherjee, “Multi-thread polling: A dynamic bandwidth distribution scheme in long-reach PON,” IEEE J. Sel. Areas Commun., vol. 27, no. 2, pp. 134–142, Feb.2009.
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, no. 1, pp. 89–107, Aug.2002.
[CrossRef]

Murayama, D.

D. Murayama, N. Oota, K.-I. Suzuki, and N. Yoshimoto, “Diversity DBA technique for fairly handling various types of EPON ONU,” in Proc. of IEEE ICC, 2011.

D. Murayama, N. Oota, K.-I. Suzuki, and N. Yoshimoto, “Low latency dynamic bandwidth allocation for 100 km long reach 10G-EPON,” in Proc. of IEEE CQR, 2012.

Nagendra, B.

R. Jain, G. Babic, B. Nagendra, and C. Lam, “Fairness, call establishment latency and other performance metrics,” Tech. Rep. ATM_Forum/96-1173, ATM Forum Document, Aug.1996.

Nesset, D.

Oota, N.

T. Tatsuta, N. Oota, N. Miki, and K. Kumozaki, “Design philosophy and performance of a GE-PON system for mass deployment,” J. Opt. Netw., vol. 6, no. 6, pp. 689–700, 2007.
[CrossRef]

D. Murayama, N. Oota, K.-I. Suzuki, and N. Yoshimoto, “Low latency dynamic bandwidth allocation for 100 km long reach 10G-EPON,” in Proc. of IEEE CQR, 2012.

D. Murayama, N. Oota, K.-I. Suzuki, and N. Yoshimoto, “Diversity DBA technique for fairly handling various types of EPON ONU,” in Proc. of IEEE ICC, 2011.

Pesavento, G.

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, no. 1, pp. 89–107, Aug.2002.
[CrossRef]

Reichmann, K. C.

P. P. Iannone and K. C. Reichmann, “Strategic and tactical uses for extended PON,” in Proc. of IEEE/OSA OFC, 2008, Invited Talk.

Reisslein, M.

M. P. McGarry, M. Maier, and M. Reisslein, “Ethernet PONs: A survey of dynamic bandwidth allocation (DBA) algorithms,” IEEE Opt. Commun., vol. 42, no. 8, pp. S8–S15, Aug.2004.
[CrossRef]

Senior, J. M.

C.-H. Chang, N. M. Alvarez, P. Kourtessis, and J. M. Senior, “Dynamic bandwidth assignment for multi-service access in long-reach GPON,” in Proc. of IEEE ECOC, 2007.

Shinohara, H.

H. Shinohara, “Broadband access in Japan: Rapidly growing FTTH market,” IEEE Commun. Mag., vol. 43, no. 9, pp. 72–78, Sept.2005.
[CrossRef]

Song, H.

H. Song, B.-W. Kim, and B. Mukherjee, “Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms,” IEEE Commun. Surv. Tutorials, vol. 12, no. 1, pp. 112–23, 2010.
[CrossRef]

H. Song, B.-W. Kim, and B. Mukherjee, “Multi-thread polling: A dynamic bandwidth distribution scheme in long-reach PON,” IEEE J. Sel. Areas Commun., vol. 27, no. 2, pp. 134–142, Feb.2009.
[CrossRef]

Suzuki, K.-I.

K.-I. Suzuki, Y. Fukada, D. Nesset, and R. Davey, “Amplified gigabit PON systems,” J. Opt. Netw., vol. 6, no. 5, pp. 422–433, 2007.
[CrossRef]

M. Fujiwara, T. Imai, K. Taguchi, K.-I. Suzuki, H. Ishii, and N. Yoshimoto, “Field trial of 79.5-dB loss budget, 100-km reach 10G-EPON system using ALC burst-mode SOAs and EDC,” in Proc. of IEEE/OSA OFC/NFOEC, 2012, PDP5D.8.

D. Murayama, N. Oota, K.-I. Suzuki, and N. Yoshimoto, “Diversity DBA technique for fairly handling various types of EPON ONU,” in Proc. of IEEE ICC, 2011.

D. Murayama, N. Oota, K.-I. Suzuki, and N. Yoshimoto, “Low latency dynamic bandwidth allocation for 100 km long reach 10G-EPON,” in Proc. of IEEE CQR, 2012.

Taguchi, K.

M. Fujiwara, T. Imai, K. Taguchi, K.-I. Suzuki, H. Ishii, and N. Yoshimoto, “Field trial of 79.5-dB loss budget, 100-km reach 10G-EPON system using ALC burst-mode SOAs and EDC,” in Proc. of IEEE/OSA OFC/NFOEC, 2012, PDP5D.8.

Tatsuta, T.

Tsubokawa, M.

M. Tsubokawa and K. Kumozaki, “Evolution of next generation access,” in Proc. of IEEE GLOBECOM, New Orleans, Nov. 2008.

Yoshimoto, N.

M. Fujiwara, T. Imai, K. Taguchi, K.-I. Suzuki, H. Ishii, and N. Yoshimoto, “Field trial of 79.5-dB loss budget, 100-km reach 10G-EPON system using ALC burst-mode SOAs and EDC,” in Proc. of IEEE/OSA OFC/NFOEC, 2012, PDP5D.8.

D. Murayama, N. Oota, K.-I. Suzuki, and N. Yoshimoto, “Low latency dynamic bandwidth allocation for 100 km long reach 10G-EPON,” in Proc. of IEEE CQR, 2012.

D. Murayama, N. Oota, K.-I. Suzuki, and N. Yoshimoto, “Diversity DBA technique for fairly handling various types of EPON ONU,” in Proc. of IEEE ICC, 2011.

J. Opt. Commun. Netw. (1)

T. Jimenez, N. Merayo, P. Fernandez, R. J. Duran, I. de Miguel, R. M. Lorenzo, and E. J. Abril, “Implementation of a PID controller for the bandwidth assignment in long-reach PONs,” J. Opt. Commun. Netw., vol. 4, no. 5, pp. 392–401, May2012.
[CrossRef]

IEEE Commun. Mag. (1)

H. Shinohara, “Broadband access in Japan: Rapidly growing FTTH market,” IEEE Commun. Mag., vol. 43, no. 9, pp. 72–78, Sept.2005.
[CrossRef]

IEEE Commun. Surv. Tutorials (2)

H. Song, B.-W. Kim, and B. Mukherjee, “Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms,” IEEE Commun. Surv. Tutorials, vol. 12, no. 1, pp. 112–23, 2010.
[CrossRef]

B. Kantarci and H. T. Mouftah, “Bandwidth distribution solutions for performance enhancement in long-reach passive optical networks,” IEEE Commun. Surv. Tutorials, vol. 14, no. 3, pp. 714–733, 2012.

IEEE J. Sel. Areas Commun. (1)

H. Song, B.-W. Kim, and B. Mukherjee, “Multi-thread polling: A dynamic bandwidth distribution scheme in long-reach PON,” IEEE J. Sel. Areas Commun., vol. 27, no. 2, pp. 134–142, Feb.2009.
[CrossRef]

IEEE Opt. Commun. (1)

M. P. McGarry, M. Maier, and M. Reisslein, “Ethernet PONs: A survey of dynamic bandwidth allocation (DBA) algorithms,” IEEE Opt. Commun., vol. 42, no. 8, pp. S8–S15, Aug.2004.
[CrossRef]

J. Opt. Netw. (2)

Photonic Network Commun. (1)

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photonic Network Commun., vol. 4, no. 1, pp. 89–107, Aug.2002.
[CrossRef]

Other (11)

C.-H. Chang, N. M. Alvarez, P. Kourtessis, and J. M. Senior, “Dynamic bandwidth assignment for multi-service access in long-reach GPON,” in Proc. of IEEE ECOC, 2007.

P. P. Iannone and K. C. Reichmann, “Strategic and tactical uses for extended PON,” in Proc. of IEEE/OSA OFC, 2008, Invited Talk.

D. Murayama, N. Oota, K.-I. Suzuki, and N. Yoshimoto, “Low latency dynamic bandwidth allocation for 100 km long reach 10G-EPON,” in Proc. of IEEE CQR, 2012.

R. Jain, G. Babic, B. Nagendra, and C. Lam, “Fairness, call establishment latency and other performance metrics,” Tech. Rep. ATM_Forum/96-1173, ATM Forum Document, Aug.1996.

D. Murayama, N. Oota, K.-I. Suzuki, and N. Yoshimoto, “Diversity DBA technique for fairly handling various types of EPON ONU,” in Proc. of IEEE ICC, 2011.

M. Fujiwara, T. Imai, K. Taguchi, K.-I. Suzuki, H. Ishii, and N. Yoshimoto, “Field trial of 79.5-dB loss budget, 100-km reach 10G-EPON system using ALC burst-mode SOAs and EDC,” in Proc. of IEEE/OSA OFC/NFOEC, 2012, PDP5D.8.

IEEE Std 802.3-2008, “Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) access method and Physical Layer specifications” [Online]. Available: http://standards.ieee.org/getieee802/download/802.3-2008_section5.pdf.

IEEE Std. 802.3av-2009, “Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) access method and Physical Layer specifications, Amendment 1: Physical Layer Specifications and Management Parameters for 10 Gb/s Passive Optical Networks” [Online]. Available: http://standards.ieee.org/getieee802/download/802.3av-2009.pdf.

IEEE P1904.1 Service Interoperability of Ethernet Passive Optical Network Working Group [Online]. Available: http://grouper.ieee.org/groups/1904/1/.

M. Tsubokawa and K. Kumozaki, “Evolution of next generation access,” in Proc. of IEEE GLOBECOM, New Orleans, Nov. 2008.

IEEE 802.3 Extended EPON Task Force [Online]. Available: http://ieee802.org/3/EXTND_EPON/index.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) Message exchange between a long-distance ONU and an OLT in REPORT and GATE intensive EM-DBA. (a) Transmission delay for a long-distance ONU, (b) effect on latency time of a short-distance ONU.

Fig. 2
Fig. 2

(Color online) Message exchange between a long-distance ONU and an OLT in REPORT and GATE intensive EM-DBA when long-distance ONUs and short-distance ONUs coexist.

Fig. 3
Fig. 3

Conflict avoidance algorithm.

Fig. 4
Fig. 4

(Color online) Experimental setups.

Fig. 5
Fig. 5

Experimental results. (a) Relationship between the reach of the furthest ONUs and latency, (b) relationship between the reach of the furthest ONUs and jitter, (c) relationship between the number of 100 km reach ONUs and bandwidth utilization efficiency, and (d) relationship between the number of 100 km reach ONUs and the fairness index.

Tables (2)

Tables Icon

Table I Latency Measurement Conditions

Tables Icon

Table II Throughput Measurement Conditions

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

g i , k = { G i , k 1 + G p 2 ( R i , k > α 2 R i , k 0 x F F F F ) G i , k 1 + G p 1 ( α 1 < R i , k α 2 ) G i , k 1 ( β 1 < R i , k α 1 ) G i , k 1 G m 1 ( β 2 R i , k < β 1 ) G i , k 1 G m 2 ( β 2 < R i , k R i , k = 0 ) ,
G i , k = { G max ( g i , k > G max ) g i , k ( G min g i , k G max ) G min ( g i , k < G min ) .
L i T s w i w k × R i / T cycle ,
T s = T cycle T OH ,
E = j = 1 N ( t j r j ) ,
F = { j = 1 N ( t j / w j ) } 2 / N j = 1 N ( t j / w j ) 2 ,