Abstract

Lasers with narrow-linewidth emission are a key component for higher-order modulation formats. We report on discrete-mode laser diodes designed for narrow-linewidth emission and demonstrate linewidths less than 80 kHz. Using these devices in quadrature phase shift keying and 16-quadrature amplitude modulation transmission setups, similar performance to that of an external cavity laser is demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Roberts, M. O’Sullivan, K.-T. Wu, S. Han, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightwave Technol., vol. 27, no. 16, pp. 3546–3559, 2009.
    [CrossRef]
  2. K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag., vol. 48, no. 7, pp. 62–69, 2010.
    [CrossRef]
  3. A. Al-Bermani, C. Wordehoff, S. Hoffmann, K. Puntsri, T. Pfau, U. Ruc¨kert, and R. Noé, “Real-time 16-QAM transmission with coherent digital receiver,” in Proc. 15th OptoeElectronics and Communications Conf., Japan, 2010.
  4. D. Lavery, M. Ionescu, S. Makovejs, E. Torrengo, and S. J. Savory, “A long-reach ultra-dense 10 Gbit/s WDM-PON using a digital coherent receiver,” Opt. Express, vol. 18, no. 25, pp. 25855–25860, 2010.
    [CrossRef] [PubMed]
  5. M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf., 2008, OTuM2.
  6. T. Pfau, S. Hoffmann, and R. Noe, “Hardware-efficient coherent digital receiver concept with feed forward carrier recovery for M-QAM constellations,” J. Lightwave Technol., vol. 27, no. 8, pp. 989–999, 2009.
    [CrossRef]
  7. J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L. P. Barry, and J. O’Gorman, “Wide temperature range 0<T<85 °C narrow linewidth discrete mode laser diodes for coherent communications applications,” in 37th European Conf. and Expo. on Optical Communications, 2011, We.10.P1.34.
  8. J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L. P. Barry, and J. O’Gorman, “Wide temperature range 0<T<85 °C narrow linewidth discrete mode laser diodes for coherent communications applications,” Opt. Express, vol. 19, pp. B90–B95, 2011.
    [CrossRef] [PubMed]
  9. R. Phelan, B. Kelly, J. O’Carroll, C. Herbert, A. Duke, and J. O’Gorman, “−40°C<T<95°C mode-hop free operation of an uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ=1.3µm,” Electron. Lett., vol. 45, no. 1, pp. 43–45, 2009.
    [CrossRef]
  10. J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, F. Smyth, B. Cardiff, P. M. Anandarajah, and L. P. Barry, “Narrow linewidth discrete mode laser diodes for advanced modulation formats,” in Optical Fiber Communication Conf. and Exposition and The National Fiber Optic Engineers Conf., OSA Technical Digest (CD), Optical Society of America, 2012, OTu1G.4.
  11. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett., vol. 16, pp. 630–632, 1980.
    [CrossRef]
  12. M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB laser linewidth measurement techniques results from COST 215 round robin,” Electron. Lett., vol. 26, no. 24, pp. 2018–2020, 1990.
    [CrossRef]
  13. Y. Lize, C. Malouin, E. Ibragimov, B. Zhang, and T. Schmidt, “Implementation challenges of 100G coherent transponders,” in IEEE Photonics Society Summer Topical Meeting Series, Playa del Carmen, July 2010, pp. 24–25.
  14. T. Mizuochi, Y. Miyata, K. Kubo, T. Sugihara, K. Onohara, and H. Yoshida, “Progress in soft-decision FEC,” in Nat. Fiber Optic Engineers Conf., 2011, NWC2.
  15. E. Ibragimov, B. Zhang, T. J. Schmidt, C. Malouin, N. Fediakine, and H. Jiang, “Cycle slip probability in 100G PM-QPSK systems,” in Optical Fiber Communication Conf., 2010, OWE2.
  16. M. Taylor, “Phase estimation methods for optical coherent detection using digital signal processing,” J. Lightwave Technol., vol. 27, no. 7, pp. 901–914, 2009.
    [CrossRef]
  17. K. Numata, J. Camp, M. A. Krainak, and L. Stolpner, “Performance of planar-waveguide external cavity laser for precision measurements,” Opt. Express, vol. 18, no. 22, pp. 22781–22788, 2010.
    [CrossRef] [PubMed]
  18. M. McDonald, A. Daiber, M. Finot, and S. Xu, “Wavelength filter with integrated thermal control used as an intracavity DWDM laser tuning element,” in Proc. IEEE/LEOS Int. Conf. on Optical MEMS and Their Applications Conf., Aug. 21–24, 2006, Big Sky.
  19. A. Daiber, C. Schulz, J.-C. Lo, P. Ludwig, and S. Xu, “Tunable DWDM XFP with an external cavity laser transmitter and transmission performance matching 300-pin transponders,” in Optical Fiber Communication Conf., 2010, OThC5.
  20. H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewidth (70 kHz) 1.55 µm strained MQW DFB lasers,” Electron. Lett., vol. 28, no. 11, pp. 998–999, 1992.
    [CrossRef]
  21. T. Kjellberg, S. Nilsson, T. Klinga, B. Broberg, and R. Schatz, “Investigation on the spectral characteristics of DFB lasers with different grating configurations made by electron-beam lithography,” J. Lightwave Technol., vol. 11, no. 9, pp. 1405–1415, 1993.
    [CrossRef]

2011 (1)

2010 (3)

2009 (4)

1993 (1)

T. Kjellberg, S. Nilsson, T. Klinga, B. Broberg, and R. Schatz, “Investigation on the spectral characteristics of DFB lasers with different grating configurations made by electron-beam lithography,” J. Lightwave Technol., vol. 11, no. 9, pp. 1405–1415, 1993.
[CrossRef]

1992 (1)

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewidth (70 kHz) 1.55 µm strained MQW DFB lasers,” Electron. Lett., vol. 28, no. 11, pp. 998–999, 1992.
[CrossRef]

1990 (1)

M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB laser linewidth measurement techniques results from COST 215 round robin,” Electron. Lett., vol. 26, no. 24, pp. 2018–2020, 1990.
[CrossRef]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett., vol. 16, pp. 630–632, 1980.
[CrossRef]

Al-Bermani, A.

A. Al-Bermani, C. Wordehoff, S. Hoffmann, K. Puntsri, T. Pfau, U. Ruc¨kert, and R. Noé, “Real-time 16-QAM transmission with coherent digital receiver,” in Proc. 15th OptoeElectronics and Communications Conf., Japan, 2010.

Anandarajah, P. M.

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, F. Smyth, B. Cardiff, P. M. Anandarajah, and L. P. Barry, “Narrow linewidth discrete mode laser diodes for advanced modulation formats,” in Optical Fiber Communication Conf. and Exposition and The National Fiber Optic Engineers Conf., OSA Technical Digest (CD), Optical Society of America, 2012, OTu1G.4.

Awadalla, A.

Barry, L. P.

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L. P. Barry, and J. O’Gorman, “Wide temperature range 0<T<85 °C narrow linewidth discrete mode laser diodes for coherent communications applications,” Opt. Express, vol. 19, pp. B90–B95, 2011.
[CrossRef] [PubMed]

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, F. Smyth, B. Cardiff, P. M. Anandarajah, and L. P. Barry, “Narrow linewidth discrete mode laser diodes for advanced modulation formats,” in Optical Fiber Communication Conf. and Exposition and The National Fiber Optic Engineers Conf., OSA Technical Digest (CD), Optical Society of America, 2012, OTu1G.4.

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L. P. Barry, and J. O’Gorman, “Wide temperature range 0<T<85 °C narrow linewidth discrete mode laser diodes for coherent communications applications,” in 37th European Conf. and Expo. on Optical Communications, 2011, We.10.P1.34.

Beckett, D.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag., vol. 48, no. 7, pp. 62–69, 2010.
[CrossRef]

Berthold, J.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag., vol. 48, no. 7, pp. 62–69, 2010.
[CrossRef]

Beylat, J.-L.

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewidth (70 kHz) 1.55 µm strained MQW DFB lasers,” Electron. Lett., vol. 28, no. 11, pp. 998–999, 1992.
[CrossRef]

Bissessur, H.

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewidth (70 kHz) 1.55 µm strained MQW DFB lasers,” Electron. Lett., vol. 28, no. 11, pp. 998–999, 1992.
[CrossRef]

Boertjes, D.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag., vol. 48, no. 7, pp. 62–69, 2010.
[CrossRef]

Broberg, B.

T. Kjellberg, S. Nilsson, T. Klinga, B. Broberg, and R. Schatz, “Investigation on the spectral characteristics of DFB lasers with different grating configurations made by electron-beam lithography,” J. Lightwave Technol., vol. 11, no. 9, pp. 1405–1415, 1993.
[CrossRef]

Byrne, D.

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L. P. Barry, and J. O’Gorman, “Wide temperature range 0<T<85 °C narrow linewidth discrete mode laser diodes for coherent communications applications,” Opt. Express, vol. 19, pp. B90–B95, 2011.
[CrossRef] [PubMed]

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, F. Smyth, B. Cardiff, P. M. Anandarajah, and L. P. Barry, “Narrow linewidth discrete mode laser diodes for advanced modulation formats,” in Optical Fiber Communication Conf. and Exposition and The National Fiber Optic Engineers Conf., OSA Technical Digest (CD), Optical Society of America, 2012, OTu1G.4.

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L. P. Barry, and J. O’Gorman, “Wide temperature range 0<T<85 °C narrow linewidth discrete mode laser diodes for coherent communications applications,” in 37th European Conf. and Expo. on Optical Communications, 2011, We.10.P1.34.

Camp, J.

Cardiff, B.

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, F. Smyth, B. Cardiff, P. M. Anandarajah, and L. P. Barry, “Narrow linewidth discrete mode laser diodes for advanced modulation formats,” in Optical Fiber Communication Conf. and Exposition and The National Fiber Optic Engineers Conf., OSA Technical Digest (CD), Optical Society of America, 2012, OTu1G.4.

Daiber, A.

A. Daiber, C. Schulz, J.-C. Lo, P. Ludwig, and S. Xu, “Tunable DWDM XFP with an external cavity laser transmitter and transmission performance matching 300-pin transponders,” in Optical Fiber Communication Conf., 2010, OThC5.

M. McDonald, A. Daiber, M. Finot, and S. Xu, “Wavelength filter with integrated thermal control used as an intracavity DWDM laser tuning element,” in Proc. IEEE/LEOS Int. Conf. on Optical MEMS and Their Applications Conf., Aug. 21–24, 2006, Big Sky.

Duchemin, C.

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewidth (70 kHz) 1.55 µm strained MQW DFB lasers,” Electron. Lett., vol. 28, no. 11, pp. 998–999, 1992.
[CrossRef]

Duke, A.

R. Phelan, B. Kelly, J. O’Carroll, C. Herbert, A. Duke, and J. O’Gorman, “−40°C<T<95°C mode-hop free operation of an uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ=1.3µm,” Electron. Lett., vol. 45, no. 1, pp. 43–45, 2009.
[CrossRef]

Emery, J.-Y.

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewidth (70 kHz) 1.55 µm strained MQW DFB lasers,” Electron. Lett., vol. 28, no. 11, pp. 998–999, 1992.
[CrossRef]

Fediakine, N.

E. Ibragimov, B. Zhang, T. J. Schmidt, C. Malouin, N. Fediakine, and H. Jiang, “Cycle slip probability in 100G PM-QPSK systems,” in Optical Fiber Communication Conf., 2010, OWE2.

Fernier, B.

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewidth (70 kHz) 1.55 µm strained MQW DFB lasers,” Electron. Lett., vol. 28, no. 11, pp. 998–999, 1992.
[CrossRef]

Finot, M.

M. McDonald, A. Daiber, M. Finot, and S. Xu, “Wavelength filter with integrated thermal control used as an intracavity DWDM laser tuning element,” in Proc. IEEE/LEOS Int. Conf. on Optical MEMS and Their Applications Conf., Aug. 21–24, 2006, Big Sky.

Han, S.

Herbert, C.

R. Phelan, B. Kelly, J. O’Carroll, C. Herbert, A. Duke, and J. O’Gorman, “−40°C<T<95°C mode-hop free operation of an uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ=1.3µm,” Electron. Lett., vol. 45, no. 1, pp. 43–45, 2009.
[CrossRef]

Hoffmann, S.

T. Pfau, S. Hoffmann, and R. Noe, “Hardware-efficient coherent digital receiver concept with feed forward carrier recovery for M-QAM constellations,” J. Lightwave Technol., vol. 27, no. 8, pp. 989–999, 2009.
[CrossRef]

A. Al-Bermani, C. Wordehoff, S. Hoffmann, K. Puntsri, T. Pfau, U. Ruc¨kert, and R. Noé, “Real-time 16-QAM transmission with coherent digital receiver,” in Proc. 15th OptoeElectronics and Communications Conf., Japan, 2010.

Ibragimov, E.

E. Ibragimov, B. Zhang, T. J. Schmidt, C. Malouin, N. Fediakine, and H. Jiang, “Cycle slip probability in 100G PM-QPSK systems,” in Optical Fiber Communication Conf., 2010, OWE2.

Y. Lize, C. Malouin, E. Ibragimov, B. Zhang, and T. Schmidt, “Implementation challenges of 100G coherent transponders,” in IEEE Photonics Society Summer Topical Meeting Series, Playa del Carmen, July 2010, pp. 24–25.

Ionescu, M.

Jiang, H.

E. Ibragimov, B. Zhang, T. J. Schmidt, C. Malouin, N. Fediakine, and H. Jiang, “Cycle slip probability in 100G PM-QPSK systems,” in Optical Fiber Communication Conf., 2010, OWE2.

Kelly, B.

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L. P. Barry, and J. O’Gorman, “Wide temperature range 0<T<85 °C narrow linewidth discrete mode laser diodes for coherent communications applications,” Opt. Express, vol. 19, pp. B90–B95, 2011.
[CrossRef] [PubMed]

R. Phelan, B. Kelly, J. O’Carroll, C. Herbert, A. Duke, and J. O’Gorman, “−40°C<T<95°C mode-hop free operation of an uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ=1.3µm,” Electron. Lett., vol. 45, no. 1, pp. 43–45, 2009.
[CrossRef]

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, F. Smyth, B. Cardiff, P. M. Anandarajah, and L. P. Barry, “Narrow linewidth discrete mode laser diodes for advanced modulation formats,” in Optical Fiber Communication Conf. and Exposition and The National Fiber Optic Engineers Conf., OSA Technical Digest (CD), Optical Society of America, 2012, OTu1G.4.

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L. P. Barry, and J. O’Gorman, “Wide temperature range 0<T<85 °C narrow linewidth discrete mode laser diodes for coherent communications applications,” in 37th European Conf. and Expo. on Optical Communications, 2011, We.10.P1.34.

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett., vol. 16, pp. 630–632, 1980.
[CrossRef]

Kjellberg, T.

T. Kjellberg, S. Nilsson, T. Klinga, B. Broberg, and R. Schatz, “Investigation on the spectral characteristics of DFB lasers with different grating configurations made by electron-beam lithography,” J. Lightwave Technol., vol. 11, no. 9, pp. 1405–1415, 1993.
[CrossRef]

Klinga, T.

T. Kjellberg, S. Nilsson, T. Klinga, B. Broberg, and R. Schatz, “Investigation on the spectral characteristics of DFB lasers with different grating configurations made by electron-beam lithography,” J. Lightwave Technol., vol. 11, no. 9, pp. 1405–1415, 1993.
[CrossRef]

Krainak, M. A.

Krause, D. J.

Kubo, K.

T. Mizuochi, Y. Miyata, K. Kubo, T. Sugihara, K. Onohara, and H. Yoshida, “Progress in soft-decision FEC,” in Nat. Fiber Optic Engineers Conf., 2011, NWC2.

Laperle, C.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag., vol. 48, no. 7, pp. 62–69, 2010.
[CrossRef]

K. Roberts, M. O’Sullivan, K.-T. Wu, S. Han, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightwave Technol., vol. 27, no. 16, pp. 3546–3559, 2009.
[CrossRef]

Lavery, D.

Lize, Y.

Y. Lize, C. Malouin, E. Ibragimov, B. Zhang, and T. Schmidt, “Implementation challenges of 100G coherent transponders,” in IEEE Photonics Society Summer Topical Meeting Series, Playa del Carmen, July 2010, pp. 24–25.

Lo, J.-C.

A. Daiber, C. Schulz, J.-C. Lo, P. Ludwig, and S. Xu, “Tunable DWDM XFP with an external cavity laser transmitter and transmission performance matching 300-pin transponders,” in Optical Fiber Communication Conf., 2010, OThC5.

Ludwig, P.

A. Daiber, C. Schulz, J.-C. Lo, P. Ludwig, and S. Xu, “Tunable DWDM XFP with an external cavity laser transmitter and transmission performance matching 300-pin transponders,” in Optical Fiber Communication Conf., 2010, OThC5.

Makovejs, S.

Malouin, C.

Y. Lize, C. Malouin, E. Ibragimov, B. Zhang, and T. Schmidt, “Implementation challenges of 100G coherent transponders,” in IEEE Photonics Society Summer Topical Meeting Series, Playa del Carmen, July 2010, pp. 24–25.

E. Ibragimov, B. Zhang, T. J. Schmidt, C. Malouin, N. Fediakine, and H. Jiang, “Cycle slip probability in 100G PM-QPSK systems,” in Optical Fiber Communication Conf., 2010, OWE2.

McDonald, M.

M. McDonald, A. Daiber, M. Finot, and S. Xu, “Wavelength filter with integrated thermal control used as an intracavity DWDM laser tuning element,” in Proc. IEEE/LEOS Int. Conf. on Optical MEMS and Their Applications Conf., Aug. 21–24, 2006, Big Sky.

Miyata, Y.

T. Mizuochi, Y. Miyata, K. Kubo, T. Sugihara, K. Onohara, and H. Yoshida, “Progress in soft-decision FEC,” in Nat. Fiber Optic Engineers Conf., 2011, NWC2.

Mizuochi, T.

T. Mizuochi, Y. Miyata, K. Kubo, T. Sugihara, K. Onohara, and H. Yoshida, “Progress in soft-decision FEC,” in Nat. Fiber Optic Engineers Conf., 2011, NWC2.

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett., vol. 16, pp. 630–632, 1980.
[CrossRef]

Nielsen, S. K.

M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB laser linewidth measurement techniques results from COST 215 round robin,” Electron. Lett., vol. 26, no. 24, pp. 2018–2020, 1990.
[CrossRef]

Nilsson, S.

T. Kjellberg, S. Nilsson, T. Klinga, B. Broberg, and R. Schatz, “Investigation on the spectral characteristics of DFB lasers with different grating configurations made by electron-beam lithography,” J. Lightwave Technol., vol. 11, no. 9, pp. 1405–1415, 1993.
[CrossRef]

Noe, R.

Noé, R.

A. Al-Bermani, C. Wordehoff, S. Hoffmann, K. Puntsri, T. Pfau, U. Ruc¨kert, and R. Noé, “Real-time 16-QAM transmission with coherent digital receiver,” in Proc. 15th OptoeElectronics and Communications Conf., Japan, 2010.

Numata, K.

O’Carroll, J.

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L. P. Barry, and J. O’Gorman, “Wide temperature range 0<T<85 °C narrow linewidth discrete mode laser diodes for coherent communications applications,” Opt. Express, vol. 19, pp. B90–B95, 2011.
[CrossRef] [PubMed]

R. Phelan, B. Kelly, J. O’Carroll, C. Herbert, A. Duke, and J. O’Gorman, “−40°C<T<95°C mode-hop free operation of an uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ=1.3µm,” Electron. Lett., vol. 45, no. 1, pp. 43–45, 2009.
[CrossRef]

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, F. Smyth, B. Cardiff, P. M. Anandarajah, and L. P. Barry, “Narrow linewidth discrete mode laser diodes for advanced modulation formats,” in Optical Fiber Communication Conf. and Exposition and The National Fiber Optic Engineers Conf., OSA Technical Digest (CD), Optical Society of America, 2012, OTu1G.4.

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L. P. Barry, and J. O’Gorman, “Wide temperature range 0<T<85 °C narrow linewidth discrete mode laser diodes for coherent communications applications,” in 37th European Conf. and Expo. on Optical Communications, 2011, We.10.P1.34.

O’Gorman, J.

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L. P. Barry, and J. O’Gorman, “Wide temperature range 0<T<85 °C narrow linewidth discrete mode laser diodes for coherent communications applications,” Opt. Express, vol. 19, pp. B90–B95, 2011.
[CrossRef] [PubMed]

R. Phelan, B. Kelly, J. O’Carroll, C. Herbert, A. Duke, and J. O’Gorman, “−40°C<T<95°C mode-hop free operation of an uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ=1.3µm,” Electron. Lett., vol. 45, no. 1, pp. 43–45, 2009.
[CrossRef]

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L. P. Barry, and J. O’Gorman, “Wide temperature range 0<T<85 °C narrow linewidth discrete mode laser diodes for coherent communications applications,” in 37th European Conf. and Expo. on Optical Communications, 2011, We.10.P1.34.

O’Sullivan, M.

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett., vol. 16, pp. 630–632, 1980.
[CrossRef]

Onohara, K.

T. Mizuochi, Y. Miyata, K. Kubo, T. Sugihara, K. Onohara, and H. Yoshida, “Progress in soft-decision FEC,” in Nat. Fiber Optic Engineers Conf., 2011, NWC2.

Pfau, T.

T. Pfau, S. Hoffmann, and R. Noe, “Hardware-efficient coherent digital receiver concept with feed forward carrier recovery for M-QAM constellations,” J. Lightwave Technol., vol. 27, no. 8, pp. 989–999, 2009.
[CrossRef]

A. Al-Bermani, C. Wordehoff, S. Hoffmann, K. Puntsri, T. Pfau, U. Ruc¨kert, and R. Noé, “Real-time 16-QAM transmission with coherent digital receiver,” in Proc. 15th OptoeElectronics and Communications Conf., Japan, 2010.

Phelan, R.

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L. P. Barry, and J. O’Gorman, “Wide temperature range 0<T<85 °C narrow linewidth discrete mode laser diodes for coherent communications applications,” Opt. Express, vol. 19, pp. B90–B95, 2011.
[CrossRef] [PubMed]

R. Phelan, B. Kelly, J. O’Carroll, C. Herbert, A. Duke, and J. O’Gorman, “−40°C<T<95°C mode-hop free operation of an uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ=1.3µm,” Electron. Lett., vol. 45, no. 1, pp. 43–45, 2009.
[CrossRef]

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, F. Smyth, B. Cardiff, P. M. Anandarajah, and L. P. Barry, “Narrow linewidth discrete mode laser diodes for advanced modulation formats,” in Optical Fiber Communication Conf. and Exposition and The National Fiber Optic Engineers Conf., OSA Technical Digest (CD), Optical Society of America, 2012, OTu1G.4.

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L. P. Barry, and J. O’Gorman, “Wide temperature range 0<T<85 °C narrow linewidth discrete mode laser diodes for coherent communications applications,” in 37th European Conf. and Expo. on Optical Communications, 2011, We.10.P1.34.

Pommereau, F.

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewidth (70 kHz) 1.55 µm strained MQW DFB lasers,” Electron. Lett., vol. 28, no. 11, pp. 998–999, 1992.
[CrossRef]

Provost, J.-G.

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewidth (70 kHz) 1.55 µm strained MQW DFB lasers,” Electron. Lett., vol. 28, no. 11, pp. 998–999, 1992.
[CrossRef]

Puntsri, K.

A. Al-Bermani, C. Wordehoff, S. Hoffmann, K. Puntsri, T. Pfau, U. Ruc¨kert, and R. Noé, “Real-time 16-QAM transmission with coherent digital receiver,” in Proc. 15th OptoeElectronics and Communications Conf., Japan, 2010.

Roberts, K.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag., vol. 48, no. 7, pp. 62–69, 2010.
[CrossRef]

K. Roberts, M. O’Sullivan, K.-T. Wu, S. Han, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightwave Technol., vol. 27, no. 16, pp. 3546–3559, 2009.
[CrossRef]

Ruc¨kert, U.

A. Al-Bermani, C. Wordehoff, S. Hoffmann, K. Puntsri, T. Pfau, U. Ruc¨kert, and R. Noé, “Real-time 16-QAM transmission with coherent digital receiver,” in Proc. 15th OptoeElectronics and Communications Conf., Japan, 2010.

Savory, S. J.

Schatz, R.

T. Kjellberg, S. Nilsson, T. Klinga, B. Broberg, and R. Schatz, “Investigation on the spectral characteristics of DFB lasers with different grating configurations made by electron-beam lithography,” J. Lightwave Technol., vol. 11, no. 9, pp. 1405–1415, 1993.
[CrossRef]

Schmidt, T.

Y. Lize, C. Malouin, E. Ibragimov, B. Zhang, and T. Schmidt, “Implementation challenges of 100G coherent transponders,” in IEEE Photonics Society Summer Topical Meeting Series, Playa del Carmen, July 2010, pp. 24–25.

Schmidt, T. J.

E. Ibragimov, B. Zhang, T. J. Schmidt, C. Malouin, N. Fediakine, and H. Jiang, “Cycle slip probability in 100G PM-QPSK systems,” in Optical Fiber Communication Conf., 2010, OWE2.

Schulz, C.

A. Daiber, C. Schulz, J.-C. Lo, P. Ludwig, and S. Xu, “Tunable DWDM XFP with an external cavity laser transmitter and transmission performance matching 300-pin transponders,” in Optical Fiber Communication Conf., 2010, OThC5.

Seimetz, M.

M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf., 2008, OTuM2.

Smyth, F.

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, F. Smyth, B. Cardiff, P. M. Anandarajah, and L. P. Barry, “Narrow linewidth discrete mode laser diodes for advanced modulation formats,” in Optical Fiber Communication Conf. and Exposition and The National Fiber Optic Engineers Conf., OSA Technical Digest (CD), Optical Society of America, 2012, OTu1G.4.

Spano, P.

M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB laser linewidth measurement techniques results from COST 215 round robin,” Electron. Lett., vol. 26, no. 24, pp. 2018–2020, 1990.
[CrossRef]

Starck, C.

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewidth (70 kHz) 1.55 µm strained MQW DFB lasers,” Electron. Lett., vol. 28, no. 11, pp. 998–999, 1992.
[CrossRef]

Stolpner, L.

Sugihara, T.

T. Mizuochi, Y. Miyata, K. Kubo, T. Sugihara, K. Onohara, and H. Yoshida, “Progress in soft-decision FEC,” in Nat. Fiber Optic Engineers Conf., 2011, NWC2.

Taylor, M.

Torrengo, E.

van Deventer, M. O.

M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB laser linewidth measurement techniques results from COST 215 round robin,” Electron. Lett., vol. 26, no. 24, pp. 2018–2020, 1990.
[CrossRef]

Wordehoff, C.

A. Al-Bermani, C. Wordehoff, S. Hoffmann, K. Puntsri, T. Pfau, U. Ruc¨kert, and R. Noé, “Real-time 16-QAM transmission with coherent digital receiver,” in Proc. 15th OptoeElectronics and Communications Conf., Japan, 2010.

Wu, K.-T.

Xu, S.

A. Daiber, C. Schulz, J.-C. Lo, P. Ludwig, and S. Xu, “Tunable DWDM XFP with an external cavity laser transmitter and transmission performance matching 300-pin transponders,” in Optical Fiber Communication Conf., 2010, OThC5.

M. McDonald, A. Daiber, M. Finot, and S. Xu, “Wavelength filter with integrated thermal control used as an intracavity DWDM laser tuning element,” in Proc. IEEE/LEOS Int. Conf. on Optical MEMS and Their Applications Conf., Aug. 21–24, 2006, Big Sky.

Yoshida, H.

T. Mizuochi, Y. Miyata, K. Kubo, T. Sugihara, K. Onohara, and H. Yoshida, “Progress in soft-decision FEC,” in Nat. Fiber Optic Engineers Conf., 2011, NWC2.

Zhang, B.

E. Ibragimov, B. Zhang, T. J. Schmidt, C. Malouin, N. Fediakine, and H. Jiang, “Cycle slip probability in 100G PM-QPSK systems,” in Optical Fiber Communication Conf., 2010, OWE2.

Y. Lize, C. Malouin, E. Ibragimov, B. Zhang, and T. Schmidt, “Implementation challenges of 100G coherent transponders,” in IEEE Photonics Society Summer Topical Meeting Series, Playa del Carmen, July 2010, pp. 24–25.

Electron. Lett. (4)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett., vol. 16, pp. 630–632, 1980.
[CrossRef]

M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB laser linewidth measurement techniques results from COST 215 round robin,” Electron. Lett., vol. 26, no. 24, pp. 2018–2020, 1990.
[CrossRef]

R. Phelan, B. Kelly, J. O’Carroll, C. Herbert, A. Duke, and J. O’Gorman, “−40°C<T<95°C mode-hop free operation of an uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ=1.3µm,” Electron. Lett., vol. 45, no. 1, pp. 43–45, 2009.
[CrossRef]

H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewidth (70 kHz) 1.55 µm strained MQW DFB lasers,” Electron. Lett., vol. 28, no. 11, pp. 998–999, 1992.
[CrossRef]

IEEE Commun. Mag. (1)

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag., vol. 48, no. 7, pp. 62–69, 2010.
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (3)

Other (9)

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L. P. Barry, and J. O’Gorman, “Wide temperature range 0<T<85 °C narrow linewidth discrete mode laser diodes for coherent communications applications,” in 37th European Conf. and Expo. on Optical Communications, 2011, We.10.P1.34.

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, F. Smyth, B. Cardiff, P. M. Anandarajah, and L. P. Barry, “Narrow linewidth discrete mode laser diodes for advanced modulation formats,” in Optical Fiber Communication Conf. and Exposition and The National Fiber Optic Engineers Conf., OSA Technical Digest (CD), Optical Society of America, 2012, OTu1G.4.

A. Al-Bermani, C. Wordehoff, S. Hoffmann, K. Puntsri, T. Pfau, U. Ruc¨kert, and R. Noé, “Real-time 16-QAM transmission with coherent digital receiver,” in Proc. 15th OptoeElectronics and Communications Conf., Japan, 2010.

M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf., 2008, OTuM2.

M. McDonald, A. Daiber, M. Finot, and S. Xu, “Wavelength filter with integrated thermal control used as an intracavity DWDM laser tuning element,” in Proc. IEEE/LEOS Int. Conf. on Optical MEMS and Their Applications Conf., Aug. 21–24, 2006, Big Sky.

A. Daiber, C. Schulz, J.-C. Lo, P. Ludwig, and S. Xu, “Tunable DWDM XFP with an external cavity laser transmitter and transmission performance matching 300-pin transponders,” in Optical Fiber Communication Conf., 2010, OThC5.

Y. Lize, C. Malouin, E. Ibragimov, B. Zhang, and T. Schmidt, “Implementation challenges of 100G coherent transponders,” in IEEE Photonics Society Summer Topical Meeting Series, Playa del Carmen, July 2010, pp. 24–25.

T. Mizuochi, Y. Miyata, K. Kubo, T. Sugihara, K. Onohara, and H. Yoshida, “Progress in soft-decision FEC,” in Nat. Fiber Optic Engineers Conf., 2011, NWC2.

E. Ibragimov, B. Zhang, T. J. Schmidt, C. Malouin, N. Fediakine, and H. Jiang, “Cycle slip probability in 100G PM-QPSK systems,” in Optical Fiber Communication Conf., 2010, OWE2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Coherent transmission setup. Depending on the electrical drive signal applied to the IQ modulator, QPSK or 16-QAM modulation could be generated. By switching between a decorrelated portion of the TX laser or an LO laser, the receiver could be set up as a self-homodyne or heterodyne receiver.

Fig. 2
Fig. 2

(Color online) Linewidth versus inverse power in the fiber measured from DMLD A and DMLD B at 25 °C.

Fig. 3
Fig. 3

(Color online) Delayed self-heterodyne spectra measured at 25 °C, where the offset modulation frequency 1 GHz has been subtracted. Two spectra are shown: DMLD A was measured at a bias current of 200 mA and DMLD B was measured at a bias current of 350 mA.

Fig. 4
Fig. 4

(Color online) QPSK setup. EVM versus received power measured at 10 Gbaud, 5 Gbaud and 2.5 Gbaud. In a heterodyne receiver setup using DMLDs as the TX and LO lasers with linewidths of 190 kHz and 120 kHz, respectively. Also plotted an ECL with a linewidth of 100 kHz measured with a self-homodyne receiver setup.

Fig. 5
Fig. 5

(Color online) QPSK heterodyne receiver setup. Constellation diagrams taken at a received power of −20 dBm and at (a) 10 Gbaud, (b) 5 Gbaud, (c) 2.5 Gbaud.

Fig. 6
Fig. 6

(Color online) 16-QAM self-homodyne receiver setup at 5 Gbaud. EVM versus received power for an ECL with linewidth 100 kHz, DMLD B with linewidth set to 80 kHz, DMLD B with linewidth set to 190 kHz and DMLD B with linewidth set to 300 kHz.

Fig. 7
Fig. 7

(Color online) 16-QAM self-homodyne receiver setup at 5 Gbaud. Constellation diagrams taken at a received power of −23 dBm for (a) an ECL with linewidth 100 kHz, (b) DMLD B with linewidth set to 80 kHz, (c) DMLD A with linewidth set to 190 kHz, (d) DMLD A with linewidth set to 300 kHz.

Fig. 8
Fig. 8

(Color online) 16-QAM heterodyne receiver setup at 5 Gbaud. DMLD A as the TX laser with a linewidth of 190 kHz and an ECL LO with linewidth of 100 kHz; also DMLD A as the TX laser with a linewidth of 190 kHz and DMLD B as the LO with linewidth of 85 kHz.

Fig. 9
Fig. 9

(Color online) 16-QAM heterodyne receiver setup at 5 Gbaud. Constellation diagrams taken at a received power of −23 dBm. (a) DMLD A TX laser linewidth 190 kHz, ECL LO linewidth 100 kHz, (b) DMLD A TX laser linewidth 190 kHz, DMLD B LO linewidth 85 kHz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EV MRMS[%]=1Nn=1NSRx,nSTx,n21Nn=1NSTx,n2×100%.