Abstract

We present an analytical model for dimensioning the buffering requirements of the link-layer in half-duplex Gb/s infrared links. Our model takes into account both physical layer parameters, including the bit-error-rate and the turnaround time of the link, and link-layer parameters, including the protocol window and frame size, in order to calculate the utilization efficiency of the infrared link as a function of the buffer size. We utilize the model to establish the buffer size that is required to achieve acceptable efficiencies for a broad range of standardized infrared link and link-layer protocol configurations. Our analysis shows that it is possible to optimize the link-layer window and frame size in order to achieve maximum efficiency for any given buffer size and link configuration, and we provide analytical relations for the buffer-constrained optimal window and frame size.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yazaki, M. Hattori, and H. Tanaka, “Design and demonstration of 1 Gbit/s optical wireless interface for mobile phones,” in IEEE Global Telecommunications Conf., Nov.2007, pp. 2226–2231.
  2. Infrared Data Association, Serial Infrared Physical Layer Specification–Giga-IR Addition, Version 1.0, 2009.
  3. Infrared Data Association, Serial Infrared Link Access Protocol Specification for Giga-IR Addition, Version 1.0, 2009.
  4. W. Hirt, M. Hassner, and N. Heise, “IrDA-VFIr (16 Mb/s): modulation code and system design,” IEEE Personal Commun., vol. 8, no. 1, pp. 58–71, 2001.
    [CrossRef]
  5. V. Vitsas and A. C. Boucouvalas, “Optimization of IrDA IrLAP link access protocol,” IEEE Trans. Wireless Commun., vol. 2, no. 5, pp. 926–938, Sept.2003.
    [CrossRef]
  6. P. Huang, P. Chatzimisios, and A. Boucouvalas, “Optimizing IrDA throughput by including processing time with physical layer consideration,” J. Opt. Netw., vol. 4, pp. 323–331, 2005.
    [CrossRef]
  7. A. C. Boucouvalas and P. Huang, “Modeling and optimizing TinyTP over IrDA stacks,” EURASIP J. Wireless Commun. Netw., vol. 2005, no. 1, pp. 45–56, Mar.2005.
  8. A. C. Boucouvalas and P. Huang, “OBEX over IrDA: performance analysis and optimization by considering multiple applications,” IEEE/ACM Trans. Netw., vol. 14, no. 6, pp. 1292–1301, Dec.2006.
    [CrossRef]
  9. A. M. Shah, S. S. Ara, G. Kitazumi, and M. Matsumoto, “IrSimple modeling and performance evaluation for high-speed infrared communications,” in Proc. IEEE GLOBECOM, 2006, pp. 1–6.
  10. A. M. Shah, S. S. Ara, and M. Matsumoto, “Block selective repeat: A new ARQ scheme for high speed IrDA links,” in IEEE Sarnoff Symp., Mar. 2006, pp. 1–2.
  11. Y. Xia and D. Tse, “Analysis on packet resequencing for reliable network protocols,” Perform. Eval., vol. 61, no. 4, pp. 299–328, Aug.2005.
    [CrossRef]
  12. Z. Rosberg and N. Shacham, “Resequencing delay and buffer occupancy under the selective-repeat ARQ,” IEEE Trans. Inf. Theory, vol. 35, no. 1, pp. 166–173, Jan.1989.
    [CrossRef]
  13. M. Miller and S. Lin, “The analysis of some selective-repeat ARQ schemes with finite receiver buffer,” IEEE Trans. Commun., vol. 29, no. 9, pp. 1307–1315, Sept.1981.
    [CrossRef]
  14. H. Bruneel, J. De Vriendt, and C. Ysebaert, “Receiver buffer behavior for the selective-repeat ARQ protocol,” Comput. Netw. ISDN Syst., vol. 19, no. 2, pp. 129–142, Oct.1990.
    [CrossRef]
  15. G. Benelli, “A selective ARQ protocol with a finite-length buffer,” IEEE Trans. Commun., vol. 41, no. 7, pp. 1102–1111, July1993.
    [CrossRef]
  16. C. Ward, C. H. Choi, and T. F. Hain, “A data link control protocol for LEO satellite networks providing a reliable datagram service,” IEEE/ACM Trans. Netw., vol. 3, no. 1, pp. 91–103, Feb.1995.
    [CrossRef]
  17. K. Yiannopoulos and A. C. Boucouvalas, “Link layer protocol analysis and optimization of Gb/s infrared links,” IET Commun., submitted for publication.
  18. Infrared Data Association, Point and Shoot Profile, Version 1.1, 2000.
  19. R. Sharp, Principles of Protocol Design., Revised ed.Springer-Verlag, Berlin, 2008.

2006

A. C. Boucouvalas and P. Huang, “OBEX over IrDA: performance analysis and optimization by considering multiple applications,” IEEE/ACM Trans. Netw., vol. 14, no. 6, pp. 1292–1301, Dec.2006.
[CrossRef]

2005

Y. Xia and D. Tse, “Analysis on packet resequencing for reliable network protocols,” Perform. Eval., vol. 61, no. 4, pp. 299–328, Aug.2005.
[CrossRef]

P. Huang, P. Chatzimisios, and A. Boucouvalas, “Optimizing IrDA throughput by including processing time with physical layer consideration,” J. Opt. Netw., vol. 4, pp. 323–331, 2005.
[CrossRef]

A. C. Boucouvalas and P. Huang, “Modeling and optimizing TinyTP over IrDA stacks,” EURASIP J. Wireless Commun. Netw., vol. 2005, no. 1, pp. 45–56, Mar.2005.

2003

V. Vitsas and A. C. Boucouvalas, “Optimization of IrDA IrLAP link access protocol,” IEEE Trans. Wireless Commun., vol. 2, no. 5, pp. 926–938, Sept.2003.
[CrossRef]

2001

W. Hirt, M. Hassner, and N. Heise, “IrDA-VFIr (16 Mb/s): modulation code and system design,” IEEE Personal Commun., vol. 8, no. 1, pp. 58–71, 2001.
[CrossRef]

1995

C. Ward, C. H. Choi, and T. F. Hain, “A data link control protocol for LEO satellite networks providing a reliable datagram service,” IEEE/ACM Trans. Netw., vol. 3, no. 1, pp. 91–103, Feb.1995.
[CrossRef]

1993

G. Benelli, “A selective ARQ protocol with a finite-length buffer,” IEEE Trans. Commun., vol. 41, no. 7, pp. 1102–1111, July1993.
[CrossRef]

1990

H. Bruneel, J. De Vriendt, and C. Ysebaert, “Receiver buffer behavior for the selective-repeat ARQ protocol,” Comput. Netw. ISDN Syst., vol. 19, no. 2, pp. 129–142, Oct.1990.
[CrossRef]

1989

Z. Rosberg and N. Shacham, “Resequencing delay and buffer occupancy under the selective-repeat ARQ,” IEEE Trans. Inf. Theory, vol. 35, no. 1, pp. 166–173, Jan.1989.
[CrossRef]

1981

M. Miller and S. Lin, “The analysis of some selective-repeat ARQ schemes with finite receiver buffer,” IEEE Trans. Commun., vol. 29, no. 9, pp. 1307–1315, Sept.1981.
[CrossRef]

Ara, S. S.

A. M. Shah, S. S. Ara, G. Kitazumi, and M. Matsumoto, “IrSimple modeling and performance evaluation for high-speed infrared communications,” in Proc. IEEE GLOBECOM, 2006, pp. 1–6.

A. M. Shah, S. S. Ara, and M. Matsumoto, “Block selective repeat: A new ARQ scheme for high speed IrDA links,” in IEEE Sarnoff Symp., Mar. 2006, pp. 1–2.

Benelli, G.

G. Benelli, “A selective ARQ protocol with a finite-length buffer,” IEEE Trans. Commun., vol. 41, no. 7, pp. 1102–1111, July1993.
[CrossRef]

Boucouvalas, A.

Boucouvalas, A. C.

A. C. Boucouvalas and P. Huang, “OBEX over IrDA: performance analysis and optimization by considering multiple applications,” IEEE/ACM Trans. Netw., vol. 14, no. 6, pp. 1292–1301, Dec.2006.
[CrossRef]

A. C. Boucouvalas and P. Huang, “Modeling and optimizing TinyTP over IrDA stacks,” EURASIP J. Wireless Commun. Netw., vol. 2005, no. 1, pp. 45–56, Mar.2005.

V. Vitsas and A. C. Boucouvalas, “Optimization of IrDA IrLAP link access protocol,” IEEE Trans. Wireless Commun., vol. 2, no. 5, pp. 926–938, Sept.2003.
[CrossRef]

K. Yiannopoulos and A. C. Boucouvalas, “Link layer protocol analysis and optimization of Gb/s infrared links,” IET Commun., submitted for publication.

Bruneel, H.

H. Bruneel, J. De Vriendt, and C. Ysebaert, “Receiver buffer behavior for the selective-repeat ARQ protocol,” Comput. Netw. ISDN Syst., vol. 19, no. 2, pp. 129–142, Oct.1990.
[CrossRef]

Chatzimisios, P.

Choi, C. H.

C. Ward, C. H. Choi, and T. F. Hain, “A data link control protocol for LEO satellite networks providing a reliable datagram service,” IEEE/ACM Trans. Netw., vol. 3, no. 1, pp. 91–103, Feb.1995.
[CrossRef]

De Vriendt, J.

H. Bruneel, J. De Vriendt, and C. Ysebaert, “Receiver buffer behavior for the selective-repeat ARQ protocol,” Comput. Netw. ISDN Syst., vol. 19, no. 2, pp. 129–142, Oct.1990.
[CrossRef]

Hain, T. F.

C. Ward, C. H. Choi, and T. F. Hain, “A data link control protocol for LEO satellite networks providing a reliable datagram service,” IEEE/ACM Trans. Netw., vol. 3, no. 1, pp. 91–103, Feb.1995.
[CrossRef]

Hassner, M.

W. Hirt, M. Hassner, and N. Heise, “IrDA-VFIr (16 Mb/s): modulation code and system design,” IEEE Personal Commun., vol. 8, no. 1, pp. 58–71, 2001.
[CrossRef]

Hattori, M.

T. Yazaki, M. Hattori, and H. Tanaka, “Design and demonstration of 1 Gbit/s optical wireless interface for mobile phones,” in IEEE Global Telecommunications Conf., Nov.2007, pp. 2226–2231.

Heise, N.

W. Hirt, M. Hassner, and N. Heise, “IrDA-VFIr (16 Mb/s): modulation code and system design,” IEEE Personal Commun., vol. 8, no. 1, pp. 58–71, 2001.
[CrossRef]

Hirt, W.

W. Hirt, M. Hassner, and N. Heise, “IrDA-VFIr (16 Mb/s): modulation code and system design,” IEEE Personal Commun., vol. 8, no. 1, pp. 58–71, 2001.
[CrossRef]

Huang, P.

A. C. Boucouvalas and P. Huang, “OBEX over IrDA: performance analysis and optimization by considering multiple applications,” IEEE/ACM Trans. Netw., vol. 14, no. 6, pp. 1292–1301, Dec.2006.
[CrossRef]

A. C. Boucouvalas and P. Huang, “Modeling and optimizing TinyTP over IrDA stacks,” EURASIP J. Wireless Commun. Netw., vol. 2005, no. 1, pp. 45–56, Mar.2005.

P. Huang, P. Chatzimisios, and A. Boucouvalas, “Optimizing IrDA throughput by including processing time with physical layer consideration,” J. Opt. Netw., vol. 4, pp. 323–331, 2005.
[CrossRef]

Kitazumi, G.

A. M. Shah, S. S. Ara, G. Kitazumi, and M. Matsumoto, “IrSimple modeling and performance evaluation for high-speed infrared communications,” in Proc. IEEE GLOBECOM, 2006, pp. 1–6.

Lin, S.

M. Miller and S. Lin, “The analysis of some selective-repeat ARQ schemes with finite receiver buffer,” IEEE Trans. Commun., vol. 29, no. 9, pp. 1307–1315, Sept.1981.
[CrossRef]

Matsumoto, M.

A. M. Shah, S. S. Ara, and M. Matsumoto, “Block selective repeat: A new ARQ scheme for high speed IrDA links,” in IEEE Sarnoff Symp., Mar. 2006, pp. 1–2.

A. M. Shah, S. S. Ara, G. Kitazumi, and M. Matsumoto, “IrSimple modeling and performance evaluation for high-speed infrared communications,” in Proc. IEEE GLOBECOM, 2006, pp. 1–6.

Miller, M.

M. Miller and S. Lin, “The analysis of some selective-repeat ARQ schemes with finite receiver buffer,” IEEE Trans. Commun., vol. 29, no. 9, pp. 1307–1315, Sept.1981.
[CrossRef]

Rosberg, Z.

Z. Rosberg and N. Shacham, “Resequencing delay and buffer occupancy under the selective-repeat ARQ,” IEEE Trans. Inf. Theory, vol. 35, no. 1, pp. 166–173, Jan.1989.
[CrossRef]

Shacham, N.

Z. Rosberg and N. Shacham, “Resequencing delay and buffer occupancy under the selective-repeat ARQ,” IEEE Trans. Inf. Theory, vol. 35, no. 1, pp. 166–173, Jan.1989.
[CrossRef]

Shah, A. M.

A. M. Shah, S. S. Ara, and M. Matsumoto, “Block selective repeat: A new ARQ scheme for high speed IrDA links,” in IEEE Sarnoff Symp., Mar. 2006, pp. 1–2.

A. M. Shah, S. S. Ara, G. Kitazumi, and M. Matsumoto, “IrSimple modeling and performance evaluation for high-speed infrared communications,” in Proc. IEEE GLOBECOM, 2006, pp. 1–6.

Sharp, R.

R. Sharp, Principles of Protocol Design., Revised ed.Springer-Verlag, Berlin, 2008.

Tanaka, H.

T. Yazaki, M. Hattori, and H. Tanaka, “Design and demonstration of 1 Gbit/s optical wireless interface for mobile phones,” in IEEE Global Telecommunications Conf., Nov.2007, pp. 2226–2231.

Tse, D.

Y. Xia and D. Tse, “Analysis on packet resequencing for reliable network protocols,” Perform. Eval., vol. 61, no. 4, pp. 299–328, Aug.2005.
[CrossRef]

Vitsas, V.

V. Vitsas and A. C. Boucouvalas, “Optimization of IrDA IrLAP link access protocol,” IEEE Trans. Wireless Commun., vol. 2, no. 5, pp. 926–938, Sept.2003.
[CrossRef]

Ward, C.

C. Ward, C. H. Choi, and T. F. Hain, “A data link control protocol for LEO satellite networks providing a reliable datagram service,” IEEE/ACM Trans. Netw., vol. 3, no. 1, pp. 91–103, Feb.1995.
[CrossRef]

Xia, Y.

Y. Xia and D. Tse, “Analysis on packet resequencing for reliable network protocols,” Perform. Eval., vol. 61, no. 4, pp. 299–328, Aug.2005.
[CrossRef]

Yazaki, T.

T. Yazaki, M. Hattori, and H. Tanaka, “Design and demonstration of 1 Gbit/s optical wireless interface for mobile phones,” in IEEE Global Telecommunications Conf., Nov.2007, pp. 2226–2231.

Yiannopoulos, K.

K. Yiannopoulos and A. C. Boucouvalas, “Link layer protocol analysis and optimization of Gb/s infrared links,” IET Commun., submitted for publication.

Ysebaert, C.

H. Bruneel, J. De Vriendt, and C. Ysebaert, “Receiver buffer behavior for the selective-repeat ARQ protocol,” Comput. Netw. ISDN Syst., vol. 19, no. 2, pp. 129–142, Oct.1990.
[CrossRef]

Comput. Netw. ISDN Syst.

H. Bruneel, J. De Vriendt, and C. Ysebaert, “Receiver buffer behavior for the selective-repeat ARQ protocol,” Comput. Netw. ISDN Syst., vol. 19, no. 2, pp. 129–142, Oct.1990.
[CrossRef]

EURASIP J. Wireless Commun. Netw.

A. C. Boucouvalas and P. Huang, “Modeling and optimizing TinyTP over IrDA stacks,” EURASIP J. Wireless Commun. Netw., vol. 2005, no. 1, pp. 45–56, Mar.2005.

IEEE Personal Commun.

W. Hirt, M. Hassner, and N. Heise, “IrDA-VFIr (16 Mb/s): modulation code and system design,” IEEE Personal Commun., vol. 8, no. 1, pp. 58–71, 2001.
[CrossRef]

IEEE Trans. Commun.

G. Benelli, “A selective ARQ protocol with a finite-length buffer,” IEEE Trans. Commun., vol. 41, no. 7, pp. 1102–1111, July1993.
[CrossRef]

M. Miller and S. Lin, “The analysis of some selective-repeat ARQ schemes with finite receiver buffer,” IEEE Trans. Commun., vol. 29, no. 9, pp. 1307–1315, Sept.1981.
[CrossRef]

IEEE Trans. Inf. Theory

Z. Rosberg and N. Shacham, “Resequencing delay and buffer occupancy under the selective-repeat ARQ,” IEEE Trans. Inf. Theory, vol. 35, no. 1, pp. 166–173, Jan.1989.
[CrossRef]

IEEE Trans. Wireless Commun.

V. Vitsas and A. C. Boucouvalas, “Optimization of IrDA IrLAP link access protocol,” IEEE Trans. Wireless Commun., vol. 2, no. 5, pp. 926–938, Sept.2003.
[CrossRef]

IEEE/ACM Trans. Netw.

A. C. Boucouvalas and P. Huang, “OBEX over IrDA: performance analysis and optimization by considering multiple applications,” IEEE/ACM Trans. Netw., vol. 14, no. 6, pp. 1292–1301, Dec.2006.
[CrossRef]

C. Ward, C. H. Choi, and T. F. Hain, “A data link control protocol for LEO satellite networks providing a reliable datagram service,” IEEE/ACM Trans. Netw., vol. 3, no. 1, pp. 91–103, Feb.1995.
[CrossRef]

J. Opt. Netw.

Perform. Eval.

Y. Xia and D. Tse, “Analysis on packet resequencing for reliable network protocols,” Perform. Eval., vol. 61, no. 4, pp. 299–328, Aug.2005.
[CrossRef]

Other

K. Yiannopoulos and A. C. Boucouvalas, “Link layer protocol analysis and optimization of Gb/s infrared links,” IET Commun., submitted for publication.

Infrared Data Association, Point and Shoot Profile, Version 1.1, 2000.

R. Sharp, Principles of Protocol Design., Revised ed.Springer-Verlag, Berlin, 2008.

T. Yazaki, M. Hattori, and H. Tanaka, “Design and demonstration of 1 Gbit/s optical wireless interface for mobile phones,” in IEEE Global Telecommunications Conf., Nov.2007, pp. 2226–2231.

Infrared Data Association, Serial Infrared Physical Layer Specification–Giga-IR Addition, Version 1.0, 2009.

Infrared Data Association, Serial Infrared Link Access Protocol Specification for Giga-IR Addition, Version 1.0, 2009.

A. M. Shah, S. S. Ara, G. Kitazumi, and M. Matsumoto, “IrSimple modeling and performance evaluation for high-speed infrared communications,” in Proc. IEEE GLOBECOM, 2006, pp. 1–6.

A. M. Shah, S. S. Ara, and M. Matsumoto, “Block selective repeat: A new ARQ scheme for high speed IrDA links,” in IEEE Sarnoff Symp., Mar. 2006, pp. 1–2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Half-duplex operation of the infrared link. Each side transmits available I-frames and then passes the link control to the remote side by setting the P/F bit on the last frame. The remote side responds with its own I-frame or a receiver-ready S-frame if it has no data to send. A minimum link turnaround time is required before the transceiver hardware stabilizes and is able to operate in the opposite direction. (b) Sliding-window selective-repeat mechanism for I-frame error correction over the half-duplex link. Erroneous I-frames are retransmitted in the transmission phase that follows. New frames are transmitted only if the sliding-window mechanism allows for it.

Fig. 2
Fig. 2

Protocol efficiency versus buffer size B for window sizes w=1, 8, 32, 64, 128 and 256. The left column corresponds to a zero minimum link turnaround time while the right column corresponds to a minimum link turnaround time of 100 µs. The rows correspond to BERs ranging from 1010 to 107. The solid vertical lines correspond to the optimum I-frame payload size for w=1.

Fig. 3
Fig. 3

Buffer-constrained optimal I-frame payload size Iopt, window size wopt and the corresponding protocol efficiency versus the buffer size B. The left column corresponds to a zero minimum link turnaround time while the right column corresponds to a minimum link turnaround time of 100 µs. The plot points are calculated by numerically solving Eq. (5). The solid lines correspond to the maximum frame and window sizes of the current Giga-IR standard.

Tables (1)

Tables Icon

Table I GIGA-IR Parameters

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ηI,w=1pNTp,wINTp,wI+H+P+RTTA,
NTp,w=1pw1+w2p+12pw+1w21+w2p+p.
TTA=2ttr,S+tTA,min+tprop1pACK1pACK=2(H+P)/R+tTA,min+tprop1pACK1pACK.
p=11BERI+H+PBERI+H+P,pACK=11BERH+PBERH+P.
B=wI;
Iopt=RTTAw+1BERRTTAw+H+PRTTAw+H+P.
wIopt+H+P>>RTTAw>>BERRTTA.
ΛI,w,λ=ηI,w+λBwI,
η1BERI+H+PwIwI+H+P+RTTA=1BERI+H+PBB/II+H+P+RTTA.
IoptB=minBBERH+PBERB+RTTA+BBERH+PB+1BERH+PRTTABERB+RTTA,B,
woptB=maxBBERH+PH+P1BERH+P+BBERH+PB+1BERH+PRTTAH+P1BERH+P,1.
I=H+PBERH+P.
η=1BERH+P2.