Abstract

In this paper, we report on an experimental validation of dynamic distribution of wireless-over-fiber by employing optical switching using semiconductor optical amplifiers; we also provide a channel distribution scheme and a generic topology for such an optical switch. The experiment consists of a four wavelength-division-multiplexed channel system operating on a WiMax frequency band and employing an orthogonal-frequency-division-multiplexing modulation at 625 Mbits/s per channel, transmission of the data over 20 km of optical fiber, and active switching in a 1 × 16 active optical switch. The results show a negligible power penalty on each channel for both the best and the worst case in terms of inter-channel crosstalk. The presented system is highly scalable both in terms of port count and throughput, a desirable feature in highly branched access networks, and is modulation- and frequency-band independent.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Waring, J. W. Lechleider, and T. R. Hsing, “Digital subscriber line technology facilitates a graceful transition from copper to fiber,” IEEE Commun. Mag., vol. 29, no. 3, pp. 96–104, 1991.
    [CrossRef]
  2. M. Popov, C. P. Larsen, A. Gavler, P. Skoldstrom, and V. Nordell, “Advances in active optical networks (AON), results of the ICT ALPHA project,” in Stanford Workshop, Jan. 2010.
  3. D. L. Waring, J. W. Lechleider, and T. R. Hsing, “Digital subscriber line technology facilitates a graceful transition from copper to fiber,” IEEE Commun. Mag., vol. 29, no. 3, pp. 96–104, 1991.
    [CrossRef]
  4. D. Simeonidou, R. Nejabati, G. Zervas, D. Klonidis, A. Tzanakaki, and M. J. O’Mahony, “Dynamic optical-network architectures and technologies for existing and emerging grid services,” J. Lightwave Technol., vol. 23, no. 10, pp. 3347–3357, Oct.2005.
    [CrossRef]
  5. J. Kani and N. Yoshimoto, “Next generation PONs: an operator’s view,” in 35th European Conf. on Optical Communication (ECOC 2009), Vienna, Austria, 2009.
  6. L. G. Kazovsky, I. Tafur Monroy, S.-W. Wong, and S.-H. Yen, “Future evolution of broadband access: towards hybrid access networks,” in Access Nets 2008, Las Vegas, NV, 2008.
  7. Cisco Visual Network Index: Global Mobile Data Traffic Forecast Update, 2010–2015, white paper [Online]. Available: http://newsroom.cisco.com/ekits/Cisco_VNI_Global_Mobile_Data_Traffic_Forecast_2010_2015.pdf.
  8. J. E. Mitchell, “Radio over fibre networks: advances and challenges,” in 35th European Conf. on Optical Communication (ECOC 2009), Vienna, Austria, 2009, 2.4.5.
  9. A. Caballero, D. Zibar, R. Sambaraju, J. Marti, and I. Tafur Monroy, “High-capacity 60 GHz and 75–110 GHz band links employing all-optical OFDM generation and digital coherent detection,” J. Lightwave Technol., vol. 30, no. 1, pp. 147–155, 2012.
    [CrossRef]
  10. C. W. Chow, C. H. Yeh, S. M. G. Lo, C. Li, and H. K. Tsang, “Long-reach radio-over-fiber signal distribution using single-sideband signal generated by a silicon-modulator,” Opt. Express, vol. 19, no. 12, pp. 11312–11317, 2011.
    [CrossRef] [PubMed]
  11. H.-H. Yeh, C.-W. Chow, Y.-L. Liu, S.-K. Wen, S.-Y. Chen, C.-R. Sheu, M.-C. Tseng, J.-L. Lin, D.-Z. Hsu, and S. Chi, “Theory and technology for standard WiMAX over fiber in high speed train systems,” J. Lightwave Technol., vol. 28, no. 16, pp. 2327–2336, Aug.2010.
    [CrossRef]
  12. J. J. Vegas Olmos, T. Kuri, and K.-I. Kitayama, “Half-duplex 12-channel dense WDM 2.6-GHz-band radio-over-fiber system employing a 1.5 GHz bandwidth reflective semiconductor optical amplifier,” J. Opt. Netw., vol. 7, no. 12, pp. 989–994, Dec.2008.
    [CrossRef]
  13. N. Madamopoulos and A. Prescod, “Applications of large optical 3D MEMS switches in radio-over-fiber in-building networks,” in Photonics in Switching (PS) 2010, Monterey, CA, 2010, JTuB46.
  14. X. Qian, T. Lin, R. V. Penty, and I. H. White, “Novel SOA-based switch for multiple radio-over-fiber service applications,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC 2006), 2006, JThB24.
  15. A. Kaszubowska-Anandarajah, E. Connolly, L. P. Barry, and P. Perry, “Demonstration of wavelength packet switched radio-over-fiber system,” IEEE Photon. Technol. Lett., vol. 19, no. 4, pp. 200–202, Feb.2007.
    [CrossRef]
  16. D. Gutierrez, J. Cho, and L. G. Kazovsky, “TDM-PON security issues: upstream encryption is needed,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC 2007), Anaheim, CA, Mar. 2007, JWA83.
  17. G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol., vol. 21, no. 2, pp. 384–405, Feb.2003.
    [CrossRef]
  18. G. L. Yannitsos and E. H. Hara, “SUPER-PBX: an optomechanical matrix switch,” in WESCANEX 88, Digital Communications Conf., 1988, pp. 108–110.
  19. S. Nagaoka and Y. Suzuki, “Compact optomechanical switches and their applications in optical communication and testing systems,” in Micro Electro Mechanical Systems (MEMS’97), 1997, pp. 366–371.
  20. H. Zhu, P. Wang, and Z. Fan, “Evolutionary design optimization of MEMS: a brief review,” in IEEE Int. Conf. on Industrial Technology (ICIT), 2010, pp. 1683–1687.
  21. Y. Kuratani and M. Kadota, “High-speed and low driving voltage LiNbO3 optical switch composed of new structure,” in Conf. on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conf. (QELS), 2010, JThE73.
  22. N. Chi, J. J. Vegas Olmos, K. Thakulsukanant, Z. Wang, O. Ansell, S. Yu, and D. Huang, “Experimental characteristics of optical crosspoint switch matrix and its applications in optical packet switching,” J. Lightwave Technol., vol. 24, no. 10, pp. 3646–3653, Oct.2006.
    [CrossRef]
  23. A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photon. Technol. Lett., vol. 23, no. 8, Apr.15, 2011.
  24. Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett., vol. 23, no. 8, pp. 525–527, Apr.2011.
    [CrossRef]
  25. S. J. Ben Yoo, “Optical packet and burst switching technologies for the future photonic Internet,” J. Lightwave Technol., vol. 24, no. 12, pp. 4468–4492, Dec.2006.
    [CrossRef]
  26. X. Ma and G.-S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag., vol. 41, no. 11, pp. S16–S23, 2003.
    [CrossRef]
  27. K. Morito, “Optical switching devices based on semiconductor optical amplifiers,” in Int. Conf. on Photonics in Switching (PS’09), Sept. 2009.
  28. R. Hemenway, R. Grzybowski, C. Minkenberg, and R. Luijten, “Optical packet-switched interconnect for supercomputer applications,” J. Opt. Netw., vol. 3, no. 12, pp. 900–913, Dec.2004.
    [CrossRef]
  29. I. Roudas, B. R. Hemenway, and R. R. Grzybowski, “Optimization of a supercomputer optical interconnect architecture,” in 20th Annu. Meeting of the IEEE Lasers and Electro-Optics Society, Orlando, FL, Oct. 2007, ThG3.
  30. J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Wireless and optical-integrated access network with peer-to-peer connection capability,” IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1127–1129, July2008.
    [CrossRef]
  31. K. Wakayama, C. Hasegawa, D. Ishii, and N. Yamanaka, “Evaluation of prototype for 10 Gbps active optical access system,” in OptoElectronics and Communications Conf. (OECC), 2010, pp. 436–437, 8A4-3.
  32. A. Rohit, A. Albores-Mejia, J. Bolk, X. J. M. Leijtens, and K. A. Williams, “Multi-path routing in a monolithically integrated 4 × 4 broadcast and select WDM cross-connect,” in 37th European Conf. on Optical Communication (ECOC 2011), 2011, Mo.2.1.
  33. R. J. Manning, R. Giller, X. Yang, R. P. Webb, and D. Cotter, “SOAs for all-optical switching-techniques for increasing the speed,” in 9th Int. Conf. on Transparent Optical Networks (ICTON 2007), 2007, Th.A2.1.
  34. R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection networks: the OSMOSIS project,” in 17th Annu. Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2004), 2004, vol. 2, pp. 563–564.

2012 (1)

2011 (3)

C. W. Chow, C. H. Yeh, S. M. G. Lo, C. Li, and H. K. Tsang, “Long-reach radio-over-fiber signal distribution using single-sideband signal generated by a silicon-modulator,” Opt. Express, vol. 19, no. 12, pp. 11312–11317, 2011.
[CrossRef] [PubMed]

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photon. Technol. Lett., vol. 23, no. 8, Apr.15, 2011.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett., vol. 23, no. 8, pp. 525–527, Apr.2011.
[CrossRef]

2010 (1)

2008 (2)

J. J. Vegas Olmos, T. Kuri, and K.-I. Kitayama, “Half-duplex 12-channel dense WDM 2.6-GHz-band radio-over-fiber system employing a 1.5 GHz bandwidth reflective semiconductor optical amplifier,” J. Opt. Netw., vol. 7, no. 12, pp. 989–994, Dec.2008.
[CrossRef]

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Wireless and optical-integrated access network with peer-to-peer connection capability,” IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1127–1129, July2008.
[CrossRef]

2007 (1)

A. Kaszubowska-Anandarajah, E. Connolly, L. P. Barry, and P. Perry, “Demonstration of wavelength packet switched radio-over-fiber system,” IEEE Photon. Technol. Lett., vol. 19, no. 4, pp. 200–202, Feb.2007.
[CrossRef]

2006 (2)

2005 (1)

2004 (1)

2003 (2)

X. Ma and G.-S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag., vol. 41, no. 11, pp. S16–S23, 2003.
[CrossRef]

G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol., vol. 21, no. 2, pp. 384–405, Feb.2003.
[CrossRef]

1991 (2)

D. L. Waring, J. W. Lechleider, and T. R. Hsing, “Digital subscriber line technology facilitates a graceful transition from copper to fiber,” IEEE Commun. Mag., vol. 29, no. 3, pp. 96–104, 1991.
[CrossRef]

D. L. Waring, J. W. Lechleider, and T. R. Hsing, “Digital subscriber line technology facilitates a graceful transition from copper to fiber,” IEEE Commun. Mag., vol. 29, no. 3, pp. 96–104, 1991.
[CrossRef]

Albores-Mejia, A.

A. Rohit, A. Albores-Mejia, J. Bolk, X. J. M. Leijtens, and K. A. Williams, “Multi-path routing in a monolithically integrated 4 × 4 broadcast and select WDM cross-connect,” in 37th European Conf. on Optical Communication (ECOC 2011), 2011, Mo.2.1.

Ansell, O.

Barry, L. P.

A. Kaszubowska-Anandarajah, E. Connolly, L. P. Barry, and P. Perry, “Demonstration of wavelength packet switched radio-over-fiber system,” IEEE Photon. Technol. Lett., vol. 19, no. 4, pp. 200–202, Feb.2007.
[CrossRef]

Ben Yoo, S. J.

Bergman, K.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photon. Technol. Lett., vol. 23, no. 8, Apr.15, 2011.

Biberman, A.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photon. Technol. Lett., vol. 23, no. 8, Apr.15, 2011.

Bolk, J.

A. Rohit, A. Albores-Mejia, J. Bolk, X. J. M. Leijtens, and K. A. Williams, “Multi-path routing in a monolithically integrated 4 × 4 broadcast and select WDM cross-connect,” in 37th European Conf. on Optical Communication (ECOC 2011), 2011, Mo.2.1.

Caballero, A.

Cai, H.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett., vol. 23, no. 8, pp. 525–527, Apr.2011.
[CrossRef]

Chan, J.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photon. Technol. Lett., vol. 23, no. 8, Apr.15, 2011.

Chen, S.-Y.

Chi, N.

Chi, S.

Cho, J.

D. Gutierrez, J. Cho, and L. G. Kazovsky, “TDM-PON security issues: upstream encryption is needed,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC 2007), Anaheim, CA, Mar. 2007, JWA83.

Chow, C. W.

Chow, C.-W.

Connolly, E.

A. Kaszubowska-Anandarajah, E. Connolly, L. P. Barry, and P. Perry, “Demonstration of wavelength packet switched radio-over-fiber system,” IEEE Photon. Technol. Lett., vol. 19, no. 4, pp. 200–202, Feb.2007.
[CrossRef]

Cotter, D.

R. J. Manning, R. Giller, X. Yang, R. P. Webb, and D. Cotter, “SOAs for all-optical switching-techniques for increasing the speed,” in 9th Int. Conf. on Transparent Optical Networks (ICTON 2007), 2007, Th.A2.1.

Denzel, W. E.

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection networks: the OSMOSIS project,” in 17th Annu. Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2004), 2004, vol. 2, pp. 563–564.

Fan, Z.

H. Zhu, P. Wang, and Z. Fan, “Evolutionary design optimization of MEMS: a brief review,” in IEEE Int. Conf. on Industrial Technology (ICIT), 2010, pp. 1683–1687.

Fang, Q.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett., vol. 23, no. 8, pp. 525–527, Apr.2011.
[CrossRef]

Gavler, A.

M. Popov, C. P. Larsen, A. Gavler, P. Skoldstrom, and V. Nordell, “Advances in active optical networks (AON), results of the ICT ALPHA project,” in Stanford Workshop, Jan. 2010.

Giller, R.

R. J. Manning, R. Giller, X. Yang, R. P. Webb, and D. Cotter, “SOAs for all-optical switching-techniques for increasing the speed,” in 9th Int. Conf. on Transparent Optical Networks (ICTON 2007), 2007, Th.A2.1.

Grzybowski, R.

Grzybowski, R. R.

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection networks: the OSMOSIS project,” in 17th Annu. Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2004), 2004, vol. 2, pp. 563–564.

I. Roudas, B. R. Hemenway, and R. R. Grzybowski, “Optimization of a supercomputer optical interconnect architecture,” in 20th Annu. Meeting of the IEEE Lasers and Electro-Optics Society, Orlando, FL, Oct. 2007, ThG3.

Gutierrez, D.

D. Gutierrez, J. Cho, and L. G. Kazovsky, “TDM-PON security issues: upstream encryption is needed,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC 2007), Anaheim, CA, Mar. 2007, JWA83.

Hara, E. H.

G. L. Yannitsos and E. H. Hara, “SUPER-PBX: an optomechanical matrix switch,” in WESCANEX 88, Digital Communications Conf., 1988, pp. 108–110.

Hasegawa, C.

K. Wakayama, C. Hasegawa, D. Ishii, and N. Yamanaka, “Evaluation of prototype for 10 Gbps active optical access system,” in OptoElectronics and Communications Conf. (OECC), 2010, pp. 436–437, 8A4-3.

Hemenway, B. R.

I. Roudas, B. R. Hemenway, and R. R. Grzybowski, “Optimization of a supercomputer optical interconnect architecture,” in 20th Annu. Meeting of the IEEE Lasers and Electro-Optics Society, Orlando, FL, Oct. 2007, ThG3.

Hemenway, R.

R. Hemenway, R. Grzybowski, C. Minkenberg, and R. Luijten, “Optical packet-switched interconnect for supercomputer applications,” J. Opt. Netw., vol. 3, no. 12, pp. 900–913, Dec.2004.
[CrossRef]

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection networks: the OSMOSIS project,” in 17th Annu. Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2004), 2004, vol. 2, pp. 563–564.

Hsing, T. R.

D. L. Waring, J. W. Lechleider, and T. R. Hsing, “Digital subscriber line technology facilitates a graceful transition from copper to fiber,” IEEE Commun. Mag., vol. 29, no. 3, pp. 96–104, 1991.
[CrossRef]

D. L. Waring, J. W. Lechleider, and T. R. Hsing, “Digital subscriber line technology facilitates a graceful transition from copper to fiber,” IEEE Commun. Mag., vol. 29, no. 3, pp. 96–104, 1991.
[CrossRef]

Hsu, D.-Z.

Huang, D.

Ishii, D.

K. Wakayama, C. Hasegawa, D. Ishii, and N. Yamanaka, “Evaluation of prototype for 10 Gbps active optical access system,” in OptoElectronics and Communications Conf. (OECC), 2010, pp. 436–437, 8A4-3.

Kadota, M.

Y. Kuratani and M. Kadota, “High-speed and low driving voltage LiNbO3 optical switch composed of new structure,” in Conf. on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conf. (QELS), 2010, JThE73.

Kani, J.

J. Kani and N. Yoshimoto, “Next generation PONs: an operator’s view,” in 35th European Conf. on Optical Communication (ECOC 2009), Vienna, Austria, 2009.

Kaszubowska-Anandarajah, A.

A. Kaszubowska-Anandarajah, E. Connolly, L. P. Barry, and P. Perry, “Demonstration of wavelength packet switched radio-over-fiber system,” IEEE Photon. Technol. Lett., vol. 19, no. 4, pp. 200–202, Feb.2007.
[CrossRef]

Kazovsky, L. G.

D. Gutierrez, J. Cho, and L. G. Kazovsky, “TDM-PON security issues: upstream encryption is needed,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC 2007), Anaheim, CA, Mar. 2007, JWA83.

L. G. Kazovsky, I. Tafur Monroy, S.-W. Wong, and S.-H. Yen, “Future evolution of broadband access: towards hybrid access networks,” in Access Nets 2008, Las Vegas, NV, 2008.

Kitayama, K.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Wireless and optical-integrated access network with peer-to-peer connection capability,” IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1127–1129, July2008.
[CrossRef]

Kitayama, K.-I.

Klonidis, D.

Kuo, G.-S.

X. Ma and G.-S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag., vol. 41, no. 11, pp. S16–S23, 2003.
[CrossRef]

Kuratani, Y.

Y. Kuratani and M. Kadota, “High-speed and low driving voltage LiNbO3 optical switch composed of new structure,” in Conf. on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conf. (QELS), 2010, JThE73.

Kuri, T.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Wireless and optical-integrated access network with peer-to-peer connection capability,” IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1127–1129, July2008.
[CrossRef]

J. J. Vegas Olmos, T. Kuri, and K.-I. Kitayama, “Half-duplex 12-channel dense WDM 2.6-GHz-band radio-over-fiber system employing a 1.5 GHz bandwidth reflective semiconductor optical amplifier,” J. Opt. Netw., vol. 7, no. 12, pp. 989–994, Dec.2008.
[CrossRef]

Kwong, D.-L.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett., vol. 23, no. 8, pp. 525–527, Apr.2011.
[CrossRef]

Larsen, C. P.

M. Popov, C. P. Larsen, A. Gavler, P. Skoldstrom, and V. Nordell, “Advances in active optical networks (AON), results of the ICT ALPHA project,” in Stanford Workshop, Jan. 2010.

Lechleider, J. W.

D. L. Waring, J. W. Lechleider, and T. R. Hsing, “Digital subscriber line technology facilitates a graceful transition from copper to fiber,” IEEE Commun. Mag., vol. 29, no. 3, pp. 96–104, 1991.
[CrossRef]

D. L. Waring, J. W. Lechleider, and T. R. Hsing, “Digital subscriber line technology facilitates a graceful transition from copper to fiber,” IEEE Commun. Mag., vol. 29, no. 3, pp. 96–104, 1991.
[CrossRef]

Leijtens, X. J. M.

A. Rohit, A. Albores-Mejia, J. Bolk, X. J. M. Leijtens, and K. A. Williams, “Multi-path routing in a monolithically integrated 4 × 4 broadcast and select WDM cross-connect,” in 37th European Conf. on Optical Communication (ECOC 2011), 2011, Mo.2.1.

Li, C.

Lin, J.-L.

Lin, T.

X. Qian, T. Lin, R. V. Penty, and I. H. White, “Novel SOA-based switch for multiple radio-over-fiber service applications,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC 2006), 2006, JThB24.

Liow, T.-Y.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett., vol. 23, no. 8, pp. 525–527, Apr.2011.
[CrossRef]

Lipson, M.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photon. Technol. Lett., vol. 23, no. 8, Apr.15, 2011.

Lira, H. L. R.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photon. Technol. Lett., vol. 23, no. 8, Apr.15, 2011.

Liu, Y.-L.

Lo, G. Q.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett., vol. 23, no. 8, pp. 525–527, Apr.2011.
[CrossRef]

Lo, S. M. G.

Luijten, R.

R. Hemenway, R. Grzybowski, C. Minkenberg, and R. Luijten, “Optical packet-switched interconnect for supercomputer applications,” J. Opt. Netw., vol. 3, no. 12, pp. 900–913, Dec.2004.
[CrossRef]

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection networks: the OSMOSIS project,” in 17th Annu. Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2004), 2004, vol. 2, pp. 563–564.

Ma, X.

X. Ma and G.-S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag., vol. 41, no. 11, pp. S16–S23, 2003.
[CrossRef]

Madamopoulos, N.

N. Madamopoulos and A. Prescod, “Applications of large optical 3D MEMS switches in radio-over-fiber in-building networks,” in Photonics in Switching (PS) 2010, Monterey, CA, 2010, JTuB46.

Manning, R. J.

R. J. Manning, R. Giller, X. Yang, R. P. Webb, and D. Cotter, “SOAs for all-optical switching-techniques for increasing the speed,” in 9th Int. Conf. on Transparent Optical Networks (ICTON 2007), 2007, Th.A2.1.

Marti, J.

Minkenberg, C.

Mitchell, J. E.

J. E. Mitchell, “Radio over fibre networks: advances and challenges,” in 35th European Conf. on Optical Communication (ECOC 2009), Vienna, Austria, 2009, 2.4.5.

Morito, K.

K. Morito, “Optical switching devices based on semiconductor optical amplifiers,” in Int. Conf. on Photonics in Switching (PS’09), Sept. 2009.

Nagaoka, S.

S. Nagaoka and Y. Suzuki, “Compact optomechanical switches and their applications in optical communication and testing systems,” in Micro Electro Mechanical Systems (MEMS’97), 1997, pp. 366–371.

Nejabati, R.

Nordell, V.

M. Popov, C. P. Larsen, A. Gavler, P. Skoldstrom, and V. Nordell, “Advances in active optical networks (AON), results of the ICT ALPHA project,” in Stanford Workshop, Jan. 2010.

O’Mahony, M. J.

Ophir, N.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photon. Technol. Lett., vol. 23, no. 8, Apr.15, 2011.

Padmaraju, K.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photon. Technol. Lett., vol. 23, no. 8, Apr.15, 2011.

Papadimitriou, G. I.

Papazoglou, C.

Penty, R. V.

X. Qian, T. Lin, R. V. Penty, and I. H. White, “Novel SOA-based switch for multiple radio-over-fiber service applications,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC 2006), 2006, JThB24.

Perry, P.

A. Kaszubowska-Anandarajah, E. Connolly, L. P. Barry, and P. Perry, “Demonstration of wavelength packet switched radio-over-fiber system,” IEEE Photon. Technol. Lett., vol. 19, no. 4, pp. 200–202, Feb.2007.
[CrossRef]

Pomportsis, A. S.

Popov, M.

M. Popov, C. P. Larsen, A. Gavler, P. Skoldstrom, and V. Nordell, “Advances in active optical networks (AON), results of the ICT ALPHA project,” in Stanford Workshop, Jan. 2010.

Prescod, A.

N. Madamopoulos and A. Prescod, “Applications of large optical 3D MEMS switches in radio-over-fiber in-building networks,” in Photonics in Switching (PS) 2010, Monterey, CA, 2010, JTuB46.

Qian, X.

X. Qian, T. Lin, R. V. Penty, and I. H. White, “Novel SOA-based switch for multiple radio-over-fiber service applications,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC 2006), 2006, JThB24.

Rohit, A.

A. Rohit, A. Albores-Mejia, J. Bolk, X. J. M. Leijtens, and K. A. Williams, “Multi-path routing in a monolithically integrated 4 × 4 broadcast and select WDM cross-connect,” in 37th European Conf. on Optical Communication (ECOC 2011), 2011, Mo.2.1.

Roudas, I.

I. Roudas, B. R. Hemenway, and R. R. Grzybowski, “Optimization of a supercomputer optical interconnect architecture,” in 20th Annu. Meeting of the IEEE Lasers and Electro-Optics Society, Orlando, FL, Oct. 2007, ThG3.

Sambaraju, R.

Sheu, C.-R.

Simeonidou, D.

Skoldstrom, P.

M. Popov, C. P. Larsen, A. Gavler, P. Skoldstrom, and V. Nordell, “Advances in active optical networks (AON), results of the ICT ALPHA project,” in Stanford Workshop, Jan. 2010.

Song, J. F.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett., vol. 23, no. 8, pp. 525–527, Apr.2011.
[CrossRef]

Sono, T.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Wireless and optical-integrated access network with peer-to-peer connection capability,” IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1127–1129, July2008.
[CrossRef]

Suzuki, Y.

S. Nagaoka and Y. Suzuki, “Compact optomechanical switches and their applications in optical communication and testing systems,” in Micro Electro Mechanical Systems (MEMS’97), 1997, pp. 366–371.

Tafur Monroy, I.

A. Caballero, D. Zibar, R. Sambaraju, J. Marti, and I. Tafur Monroy, “High-capacity 60 GHz and 75–110 GHz band links employing all-optical OFDM generation and digital coherent detection,” J. Lightwave Technol., vol. 30, no. 1, pp. 147–155, 2012.
[CrossRef]

L. G. Kazovsky, I. Tafur Monroy, S.-W. Wong, and S.-H. Yen, “Future evolution of broadband access: towards hybrid access networks,” in Access Nets 2008, Las Vegas, NV, 2008.

Tamura, K.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Wireless and optical-integrated access network with peer-to-peer connection capability,” IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1127–1129, July2008.
[CrossRef]

Thakulsukanant, K.

Toda, H.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Wireless and optical-integrated access network with peer-to-peer connection capability,” IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1127–1129, July2008.
[CrossRef]

Tsang, H. K.

Tseng, M.-C.

Tzanakaki, A.

Vegas Olmos, J. J.

Wakayama, K.

K. Wakayama, C. Hasegawa, D. Ishii, and N. Yamanaka, “Evaluation of prototype for 10 Gbps active optical access system,” in OptoElectronics and Communications Conf. (OECC), 2010, pp. 436–437, 8A4-3.

Wang, P.

H. Zhu, P. Wang, and Z. Fan, “Evolutionary design optimization of MEMS: a brief review,” in IEEE Int. Conf. on Industrial Technology (ICIT), 2010, pp. 1683–1687.

Wang, Z.

Waring, D. L.

D. L. Waring, J. W. Lechleider, and T. R. Hsing, “Digital subscriber line technology facilitates a graceful transition from copper to fiber,” IEEE Commun. Mag., vol. 29, no. 3, pp. 96–104, 1991.
[CrossRef]

D. L. Waring, J. W. Lechleider, and T. R. Hsing, “Digital subscriber line technology facilitates a graceful transition from copper to fiber,” IEEE Commun. Mag., vol. 29, no. 3, pp. 96–104, 1991.
[CrossRef]

Webb, R. P.

R. J. Manning, R. Giller, X. Yang, R. P. Webb, and D. Cotter, “SOAs for all-optical switching-techniques for increasing the speed,” in 9th Int. Conf. on Transparent Optical Networks (ICTON 2007), 2007, Th.A2.1.

Wen, S.-K.

White, I. H.

X. Qian, T. Lin, R. V. Penty, and I. H. White, “Novel SOA-based switch for multiple radio-over-fiber service applications,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC 2006), 2006, JThB24.

Williams, K. A.

A. Rohit, A. Albores-Mejia, J. Bolk, X. J. M. Leijtens, and K. A. Williams, “Multi-path routing in a monolithically integrated 4 × 4 broadcast and select WDM cross-connect,” in 37th European Conf. on Optical Communication (ECOC 2011), 2011, Mo.2.1.

Wong, S.-W.

L. G. Kazovsky, I. Tafur Monroy, S.-W. Wong, and S.-H. Yen, “Future evolution of broadband access: towards hybrid access networks,” in Access Nets 2008, Las Vegas, NV, 2008.

Yamanaka, N.

K. Wakayama, C. Hasegawa, D. Ishii, and N. Yamanaka, “Evaluation of prototype for 10 Gbps active optical access system,” in OptoElectronics and Communications Conf. (OECC), 2010, pp. 436–437, 8A4-3.

Yang, X.

R. J. Manning, R. Giller, X. Yang, R. P. Webb, and D. Cotter, “SOAs for all-optical switching-techniques for increasing the speed,” in 9th Int. Conf. on Transparent Optical Networks (ICTON 2007), 2007, Th.A2.1.

Yannitsos, G. L.

G. L. Yannitsos and E. H. Hara, “SUPER-PBX: an optomechanical matrix switch,” in WESCANEX 88, Digital Communications Conf., 1988, pp. 108–110.

Yeh, C. H.

Yeh, H.-H.

Yen, S.-H.

L. G. Kazovsky, I. Tafur Monroy, S.-W. Wong, and S.-H. Yen, “Future evolution of broadband access: towards hybrid access networks,” in Access Nets 2008, Las Vegas, NV, 2008.

Yoshimoto, N.

J. Kani and N. Yoshimoto, “Next generation PONs: an operator’s view,” in 35th European Conf. on Optical Communication (ECOC 2009), Vienna, Austria, 2009.

Yu, M. B.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett., vol. 23, no. 8, pp. 525–527, Apr.2011.
[CrossRef]

Yu, S.

Zervas, G.

Zhu, H.

H. Zhu, P. Wang, and Z. Fan, “Evolutionary design optimization of MEMS: a brief review,” in IEEE Int. Conf. on Industrial Technology (ICIT), 2010, pp. 1683–1687.

Zibar, D.

IEEE Commun. Mag. (3)

D. L. Waring, J. W. Lechleider, and T. R. Hsing, “Digital subscriber line technology facilitates a graceful transition from copper to fiber,” IEEE Commun. Mag., vol. 29, no. 3, pp. 96–104, 1991.
[CrossRef]

D. L. Waring, J. W. Lechleider, and T. R. Hsing, “Digital subscriber line technology facilitates a graceful transition from copper to fiber,” IEEE Commun. Mag., vol. 29, no. 3, pp. 96–104, 1991.
[CrossRef]

X. Ma and G.-S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag., vol. 41, no. 11, pp. S16–S23, 2003.
[CrossRef]

IEEE Photon. Technol. Lett. (4)

A. Kaszubowska-Anandarajah, E. Connolly, L. P. Barry, and P. Perry, “Demonstration of wavelength packet switched radio-over-fiber system,” IEEE Photon. Technol. Lett., vol. 19, no. 4, pp. 200–202, Feb.2007.
[CrossRef]

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photon. Technol. Lett., vol. 23, no. 8, Apr.15, 2011.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett., vol. 23, no. 8, pp. 525–527, Apr.2011.
[CrossRef]

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Wireless and optical-integrated access network with peer-to-peer connection capability,” IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1127–1129, July2008.
[CrossRef]

J. Lightwave Technol. (6)

J. Opt. Netw. (2)

Opt. Express (1)

Other (18)

M. Popov, C. P. Larsen, A. Gavler, P. Skoldstrom, and V. Nordell, “Advances in active optical networks (AON), results of the ICT ALPHA project,” in Stanford Workshop, Jan. 2010.

J. Kani and N. Yoshimoto, “Next generation PONs: an operator’s view,” in 35th European Conf. on Optical Communication (ECOC 2009), Vienna, Austria, 2009.

L. G. Kazovsky, I. Tafur Monroy, S.-W. Wong, and S.-H. Yen, “Future evolution of broadband access: towards hybrid access networks,” in Access Nets 2008, Las Vegas, NV, 2008.

Cisco Visual Network Index: Global Mobile Data Traffic Forecast Update, 2010–2015, white paper [Online]. Available: http://newsroom.cisco.com/ekits/Cisco_VNI_Global_Mobile_Data_Traffic_Forecast_2010_2015.pdf.

J. E. Mitchell, “Radio over fibre networks: advances and challenges,” in 35th European Conf. on Optical Communication (ECOC 2009), Vienna, Austria, 2009, 2.4.5.

N. Madamopoulos and A. Prescod, “Applications of large optical 3D MEMS switches in radio-over-fiber in-building networks,” in Photonics in Switching (PS) 2010, Monterey, CA, 2010, JTuB46.

X. Qian, T. Lin, R. V. Penty, and I. H. White, “Novel SOA-based switch for multiple radio-over-fiber service applications,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC 2006), 2006, JThB24.

G. L. Yannitsos and E. H. Hara, “SUPER-PBX: an optomechanical matrix switch,” in WESCANEX 88, Digital Communications Conf., 1988, pp. 108–110.

S. Nagaoka and Y. Suzuki, “Compact optomechanical switches and their applications in optical communication and testing systems,” in Micro Electro Mechanical Systems (MEMS’97), 1997, pp. 366–371.

H. Zhu, P. Wang, and Z. Fan, “Evolutionary design optimization of MEMS: a brief review,” in IEEE Int. Conf. on Industrial Technology (ICIT), 2010, pp. 1683–1687.

Y. Kuratani and M. Kadota, “High-speed and low driving voltage LiNbO3 optical switch composed of new structure,” in Conf. on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conf. (QELS), 2010, JThE73.

I. Roudas, B. R. Hemenway, and R. R. Grzybowski, “Optimization of a supercomputer optical interconnect architecture,” in 20th Annu. Meeting of the IEEE Lasers and Electro-Optics Society, Orlando, FL, Oct. 2007, ThG3.

K. Morito, “Optical switching devices based on semiconductor optical amplifiers,” in Int. Conf. on Photonics in Switching (PS’09), Sept. 2009.

D. Gutierrez, J. Cho, and L. G. Kazovsky, “TDM-PON security issues: upstream encryption is needed,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC 2007), Anaheim, CA, Mar. 2007, JWA83.

K. Wakayama, C. Hasegawa, D. Ishii, and N. Yamanaka, “Evaluation of prototype for 10 Gbps active optical access system,” in OptoElectronics and Communications Conf. (OECC), 2010, pp. 436–437, 8A4-3.

A. Rohit, A. Albores-Mejia, J. Bolk, X. J. M. Leijtens, and K. A. Williams, “Multi-path routing in a monolithically integrated 4 × 4 broadcast and select WDM cross-connect,” in 37th European Conf. on Optical Communication (ECOC 2011), 2011, Mo.2.1.

R. J. Manning, R. Giller, X. Yang, R. P. Webb, and D. Cotter, “SOAs for all-optical switching-techniques for increasing the speed,” in 9th Int. Conf. on Transparent Optical Networks (ICTON 2007), 2007, Th.A2.1.

R. Luijten, W. E. Denzel, R. R. Grzybowski, and R. Hemenway, “Optical interconnection networks: the OSMOSIS project,” in 17th Annu. Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2004), 2004, vol. 2, pp. 563–564.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Color online) General architecture of an active optical network for mobile applications, including unicast and selective multicast capabilities. CO: central office.

Fig. 2
Fig. 2

(Color online) Wavelength allocation. Clusters 1–N comprise base station channels 1–M. BS: base station.

Fig. 3
Fig. 3

(Color online) Internal schematic of a generic switch. SOA: semiconductor optical amplifier, AWG: arrayed waveguide, C: cluster, BS: base station.

Fig. 4
Fig. 4

(Color online) Experimental setup. The insets show the optical spectra of the generated channels after being passively combined and also after modulation. PC: polarization controller, VSG: vector signal generator, ArbWG: arbitrary wave generator, DSP: digital signal processing, MOD: optical modulator, SOA: semiconductor optical amplifier, AWG: arrayed waveguide, VOA: variable optical attenuator, DSO: data storage oscilloscope.

Fig. 5
Fig. 5

(Color online) Characterization of the SOAs employed in the experiment for two different wavelengths (λmin=1546.8nm and λmax=1555.7nm). The SOAs in the optical switch are operated either in the attenuation range (SOAoff → Bias = 0 V) or the amplification range (SOAon → Bias = 1.8 V).

Fig. 6
Fig. 6

(Color online) (a) A detail of the optical switch showing the presence of signals in the best case (CH1 OFF) and the worst case (CH1 ON), and (b) plots of the constellations at the receiver side for CH 1 at different optical powers. SOA: semiconductor optical amplifier, AWG: arrayed waveguide.

Fig. 7
Fig. 7

(Color online) BER performance of the system. The insets show the constellation of CH 1 at the receiver side in the worst-case scenario (rest of the channels ON). B2B: back-to-back, OFF: the other channels are set OFF by setting all SOA3s OFF, ON: the other channels are set ON by setting all SOA3s ON, FEC: forward error correction.