Abstract

Optical packet contention is the major problem in optical packet switching (OPS) networks. In this paper, a software-based contention reduction scheme is proposed for all-optical multi-fiber slotted OPS networks, called packet transmission based on the scheduling of empty time-slots (PTES), suitable for overlaid star topology used in a metropolitan area with heterogeneous distances. In the scheduling procedure (performed in a distributed manner by each edge node of a star network) within a frame interval, some time-slots are scheduled as empty time-slots and the remaining time-slots are scheduled as non-empty. Then, an edge node must avoid sending its traffic in empty time-slots. Instead, non-empty time-slots can be used for traffic transmission. With respect to this scheduling, the variance of the number of non-empty time-slots that carry traffic from all edge nodes is minimized in the core node at each time-slot, thus reducing the traffic loss. Mathematical formulas are also provided to compute the traffic loss and delay under PTES. Performance evaluation results illustrate that PTES can reduce the number of collision events and traffic loss, especially at light and moderate traffic loads.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Maier and M. Reisslein, “AWG-based metro WDM networking,” IEEE Commun. Mag., vol. 42, no. 11, pp. S19–S26, Nov.2004.
    [CrossRef]
  2. A. G. Rahbar and O. Yang, “CST: a new contention reduction scheme in slotted all-optical packet switched networks,” Perform. Eval., vol. 67, no. 5, pp. 361–375, May2010.
    [CrossRef]
  3. F. Blouin, A. Lee, and M. Beshai, “Comparison of two optical-core networks,” J. Opt. Netw., vol. 1, no. 1, pp. 56–65, Jan.2002.
  4. M. Jin and O. W. W. Yang, “APOSN: operation, modeling and performance evaluation,” Comput. Netw., vol. 51, no. 6, pp. 1643–1659, Apr.2007.
    [CrossRef]
  5. H. S. Yang, M. Herzog, M. Maier, and M. Reisslein, “Metro WDM networks: performance comparison of slotted ring and AWG star networks,” IEEE J. Sel. Areas Commun., vol. 22, no. 8, pp. 1460–1473, Oct.2004.
    [CrossRef]
  6. L. Mason, A. Vinokurov, N. Zhao, and D. Plant, “Topological design and dimensioning of agile all-photonic networks,” Comput. Netw., vol. 50, no. 2, pp. 268–287, Feb.2006.
    [CrossRef]
  7. P. He and G. v. Bochmann, “Inter-area shared segment protection of MPLS flows over agile all-photonic star networks,” in IEEE Globecom, Washington DC, 2007, pp. 2325–2330.
  8. H. Y. Tyan, J. C. Hou, B. Wang, and C. C. Han, “On supporting temporal quality of service in WDMA-based star-coupled optical networks,” IEEE Trans. Comput., vol. 50, no. 3, pp. 197–214, 2001.
    [CrossRef]
  9. G. Bochmann, “Design of an agile all-photonic network,” in Int. Conf. on Network Architectures, Management, and Applications, Wuhan, 2007.
  10. S. A. Paredes, G. Bochmann, and T. J. Hall, “Deploying agile photonic networks over reconfigurable optical networks,” in Proc. IEEE ISCC, Sousse, Tunísia, pp. 182–187.
  11. N. Saberi and M. Coates, “Scheduling in overlaid star all-photonic networks with large propagation delays,” Photonic Network Commun., vol. 17, no. 2, pp. 157–169, 2009.
    [CrossRef]
  12. K. S. Hamza, H. Elbadawy, and I. Taha, “A novel optical packet switch architecture with reduced wavelength conversion complexity,” in IEEE HONET, Alexandria, 2009, pp. 80–85.
  13. V. S. Shekhawat, D. K. Tyagi, and V. Chaubey, “A novel packet switch node architecture for contention resolution in synchronous optical packet switched networks,” Int. J. Commun., Network Syst. Sci., vol. 2, no. 6, pp. 562–568, Sept.2009.
    [CrossRef]
  14. R. Srivastava, R. K. Singh, and Y. N. Singh, “WDM-based optical packet switch architectures,” J. Opt. Netw., vol. 7, no. 1, pp. 94–105, 2008.
    [CrossRef]
  15. V. Eramo, M. Listanti, and A. Germoni, “Cost evaluation of optical packet switches equipped with limited-range and full-range converters for contention resolution,” J. Lightwave Technol., vol. 26, no. 4, pp. 390–407, 2008.
  16. A. Pattavina, “Architectures and performance of optical packet switching nodes for IP networks,” J. Lightwave Technol., vol. 23, no. 3, pp. 1023–1032, Mar.2005.
    [CrossRef]
  17. O. Liboiron-Ladouceur, A. Shacham, B. A. Small, B. G. Lee, H. Wang, C. P. Lai, A. Biberman, and K. Bergman, “The data vortex optical packet switched interconnection network,” J. Lightwave Technol., vol. 26, no. 13, pp. 1777–1789, 2008.
    [CrossRef]
  18. C. Peng, G. Bochmann, and T. J. Hall, “Quick Birkhoff–von Neumann decomposition algorithm for agile all-photonic network cores,” in IEEE ICC, Istanbul, 2006, pp. 2593–2598.
  19. A. G. Rahbar and O. Yang, “Agile bandwidth management techniques in slotted all-optical packet switched networks,” Comput. Netw., vol. 54, no. 3, pp. 387–403, Feb.2010.
    [CrossRef]
  20. S. A. Paredes and T. J. Hall, “Flexible bandwidth provision and scheduling in a packet switch with an optical core,” J. Opt. Netw., vol. 4, no. 5, pp. 260–270, May2005.
    [CrossRef]
  21. M. Jin and O. Yang, “A TDM solution for all-photonic overlaid-star networks,” in CISS2006, Princeton, 2006, pp. 1691–1695.
  22. C. Papazoglou, G. Papadimitriou, and A. Pomportsis, “Design alternatives for optical-packet-interconnection network architectures,” J. Opt. Netw., vol. 3, no. 11, pp. 810–825, Nov.2004.
    [CrossRef]
  23. A. G. Rahbar and O. Yang, “Contention avoidance and resolution schemes in bufferless all-optical packet-switched networks: a survey,” IEEE Commun. Surv. Tutorials, vol. 10, no. 4, pp. 94–107, Dec.2008.
    [CrossRef]
  24. V. Eramo, M. Listanti, and P. Pacifici, “A comparison study on the number of wavelength converters needed in synchronous and asynchronous all-optical switching architectures,” J. Lightwave Technol., vol. 21, no. 2, pp. 340–355, 2003.
    [CrossRef]
  25. V. Eramo, A. Germoni, C. Raffaelli, and M. Savi, “Multifiber shared-per-wavelength all-optical switching: architectures, control, and performance,” J. Lightwave Technol., vol. 26, no. 5, pp. 537–551, Mar.2008.
    [CrossRef]
  26. V. Eramo, A. Germoni, C. Raffaelli, and M. Savi, “Packet loss analysis of shared-per-wavelength multi-fiber all-optical switch with parallel scheduling,” Comput. Netw., vol. 53, no. 2, pp. 202–216, Feb.2009.
    [CrossRef]
  27. M. Savi, “High-performance switching architectures for optical networks” [Ph.D. thesis], University of Bologna, Italy, 2007.
  28. Y. Li, G. Xiao, and H. Ghafouri Shiraz, “On the benefits of multifiber optical packet switch,” Microwave Opt. Technol. Lett., vol. 43, no. 5, pp. 376–378, Dec.2004.
    [CrossRef]
  29. S. Yao, S. J. B. Yoo, B. Mukherjee, and S. Dixit, “All-optical packet switching for metropolitan area networks: opportunities and challenges,” IEEE Commun. Mag., vol. 39, no. 3, pp. 142–148, Mar.2001.
  30. T. S. El-Bawab and J. D. Shin, “Optical packet switching in core networks: between vision and reality,” IEEE Commun. Mag., vol. 40, no. 9, pp. 60–65, Sept.2002.
    [CrossRef]
  31. A. Rahbar and O. Yang, “Reducing loss rate in slotted optical networks: a lower bound analysis,” in IEEE ICC, Istanbul, Turkey, 2006, pp. 2770–2775.
  32. D. P. Bertsekas and R. G. Gallager, Data Networks. Prentice Hall, 2004.
  33. A. G. Fayoumi, F. A. Al-Zahrani, A. A. Habiballa, and A. P. Jayasumana, “Performance analysis of multi-fiber synchronous photonic share-per-link packet switches,” in IEEE LCN, Sydney, 2005, pp. 182–189.
  34. Transition Networks, “Quality of service (QoS) in high-priority applications,” White Paper, 2003 [Online]. Available: http://www.transition.com/TransitionNetworks/Learning/Whitepaper/Qos.aspx.

2010 (2)

A. G. Rahbar and O. Yang, “CST: a new contention reduction scheme in slotted all-optical packet switched networks,” Perform. Eval., vol. 67, no. 5, pp. 361–375, May2010.
[CrossRef]

A. G. Rahbar and O. Yang, “Agile bandwidth management techniques in slotted all-optical packet switched networks,” Comput. Netw., vol. 54, no. 3, pp. 387–403, Feb.2010.
[CrossRef]

2009 (3)

N. Saberi and M. Coates, “Scheduling in overlaid star all-photonic networks with large propagation delays,” Photonic Network Commun., vol. 17, no. 2, pp. 157–169, 2009.
[CrossRef]

V. S. Shekhawat, D. K. Tyagi, and V. Chaubey, “A novel packet switch node architecture for contention resolution in synchronous optical packet switched networks,” Int. J. Commun., Network Syst. Sci., vol. 2, no. 6, pp. 562–568, Sept.2009.
[CrossRef]

V. Eramo, A. Germoni, C. Raffaelli, and M. Savi, “Packet loss analysis of shared-per-wavelength multi-fiber all-optical switch with parallel scheduling,” Comput. Netw., vol. 53, no. 2, pp. 202–216, Feb.2009.
[CrossRef]

2008 (5)

2007 (1)

M. Jin and O. W. W. Yang, “APOSN: operation, modeling and performance evaluation,” Comput. Netw., vol. 51, no. 6, pp. 1643–1659, Apr.2007.
[CrossRef]

2006 (1)

L. Mason, A. Vinokurov, N. Zhao, and D. Plant, “Topological design and dimensioning of agile all-photonic networks,” Comput. Netw., vol. 50, no. 2, pp. 268–287, Feb.2006.
[CrossRef]

2005 (2)

2004 (4)

C. Papazoglou, G. Papadimitriou, and A. Pomportsis, “Design alternatives for optical-packet-interconnection network architectures,” J. Opt. Netw., vol. 3, no. 11, pp. 810–825, Nov.2004.
[CrossRef]

Y. Li, G. Xiao, and H. Ghafouri Shiraz, “On the benefits of multifiber optical packet switch,” Microwave Opt. Technol. Lett., vol. 43, no. 5, pp. 376–378, Dec.2004.
[CrossRef]

H. S. Yang, M. Herzog, M. Maier, and M. Reisslein, “Metro WDM networks: performance comparison of slotted ring and AWG star networks,” IEEE J. Sel. Areas Commun., vol. 22, no. 8, pp. 1460–1473, Oct.2004.
[CrossRef]

M. Maier and M. Reisslein, “AWG-based metro WDM networking,” IEEE Commun. Mag., vol. 42, no. 11, pp. S19–S26, Nov.2004.
[CrossRef]

2003 (1)

2002 (2)

T. S. El-Bawab and J. D. Shin, “Optical packet switching in core networks: between vision and reality,” IEEE Commun. Mag., vol. 40, no. 9, pp. 60–65, Sept.2002.
[CrossRef]

F. Blouin, A. Lee, and M. Beshai, “Comparison of two optical-core networks,” J. Opt. Netw., vol. 1, no. 1, pp. 56–65, Jan.2002.

2001 (2)

S. Yao, S. J. B. Yoo, B. Mukherjee, and S. Dixit, “All-optical packet switching for metropolitan area networks: opportunities and challenges,” IEEE Commun. Mag., vol. 39, no. 3, pp. 142–148, Mar.2001.

H. Y. Tyan, J. C. Hou, B. Wang, and C. C. Han, “On supporting temporal quality of service in WDMA-based star-coupled optical networks,” IEEE Trans. Comput., vol. 50, no. 3, pp. 197–214, 2001.
[CrossRef]

Al-Zahrani, F. A.

A. G. Fayoumi, F. A. Al-Zahrani, A. A. Habiballa, and A. P. Jayasumana, “Performance analysis of multi-fiber synchronous photonic share-per-link packet switches,” in IEEE LCN, Sydney, 2005, pp. 182–189.

Bergman, K.

Bertsekas, D. P.

D. P. Bertsekas and R. G. Gallager, Data Networks. Prentice Hall, 2004.

Beshai, M.

Biberman, A.

Blouin, F.

Bochmann, G.

C. Peng, G. Bochmann, and T. J. Hall, “Quick Birkhoff–von Neumann decomposition algorithm for agile all-photonic network cores,” in IEEE ICC, Istanbul, 2006, pp. 2593–2598.

S. A. Paredes, G. Bochmann, and T. J. Hall, “Deploying agile photonic networks over reconfigurable optical networks,” in Proc. IEEE ISCC, Sousse, Tunísia, pp. 182–187.

G. Bochmann, “Design of an agile all-photonic network,” in Int. Conf. on Network Architectures, Management, and Applications, Wuhan, 2007.

Bochmann, G. v.

P. He and G. v. Bochmann, “Inter-area shared segment protection of MPLS flows over agile all-photonic star networks,” in IEEE Globecom, Washington DC, 2007, pp. 2325–2330.

Chaubey, V.

V. S. Shekhawat, D. K. Tyagi, and V. Chaubey, “A novel packet switch node architecture for contention resolution in synchronous optical packet switched networks,” Int. J. Commun., Network Syst. Sci., vol. 2, no. 6, pp. 562–568, Sept.2009.
[CrossRef]

Coates, M.

N. Saberi and M. Coates, “Scheduling in overlaid star all-photonic networks with large propagation delays,” Photonic Network Commun., vol. 17, no. 2, pp. 157–169, 2009.
[CrossRef]

Dixit, S.

S. Yao, S. J. B. Yoo, B. Mukherjee, and S. Dixit, “All-optical packet switching for metropolitan area networks: opportunities and challenges,” IEEE Commun. Mag., vol. 39, no. 3, pp. 142–148, Mar.2001.

Elbadawy, H.

K. S. Hamza, H. Elbadawy, and I. Taha, “A novel optical packet switch architecture with reduced wavelength conversion complexity,” in IEEE HONET, Alexandria, 2009, pp. 80–85.

El-Bawab, T. S.

T. S. El-Bawab and J. D. Shin, “Optical packet switching in core networks: between vision and reality,” IEEE Commun. Mag., vol. 40, no. 9, pp. 60–65, Sept.2002.
[CrossRef]

Eramo, V.

Fayoumi, A. G.

A. G. Fayoumi, F. A. Al-Zahrani, A. A. Habiballa, and A. P. Jayasumana, “Performance analysis of multi-fiber synchronous photonic share-per-link packet switches,” in IEEE LCN, Sydney, 2005, pp. 182–189.

Gallager, R. G.

D. P. Bertsekas and R. G. Gallager, Data Networks. Prentice Hall, 2004.

Germoni, A.

Habiballa, A. A.

A. G. Fayoumi, F. A. Al-Zahrani, A. A. Habiballa, and A. P. Jayasumana, “Performance analysis of multi-fiber synchronous photonic share-per-link packet switches,” in IEEE LCN, Sydney, 2005, pp. 182–189.

Hall, T. J.

S. A. Paredes and T. J. Hall, “Flexible bandwidth provision and scheduling in a packet switch with an optical core,” J. Opt. Netw., vol. 4, no. 5, pp. 260–270, May2005.
[CrossRef]

C. Peng, G. Bochmann, and T. J. Hall, “Quick Birkhoff–von Neumann decomposition algorithm for agile all-photonic network cores,” in IEEE ICC, Istanbul, 2006, pp. 2593–2598.

S. A. Paredes, G. Bochmann, and T. J. Hall, “Deploying agile photonic networks over reconfigurable optical networks,” in Proc. IEEE ISCC, Sousse, Tunísia, pp. 182–187.

Hamza, K. S.

K. S. Hamza, H. Elbadawy, and I. Taha, “A novel optical packet switch architecture with reduced wavelength conversion complexity,” in IEEE HONET, Alexandria, 2009, pp. 80–85.

Han, C. C.

H. Y. Tyan, J. C. Hou, B. Wang, and C. C. Han, “On supporting temporal quality of service in WDMA-based star-coupled optical networks,” IEEE Trans. Comput., vol. 50, no. 3, pp. 197–214, 2001.
[CrossRef]

He, P.

P. He and G. v. Bochmann, “Inter-area shared segment protection of MPLS flows over agile all-photonic star networks,” in IEEE Globecom, Washington DC, 2007, pp. 2325–2330.

Herzog, M.

H. S. Yang, M. Herzog, M. Maier, and M. Reisslein, “Metro WDM networks: performance comparison of slotted ring and AWG star networks,” IEEE J. Sel. Areas Commun., vol. 22, no. 8, pp. 1460–1473, Oct.2004.
[CrossRef]

Hou, J. C.

H. Y. Tyan, J. C. Hou, B. Wang, and C. C. Han, “On supporting temporal quality of service in WDMA-based star-coupled optical networks,” IEEE Trans. Comput., vol. 50, no. 3, pp. 197–214, 2001.
[CrossRef]

Jayasumana, A. P.

A. G. Fayoumi, F. A. Al-Zahrani, A. A. Habiballa, and A. P. Jayasumana, “Performance analysis of multi-fiber synchronous photonic share-per-link packet switches,” in IEEE LCN, Sydney, 2005, pp. 182–189.

Jin, M.

M. Jin and O. W. W. Yang, “APOSN: operation, modeling and performance evaluation,” Comput. Netw., vol. 51, no. 6, pp. 1643–1659, Apr.2007.
[CrossRef]

M. Jin and O. Yang, “A TDM solution for all-photonic overlaid-star networks,” in CISS2006, Princeton, 2006, pp. 1691–1695.

Lai, C. P.

Lee, A.

Lee, B. G.

Li, Y.

Y. Li, G. Xiao, and H. Ghafouri Shiraz, “On the benefits of multifiber optical packet switch,” Microwave Opt. Technol. Lett., vol. 43, no. 5, pp. 376–378, Dec.2004.
[CrossRef]

Liboiron-Ladouceur, O.

Listanti, M.

Maier, M.

M. Maier and M. Reisslein, “AWG-based metro WDM networking,” IEEE Commun. Mag., vol. 42, no. 11, pp. S19–S26, Nov.2004.
[CrossRef]

H. S. Yang, M. Herzog, M. Maier, and M. Reisslein, “Metro WDM networks: performance comparison of slotted ring and AWG star networks,” IEEE J. Sel. Areas Commun., vol. 22, no. 8, pp. 1460–1473, Oct.2004.
[CrossRef]

Mason, L.

L. Mason, A. Vinokurov, N. Zhao, and D. Plant, “Topological design and dimensioning of agile all-photonic networks,” Comput. Netw., vol. 50, no. 2, pp. 268–287, Feb.2006.
[CrossRef]

Mukherjee, B.

S. Yao, S. J. B. Yoo, B. Mukherjee, and S. Dixit, “All-optical packet switching for metropolitan area networks: opportunities and challenges,” IEEE Commun. Mag., vol. 39, no. 3, pp. 142–148, Mar.2001.

Pacifici, P.

Papadimitriou, G.

Papazoglou, C.

Paredes, S. A.

S. A. Paredes and T. J. Hall, “Flexible bandwidth provision and scheduling in a packet switch with an optical core,” J. Opt. Netw., vol. 4, no. 5, pp. 260–270, May2005.
[CrossRef]

S. A. Paredes, G. Bochmann, and T. J. Hall, “Deploying agile photonic networks over reconfigurable optical networks,” in Proc. IEEE ISCC, Sousse, Tunísia, pp. 182–187.

Pattavina, A.

Peng, C.

C. Peng, G. Bochmann, and T. J. Hall, “Quick Birkhoff–von Neumann decomposition algorithm for agile all-photonic network cores,” in IEEE ICC, Istanbul, 2006, pp. 2593–2598.

Plant, D.

L. Mason, A. Vinokurov, N. Zhao, and D. Plant, “Topological design and dimensioning of agile all-photonic networks,” Comput. Netw., vol. 50, no. 2, pp. 268–287, Feb.2006.
[CrossRef]

Pomportsis, A.

Raffaelli, C.

V. Eramo, A. Germoni, C. Raffaelli, and M. Savi, “Packet loss analysis of shared-per-wavelength multi-fiber all-optical switch with parallel scheduling,” Comput. Netw., vol. 53, no. 2, pp. 202–216, Feb.2009.
[CrossRef]

V. Eramo, A. Germoni, C. Raffaelli, and M. Savi, “Multifiber shared-per-wavelength all-optical switching: architectures, control, and performance,” J. Lightwave Technol., vol. 26, no. 5, pp. 537–551, Mar.2008.
[CrossRef]

Rahbar, A.

A. Rahbar and O. Yang, “Reducing loss rate in slotted optical networks: a lower bound analysis,” in IEEE ICC, Istanbul, Turkey, 2006, pp. 2770–2775.

Rahbar, A. G.

A. G. Rahbar and O. Yang, “Agile bandwidth management techniques in slotted all-optical packet switched networks,” Comput. Netw., vol. 54, no. 3, pp. 387–403, Feb.2010.
[CrossRef]

A. G. Rahbar and O. Yang, “CST: a new contention reduction scheme in slotted all-optical packet switched networks,” Perform. Eval., vol. 67, no. 5, pp. 361–375, May2010.
[CrossRef]

A. G. Rahbar and O. Yang, “Contention avoidance and resolution schemes in bufferless all-optical packet-switched networks: a survey,” IEEE Commun. Surv. Tutorials, vol. 10, no. 4, pp. 94–107, Dec.2008.
[CrossRef]

Reisslein, M.

M. Maier and M. Reisslein, “AWG-based metro WDM networking,” IEEE Commun. Mag., vol. 42, no. 11, pp. S19–S26, Nov.2004.
[CrossRef]

H. S. Yang, M. Herzog, M. Maier, and M. Reisslein, “Metro WDM networks: performance comparison of slotted ring and AWG star networks,” IEEE J. Sel. Areas Commun., vol. 22, no. 8, pp. 1460–1473, Oct.2004.
[CrossRef]

Saberi, N.

N. Saberi and M. Coates, “Scheduling in overlaid star all-photonic networks with large propagation delays,” Photonic Network Commun., vol. 17, no. 2, pp. 157–169, 2009.
[CrossRef]

Savi, M.

V. Eramo, A. Germoni, C. Raffaelli, and M. Savi, “Packet loss analysis of shared-per-wavelength multi-fiber all-optical switch with parallel scheduling,” Comput. Netw., vol. 53, no. 2, pp. 202–216, Feb.2009.
[CrossRef]

V. Eramo, A. Germoni, C. Raffaelli, and M. Savi, “Multifiber shared-per-wavelength all-optical switching: architectures, control, and performance,” J. Lightwave Technol., vol. 26, no. 5, pp. 537–551, Mar.2008.
[CrossRef]

M. Savi, “High-performance switching architectures for optical networks” [Ph.D. thesis], University of Bologna, Italy, 2007.

Shacham, A.

Shekhawat, V. S.

V. S. Shekhawat, D. K. Tyagi, and V. Chaubey, “A novel packet switch node architecture for contention resolution in synchronous optical packet switched networks,” Int. J. Commun., Network Syst. Sci., vol. 2, no. 6, pp. 562–568, Sept.2009.
[CrossRef]

Shin, J. D.

T. S. El-Bawab and J. D. Shin, “Optical packet switching in core networks: between vision and reality,” IEEE Commun. Mag., vol. 40, no. 9, pp. 60–65, Sept.2002.
[CrossRef]

Shiraz, H. Ghafouri

Y. Li, G. Xiao, and H. Ghafouri Shiraz, “On the benefits of multifiber optical packet switch,” Microwave Opt. Technol. Lett., vol. 43, no. 5, pp. 376–378, Dec.2004.
[CrossRef]

Singh, R. K.

Singh, Y. N.

Small, B. A.

Srivastava, R.

Taha, I.

K. S. Hamza, H. Elbadawy, and I. Taha, “A novel optical packet switch architecture with reduced wavelength conversion complexity,” in IEEE HONET, Alexandria, 2009, pp. 80–85.

Tyagi, D. K.

V. S. Shekhawat, D. K. Tyagi, and V. Chaubey, “A novel packet switch node architecture for contention resolution in synchronous optical packet switched networks,” Int. J. Commun., Network Syst. Sci., vol. 2, no. 6, pp. 562–568, Sept.2009.
[CrossRef]

Tyan, H. Y.

H. Y. Tyan, J. C. Hou, B. Wang, and C. C. Han, “On supporting temporal quality of service in WDMA-based star-coupled optical networks,” IEEE Trans. Comput., vol. 50, no. 3, pp. 197–214, 2001.
[CrossRef]

Vinokurov, A.

L. Mason, A. Vinokurov, N. Zhao, and D. Plant, “Topological design and dimensioning of agile all-photonic networks,” Comput. Netw., vol. 50, no. 2, pp. 268–287, Feb.2006.
[CrossRef]

Wang, B.

H. Y. Tyan, J. C. Hou, B. Wang, and C. C. Han, “On supporting temporal quality of service in WDMA-based star-coupled optical networks,” IEEE Trans. Comput., vol. 50, no. 3, pp. 197–214, 2001.
[CrossRef]

Wang, H.

Xiao, G.

Y. Li, G. Xiao, and H. Ghafouri Shiraz, “On the benefits of multifiber optical packet switch,” Microwave Opt. Technol. Lett., vol. 43, no. 5, pp. 376–378, Dec.2004.
[CrossRef]

Yang, H. S.

H. S. Yang, M. Herzog, M. Maier, and M. Reisslein, “Metro WDM networks: performance comparison of slotted ring and AWG star networks,” IEEE J. Sel. Areas Commun., vol. 22, no. 8, pp. 1460–1473, Oct.2004.
[CrossRef]

Yang, O.

A. G. Rahbar and O. Yang, “Agile bandwidth management techniques in slotted all-optical packet switched networks,” Comput. Netw., vol. 54, no. 3, pp. 387–403, Feb.2010.
[CrossRef]

A. G. Rahbar and O. Yang, “CST: a new contention reduction scheme in slotted all-optical packet switched networks,” Perform. Eval., vol. 67, no. 5, pp. 361–375, May2010.
[CrossRef]

A. G. Rahbar and O. Yang, “Contention avoidance and resolution schemes in bufferless all-optical packet-switched networks: a survey,” IEEE Commun. Surv. Tutorials, vol. 10, no. 4, pp. 94–107, Dec.2008.
[CrossRef]

A. Rahbar and O. Yang, “Reducing loss rate in slotted optical networks: a lower bound analysis,” in IEEE ICC, Istanbul, Turkey, 2006, pp. 2770–2775.

M. Jin and O. Yang, “A TDM solution for all-photonic overlaid-star networks,” in CISS2006, Princeton, 2006, pp. 1691–1695.

Yang, O. W. W.

M. Jin and O. W. W. Yang, “APOSN: operation, modeling and performance evaluation,” Comput. Netw., vol. 51, no. 6, pp. 1643–1659, Apr.2007.
[CrossRef]

Yao, S.

S. Yao, S. J. B. Yoo, B. Mukherjee, and S. Dixit, “All-optical packet switching for metropolitan area networks: opportunities and challenges,” IEEE Commun. Mag., vol. 39, no. 3, pp. 142–148, Mar.2001.

Yoo, S. J. B.

S. Yao, S. J. B. Yoo, B. Mukherjee, and S. Dixit, “All-optical packet switching for metropolitan area networks: opportunities and challenges,” IEEE Commun. Mag., vol. 39, no. 3, pp. 142–148, Mar.2001.

Zhao, N.

L. Mason, A. Vinokurov, N. Zhao, and D. Plant, “Topological design and dimensioning of agile all-photonic networks,” Comput. Netw., vol. 50, no. 2, pp. 268–287, Feb.2006.
[CrossRef]

Comput. Netw. (4)

M. Jin and O. W. W. Yang, “APOSN: operation, modeling and performance evaluation,” Comput. Netw., vol. 51, no. 6, pp. 1643–1659, Apr.2007.
[CrossRef]

L. Mason, A. Vinokurov, N. Zhao, and D. Plant, “Topological design and dimensioning of agile all-photonic networks,” Comput. Netw., vol. 50, no. 2, pp. 268–287, Feb.2006.
[CrossRef]

A. G. Rahbar and O. Yang, “Agile bandwidth management techniques in slotted all-optical packet switched networks,” Comput. Netw., vol. 54, no. 3, pp. 387–403, Feb.2010.
[CrossRef]

V. Eramo, A. Germoni, C. Raffaelli, and M. Savi, “Packet loss analysis of shared-per-wavelength multi-fiber all-optical switch with parallel scheduling,” Comput. Netw., vol. 53, no. 2, pp. 202–216, Feb.2009.
[CrossRef]

IEEE Commun. Mag. (3)

M. Maier and M. Reisslein, “AWG-based metro WDM networking,” IEEE Commun. Mag., vol. 42, no. 11, pp. S19–S26, Nov.2004.
[CrossRef]

S. Yao, S. J. B. Yoo, B. Mukherjee, and S. Dixit, “All-optical packet switching for metropolitan area networks: opportunities and challenges,” IEEE Commun. Mag., vol. 39, no. 3, pp. 142–148, Mar.2001.

T. S. El-Bawab and J. D. Shin, “Optical packet switching in core networks: between vision and reality,” IEEE Commun. Mag., vol. 40, no. 9, pp. 60–65, Sept.2002.
[CrossRef]

IEEE Commun. Surv. Tutorials (1)

A. G. Rahbar and O. Yang, “Contention avoidance and resolution schemes in bufferless all-optical packet-switched networks: a survey,” IEEE Commun. Surv. Tutorials, vol. 10, no. 4, pp. 94–107, Dec.2008.
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

H. S. Yang, M. Herzog, M. Maier, and M. Reisslein, “Metro WDM networks: performance comparison of slotted ring and AWG star networks,” IEEE J. Sel. Areas Commun., vol. 22, no. 8, pp. 1460–1473, Oct.2004.
[CrossRef]

IEEE Trans. Comput. (1)

H. Y. Tyan, J. C. Hou, B. Wang, and C. C. Han, “On supporting temporal quality of service in WDMA-based star-coupled optical networks,” IEEE Trans. Comput., vol. 50, no. 3, pp. 197–214, 2001.
[CrossRef]

Int. J. Commun., Network Syst. Sci. (1)

V. S. Shekhawat, D. K. Tyagi, and V. Chaubey, “A novel packet switch node architecture for contention resolution in synchronous optical packet switched networks,” Int. J. Commun., Network Syst. Sci., vol. 2, no. 6, pp. 562–568, Sept.2009.
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Netw. (4)

Microwave Opt. Technol. Lett. (1)

Y. Li, G. Xiao, and H. Ghafouri Shiraz, “On the benefits of multifiber optical packet switch,” Microwave Opt. Technol. Lett., vol. 43, no. 5, pp. 376–378, Dec.2004.
[CrossRef]

Perform. Eval. (1)

A. G. Rahbar and O. Yang, “CST: a new contention reduction scheme in slotted all-optical packet switched networks,” Perform. Eval., vol. 67, no. 5, pp. 361–375, May2010.
[CrossRef]

Photonic Network Commun. (1)

N. Saberi and M. Coates, “Scheduling in overlaid star all-photonic networks with large propagation delays,” Photonic Network Commun., vol. 17, no. 2, pp. 157–169, 2009.
[CrossRef]

Other (11)

K. S. Hamza, H. Elbadawy, and I. Taha, “A novel optical packet switch architecture with reduced wavelength conversion complexity,” in IEEE HONET, Alexandria, 2009, pp. 80–85.

G. Bochmann, “Design of an agile all-photonic network,” in Int. Conf. on Network Architectures, Management, and Applications, Wuhan, 2007.

S. A. Paredes, G. Bochmann, and T. J. Hall, “Deploying agile photonic networks over reconfigurable optical networks,” in Proc. IEEE ISCC, Sousse, Tunísia, pp. 182–187.

P. He and G. v. Bochmann, “Inter-area shared segment protection of MPLS flows over agile all-photonic star networks,” in IEEE Globecom, Washington DC, 2007, pp. 2325–2330.

C. Peng, G. Bochmann, and T. J. Hall, “Quick Birkhoff–von Neumann decomposition algorithm for agile all-photonic network cores,” in IEEE ICC, Istanbul, 2006, pp. 2593–2598.

M. Jin and O. Yang, “A TDM solution for all-photonic overlaid-star networks,” in CISS2006, Princeton, 2006, pp. 1691–1695.

M. Savi, “High-performance switching architectures for optical networks” [Ph.D. thesis], University of Bologna, Italy, 2007.

A. Rahbar and O. Yang, “Reducing loss rate in slotted optical networks: a lower bound analysis,” in IEEE ICC, Istanbul, Turkey, 2006, pp. 2770–2775.

D. P. Bertsekas and R. G. Gallager, Data Networks. Prentice Hall, 2004.

A. G. Fayoumi, F. A. Al-Zahrani, A. A. Habiballa, and A. P. Jayasumana, “Performance analysis of multi-fiber synchronous photonic share-per-link packet switches,” in IEEE LCN, Sydney, 2005, pp. 182–189.

Transition Networks, “Quality of service (QoS) in high-priority applications,” White Paper, 2003 [Online]. Available: http://www.transition.com/TransitionNetworks/Learning/Whitepaper/Qos.aspx.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(Color online) Overlaid network model.

Fig. 2
Fig. 2

Slot transmission protocol at V=1.

Fig. 3
Fig. 3

Distribution of empty slots at n=5,W=3, and E=2.

Fig. 4
Fig. 4

Pseudocode of uniform distribution of E values inside set Es.

Fig. 5
Fig. 5

Distribution of empty slots at n=17 and E=7.

Fig. 6
Fig. 6

Pseudocode of scheduling in edge node r for frame F(n,E,w).

Fig. 7
Fig. 7

An nf-slot-set with n=6,f=2, and E=1 on channel λw in a given time-slot.

Fig. 8
Fig. 8

(Color online) Analytical comparison of SLP in IPT and PTES.

Fig. 9
Fig. 9

(Color online) Analysis and simulation results of PTES delay performance.

Fig. 10
Fig. 10

(Color online) Slot loss probability (SLP) and delay at f=1,f=2, and f=4.

Tables (3)

Tables Icon

Table I General Symbols and Notations

Tables Icon

Table II Distribution of Empty Slots on λw at n=8,E=3, and bw=4, Where the Left Column Shows Ingress Node Numbers (From 0 to 7)

Tables Icon

Table III Distribution of Empty Slots on Wavelength λw at n=14, E=4, and bw=0, Where the Left Column Shows Ingress Node Numbers (From 0 to 13)

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

bw=(w×E)modn.
Λi=Hi¯+QiBa×SI×(TO+Tu),
Λ=1ni=1nΛi.
g=mmod(n+E).
Ts,i=Tl(Di+2×Dmax+τs+1).
nc=n×fE×fMc(n1)Mcif Mc0if M<c,
nt=n×fE×fnM,
px=nxnt,if 0xM.
Prob.{X=j}=Wj(p0)j(1p0)Wj,
Prob.{Yi=y}=py1p0,where y>0.
k=1uProb.{Yk=yk}.
αj,y1,y2,,yu=maxk=1u(ykmin(f,yk))minNWC,f×j+k=1umax(0,fyk),0.
nloss¯=j=0WProb.{X=j}×1y1M1yuMk=1uProb.{Yk=yk}×αj,y1,y2,,yu=j=0WProb.{X=j}×1y1M1yuMpy1×py2××pyu(1p0)u×αj,y1,y2,,yu,
Loss(n,f,W,E)=nM×Wj=0WProb.{X=j}×1y1M1yuMpy1×py2××pyu(1p0)u×αj,y1,y2,,yu.
SLR(n,f,W,Ea)=(Kφ)×Lossn,f,W,Eaf+φ×Lossn,f,W,EafK,
d1+d2=nE,
d1×c1+d2×c2=n.
d1=n(nE)×c2c1c2=n(nE)×c2,d2=(nE)×c1nc1c2=(nE)×c1n.
Delay=1μ+L×(1/μ2+σ2)2×(1ρ)+0.5,