Abstract

This work proposes and devises a self-healing hybrid tree/ring-based 10G-EPON architecture that enables the support of a converged PON–4G LTE access networking transport infrastructure to seamlessly backhaul both mobile and wireline business and residential services. The salient feature of the proposed architecture is that it supports a fully distributed control plane that enables intercommunication among the access nodes (optical network units—ONUs) as well as signaling, scheduling algorithms, and fault detection and recovery mechanisms. The distributed control plane enables each and every ONU to independently detect, manage, and recover most of the networking failure scenarios. This paper outlines and addresses the key technical requirements and differences between a PON-based converged architecture that utilizes a typically centralized architecture as the wireless segment of the hybrid architecture (e.g., Wi-Fi) versus one which utilizes a fully distributed architecture (e.g., 4G LTE). Physical layer performance simulations for the proposed architecture are also presented that show error free performance for the scalable architecture.

© 2012 OSA

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription