Abstract

To reduce the nonlinear distortion in electrical devices, optical modulators, and transmission fiber, we adopt a companding transform coding technique to reduce the peak-to-average power ratio of the orthogonal frequency division multiplexing (OFDM) signal in an OFDM radio-over-fiber system. By adopting this technique, our experimental results show that the receiver sensitivity at a bit error ratio of 1×103 for a 2.98 Gb/s OFDM signal carried on a 60 GHz optical millimeter-wave after 50 km of standard single-mode fiber transmission is improved by about 0.6, 2.2, and 3.8 dB at launch powers of 0, 6, and 12 dBm, respectively.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol., vol. 27, no. 3, pp. 189–204, 2009.
    [CrossRef]
  2. A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol., vol. 25, no. 1, pp. 131–138, 2007.
    [CrossRef]
  3. Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett., vol. 22, no. 11, pp. 736–738, 2010.
    [CrossRef]
  4. W. R. Peng, B. Zhang, K. M. Feng, X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightwave Technol., vol. 27, no. 24, pp. 5723–5735, 2009.
    [CrossRef]
  5. S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol., vol. 26, no. 1, pp. 6–15, 2008.
    [CrossRef]
  6. J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1545–1547, 2008.
    [CrossRef]
  7. Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, and L. Chen, “WDM-RoF-PON architecture for flexible wireless and wire-line layoutThe JOCN article with the authors, volume, issue, page numbers, and year provided here has a different title from the original title provided for Ref. 7. I have replaced with the correct JOCN title. The original title provided was “A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system” and is a J. Lightwave Technol. paper with the following citation: Lin Chen, J. G. Yu, Shuangchun Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A Novel Scheme for Seamless Integration of ROF With Centralized Lightwave OFDM-WDM-PON System,” J. Lightwave Technol. 27, 2786-2791 (2009). Which is meant for Ref. 7?,” J. Opt. Commun. Netw., vol. 2, no. 2, pp. 117–121, 2010.
    [CrossRef]
  8. Z. Cao, J. Yu, M. Xia, Q. Tang, Y. Gao, W. Wang, and L. Chen, “Reduction of intersubcarrier interference and frequency-selective fading in OFDM-ROF systems,” J. Lightwave Technol., vol. 28, no. 16, pp. 2423–2429, 2010.
    [CrossRef]
  9. W. Jian, C. Liu, H. C. Chien, S. H. Fan, J. G. Yu, J. Wang, Z. Dong, J. Yu, C. Yu, and G. K. Chang, “QPSK-OFDM radio over polymer optical fiber for broadband in-building 60 GHz wireless access,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2010, OTuF3.
  10. W. Jiang, C. T. Lin, A. Ng’oma, P. T. Shih, J. Chen, M. Sauer, F. Annunziata, and S. Chi, “Simple 14-Gb/s short-range radio-over-fiber system employing a single-electrode MZM for 60-GHz wireless applications,” J. Lightwave Technol., vol. 28, no. 16, pp. 2238–2246, 2010.
    [CrossRef]
  11. C. T. Lin, J. Chen, P. T. Shih, W. Jiang, and S. Chi, “Ultra-high data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and OFDM formats,” J. Lightwave Technol., vol. 28, no. 16, pp. 2296–2306, 2010.
    [CrossRef]
  12. C. T. Lin, C. C. Wei, and M. Chao, “Phase noise suppression of optical OFDM signals in 60-GHz RoF transmission system,” Opt. Express, vol. 19, no. 11, pp. 10423–10428, 2011.
    [CrossRef] [PubMed]
  13. Z. Dong, Z. Cao, J. Lu, Y. Li, L. Chen, and S. Wen, “Transmission performance of optical OFDM signals with low peak-to-average power ratio by a phase modulator,” Opt. Commun., vol. 282, no. 21, pp. 4194–4197, 2009.
    [CrossRef]
  14. S.-H. Fan, J. Yu, and G.-K. Chang, “Optical OFDM scheme using uniform power transmission to mitigate peak-to-average power effect over 1040 km single-mode fiberRef. 14 had incorrect volume and issue numbers. Originally it said vol. 3, no. 2. Please check that this is the reference you mean.,” J. Opt. Commun. Netw., vol. 2, no. 9, pp. 711–715, 2010.
    [CrossRef]
  15. L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, “A novel radio-over-fiber system with wavelength reuse for upstream data connection,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 387–389, 2007.
    [CrossRef]
  16. L. Chen, S. Wen, Y. Li, J. He, H. Wen, Y. Shao, Z. Dong, and Y. Pi, “Optical front-ends to generate optical millimeter-wave signal in radio-over-fiber systems with different architectures,” J. Lightwave Technol., vol. 25, no. 11, pp. 3381–3387, 2007.
    [CrossRef]
  17. J. Ma, X. Xin, J. Yu, C. Yu, K. Wang, H. Huang, and L. Rao, “Optical millimeter-wave generated by octupling the frequency of the local oscillator,” J. Opt. Netw., vol. 7, no. 10, pp. 837–845, 2008.
    [CrossRef]
  18. J. Ma, “5 Gbit/s full-duplex radio-over-fiber link with optical millimeter-wave generation by quadrupling the frequency of the electrical RF carrier,” Ref. 18 had incorrect volume and page numbers based on the title and author and has been fixed. Please check that this is the reference you intended.J. Opt. Commun. Netw., vol. 3, no. 2, pp. 127–133, 2011.
    [CrossRef]
  19. S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun., vol. 12, no. 2, pp. 56–65, 2005.
    [CrossRef]
  20. S. H. Han and J. H. Lee, “Modified selected mapping technique for PAPR reduction of coded OFDM signal,” IEEE Trans. Broadcast., vol. 50, no. 3, pp. 335–341, 2004.
    [CrossRef]
  21. S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron. Lett., vol. 33, no. 5, pp. 368–369, 1997.
    [CrossRef]
  22. X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, no. 5, pp. 131–133, 1998.
    [CrossRef]
  23. X. Wang, T. T. Tjhung, and C. S. Ng, “Reduction of peak-to-average power ratio of OFDM system using a companding technique,” IEEE Trans. Broadcast., vol. 45, no. 3, pp. 303–307, 1999.
    [CrossRef]
  24. X. Wang, T. T. Tjhung, and C. S. Ng, “Reply to the comments on “Reduction of peak-to-average power ratio of OFDM system using a companding technique”,” IEEE Trans. Broadcast., vol. 45, no. 4, pp. 420–422, 1999.
    [CrossRef]
  25. A. Mattsson, G. Mendenhall, and T. D. Harris, “Comments on: “Reduction of peak-to-average power ratio of OFDM system using a companding technique”,” IEEE Trans. Broadcast., vol. 45, no. 4, pp. 418–419, 1999.
    [CrossRef]
  26. X. Huang, J. Lu, J. Zheng, K. B. Letaief, and J. Gu, “Companding transform for reduction in peak-to-average power ratio of OFDM signals,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2030–2039, 2004.
    [CrossRef]
  27. J. Hou, J. Ge, D. Zhai, and J. Li, “Peak-to-average power ratio reduction of OFDM signals with nonlinear companding scheme,” IEEE Trans. Broadcast., vol. 56, no. 2, pp. 258–262, 2010.
    [CrossRef]
  28. L. Hanzo and T. Keller, OFDM and MC-CDMA: A Primer. 2006.Because several major errors were found in the references, you should closely check all the references for accuracy.

2011 (2)

2010 (7)

Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, and L. Chen, “WDM-RoF-PON architecture for flexible wireless and wire-line layoutThe JOCN article with the authors, volume, issue, page numbers, and year provided here has a different title from the original title provided for Ref. 7. I have replaced with the correct JOCN title. The original title provided was “A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system” and is a J. Lightwave Technol. paper with the following citation: Lin Chen, J. G. Yu, Shuangchun Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A Novel Scheme for Seamless Integration of ROF With Centralized Lightwave OFDM-WDM-PON System,” J. Lightwave Technol. 27, 2786-2791 (2009). Which is meant for Ref. 7?,” J. Opt. Commun. Netw., vol. 2, no. 2, pp. 117–121, 2010.
[CrossRef]

W. Jiang, C. T. Lin, A. Ng’oma, P. T. Shih, J. Chen, M. Sauer, F. Annunziata, and S. Chi, “Simple 14-Gb/s short-range radio-over-fiber system employing a single-electrode MZM for 60-GHz wireless applications,” J. Lightwave Technol., vol. 28, no. 16, pp. 2238–2246, 2010.
[CrossRef]

C. T. Lin, J. Chen, P. T. Shih, W. Jiang, and S. Chi, “Ultra-high data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and OFDM formats,” J. Lightwave Technol., vol. 28, no. 16, pp. 2296–2306, 2010.
[CrossRef]

Z. Cao, J. Yu, M. Xia, Q. Tang, Y. Gao, W. Wang, and L. Chen, “Reduction of intersubcarrier interference and frequency-selective fading in OFDM-ROF systems,” J. Lightwave Technol., vol. 28, no. 16, pp. 2423–2429, 2010.
[CrossRef]

S.-H. Fan, J. Yu, and G.-K. Chang, “Optical OFDM scheme using uniform power transmission to mitigate peak-to-average power effect over 1040 km single-mode fiberRef. 14 had incorrect volume and issue numbers. Originally it said vol. 3, no. 2. Please check that this is the reference you mean.,” J. Opt. Commun. Netw., vol. 2, no. 9, pp. 711–715, 2010.
[CrossRef]

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett., vol. 22, no. 11, pp. 736–738, 2010.
[CrossRef]

J. Hou, J. Ge, D. Zhai, and J. Li, “Peak-to-average power ratio reduction of OFDM signals with nonlinear companding scheme,” IEEE Trans. Broadcast., vol. 56, no. 2, pp. 258–262, 2010.
[CrossRef]

2009 (3)

2008 (3)

2007 (3)

2005 (1)

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun., vol. 12, no. 2, pp. 56–65, 2005.
[CrossRef]

2004 (2)

S. H. Han and J. H. Lee, “Modified selected mapping technique for PAPR reduction of coded OFDM signal,” IEEE Trans. Broadcast., vol. 50, no. 3, pp. 335–341, 2004.
[CrossRef]

X. Huang, J. Lu, J. Zheng, K. B. Letaief, and J. Gu, “Companding transform for reduction in peak-to-average power ratio of OFDM signals,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2030–2039, 2004.
[CrossRef]

1999 (3)

X. Wang, T. T. Tjhung, and C. S. Ng, “Reduction of peak-to-average power ratio of OFDM system using a companding technique,” IEEE Trans. Broadcast., vol. 45, no. 3, pp. 303–307, 1999.
[CrossRef]

X. Wang, T. T. Tjhung, and C. S. Ng, “Reply to the comments on “Reduction of peak-to-average power ratio of OFDM system using a companding technique”,” IEEE Trans. Broadcast., vol. 45, no. 4, pp. 420–422, 1999.
[CrossRef]

A. Mattsson, G. Mendenhall, and T. D. Harris, “Comments on: “Reduction of peak-to-average power ratio of OFDM system using a companding technique”,” IEEE Trans. Broadcast., vol. 45, no. 4, pp. 418–419, 1999.
[CrossRef]

1998 (1)

X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, no. 5, pp. 131–133, 1998.
[CrossRef]

1997 (1)

S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron. Lett., vol. 33, no. 5, pp. 368–369, 1997.
[CrossRef]

Annunziata, F.

Armstrong, J.

Cao, Z.

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett., vol. 22, no. 11, pp. 736–738, 2010.
[CrossRef]

Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, and L. Chen, “WDM-RoF-PON architecture for flexible wireless and wire-line layoutThe JOCN article with the authors, volume, issue, page numbers, and year provided here has a different title from the original title provided for Ref. 7. I have replaced with the correct JOCN title. The original title provided was “A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system” and is a J. Lightwave Technol. paper with the following citation: Lin Chen, J. G. Yu, Shuangchun Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A Novel Scheme for Seamless Integration of ROF With Centralized Lightwave OFDM-WDM-PON System,” J. Lightwave Technol. 27, 2786-2791 (2009). Which is meant for Ref. 7?,” J. Opt. Commun. Netw., vol. 2, no. 2, pp. 117–121, 2010.
[CrossRef]

Z. Cao, J. Yu, M. Xia, Q. Tang, Y. Gao, W. Wang, and L. Chen, “Reduction of intersubcarrier interference and frequency-selective fading in OFDM-ROF systems,” J. Lightwave Technol., vol. 28, no. 16, pp. 2423–2429, 2010.
[CrossRef]

Z. Dong, Z. Cao, J. Lu, Y. Li, L. Chen, and S. Wen, “Transmission performance of optical OFDM signals with low peak-to-average power ratio by a phase modulator,” Opt. Commun., vol. 282, no. 21, pp. 4194–4197, 2009.
[CrossRef]

Chang, G. K.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1545–1547, 2008.
[CrossRef]

W. Jian, C. Liu, H. C. Chien, S. H. Fan, J. G. Yu, J. Wang, Z. Dong, J. Yu, C. Yu, and G. K. Chang, “QPSK-OFDM radio over polymer optical fiber for broadband in-building 60 GHz wireless access,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2010, OTuF3.

Chang, G.-K.

Chao, M.

Chen, J.

Chen, L.

Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, and L. Chen, “WDM-RoF-PON architecture for flexible wireless and wire-line layoutThe JOCN article with the authors, volume, issue, page numbers, and year provided here has a different title from the original title provided for Ref. 7. I have replaced with the correct JOCN title. The original title provided was “A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system” and is a J. Lightwave Technol. paper with the following citation: Lin Chen, J. G. Yu, Shuangchun Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A Novel Scheme for Seamless Integration of ROF With Centralized Lightwave OFDM-WDM-PON System,” J. Lightwave Technol. 27, 2786-2791 (2009). Which is meant for Ref. 7?,” J. Opt. Commun. Netw., vol. 2, no. 2, pp. 117–121, 2010.
[CrossRef]

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett., vol. 22, no. 11, pp. 736–738, 2010.
[CrossRef]

Z. Cao, J. Yu, M. Xia, Q. Tang, Y. Gao, W. Wang, and L. Chen, “Reduction of intersubcarrier interference and frequency-selective fading in OFDM-ROF systems,” J. Lightwave Technol., vol. 28, no. 16, pp. 2423–2429, 2010.
[CrossRef]

Z. Dong, Z. Cao, J. Lu, Y. Li, L. Chen, and S. Wen, “Transmission performance of optical OFDM signals with low peak-to-average power ratio by a phase modulator,” Opt. Commun., vol. 282, no. 21, pp. 4194–4197, 2009.
[CrossRef]

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1545–1547, 2008.
[CrossRef]

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, “A novel radio-over-fiber system with wavelength reuse for upstream data connection,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 387–389, 2007.
[CrossRef]

L. Chen, S. Wen, Y. Li, J. He, H. Wen, Y. Shao, Z. Dong, and Y. Pi, “Optical front-ends to generate optical millimeter-wave signal in radio-over-fiber systems with different architectures,” J. Lightwave Technol., vol. 25, no. 11, pp. 3381–3387, 2007.
[CrossRef]

Chi, S.

Chien, H. C.

W. Jian, C. Liu, H. C. Chien, S. H. Fan, J. G. Yu, J. Wang, Z. Dong, J. Yu, C. Yu, and G. K. Chang, “QPSK-OFDM radio over polymer optical fiber for broadband in-building 60 GHz wireless access,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2010, OTuF3.

Cimini, L. J.

X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, no. 5, pp. 131–133, 1998.
[CrossRef]

Dong, Z.

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett., vol. 22, no. 11, pp. 736–738, 2010.
[CrossRef]

Z. Dong, Z. Cao, J. Lu, Y. Li, L. Chen, and S. Wen, “Transmission performance of optical OFDM signals with low peak-to-average power ratio by a phase modulator,” Opt. Commun., vol. 282, no. 21, pp. 4194–4197, 2009.
[CrossRef]

L. Chen, S. Wen, Y. Li, J. He, H. Wen, Y. Shao, Z. Dong, and Y. Pi, “Optical front-ends to generate optical millimeter-wave signal in radio-over-fiber systems with different architectures,” J. Lightwave Technol., vol. 25, no. 11, pp. 3381–3387, 2007.
[CrossRef]

W. Jian, C. Liu, H. C. Chien, S. H. Fan, J. G. Yu, J. Wang, Z. Dong, J. Yu, C. Yu, and G. K. Chang, “QPSK-OFDM radio over polymer optical fiber for broadband in-building 60 GHz wireless access,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2010, OTuF3.

Du, L. B.

Fan, S. H.

W. Jian, C. Liu, H. C. Chien, S. H. Fan, J. G. Yu, J. Wang, Z. Dong, J. Yu, C. Yu, and G. K. Chang, “QPSK-OFDM radio over polymer optical fiber for broadband in-building 60 GHz wireless access,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2010, OTuF3.

Fan, S.-H.

Feng, K. M.

Gao, Y.

Ge, J.

J. Hou, J. Ge, D. Zhai, and J. Li, “Peak-to-average power ratio reduction of OFDM signals with nonlinear companding scheme,” IEEE Trans. Broadcast., vol. 56, no. 2, pp. 258–262, 2010.
[CrossRef]

Gu, J.

X. Huang, J. Lu, J. Zheng, K. B. Letaief, and J. Gu, “Companding transform for reduction in peak-to-average power ratio of OFDM signals,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2030–2039, 2004.
[CrossRef]

Han, S. H.

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun., vol. 12, no. 2, pp. 56–65, 2005.
[CrossRef]

S. H. Han and J. H. Lee, “Modified selected mapping technique for PAPR reduction of coded OFDM signal,” IEEE Trans. Broadcast., vol. 50, no. 3, pp. 335–341, 2004.
[CrossRef]

Hanzo, L.

L. Hanzo and T. Keller, OFDM and MC-CDMA: A Primer. 2006.Because several major errors were found in the references, you should closely check all the references for accuracy.

Harris, T. D.

A. Mattsson, G. Mendenhall, and T. D. Harris, “Comments on: “Reduction of peak-to-average power ratio of OFDM system using a companding technique”,” IEEE Trans. Broadcast., vol. 45, no. 4, pp. 418–419, 1999.
[CrossRef]

He, J.

Hou, J.

J. Hou, J. Ge, D. Zhai, and J. Li, “Peak-to-average power ratio reduction of OFDM signals with nonlinear companding scheme,” IEEE Trans. Broadcast., vol. 56, no. 2, pp. 258–262, 2010.
[CrossRef]

Huang, H.

Huang, M. F.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1545–1547, 2008.
[CrossRef]

Huang, X.

X. Huang, J. Lu, J. Zheng, K. B. Letaief, and J. Gu, “Companding transform for reduction in peak-to-average power ratio of OFDM signals,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2030–2039, 2004.
[CrossRef]

Huber, J. B.

S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron. Lett., vol. 33, no. 5, pp. 368–369, 1997.
[CrossRef]

Jansen, S. L.

Jian, W.

W. Jian, C. Liu, H. C. Chien, S. H. Fan, J. G. Yu, J. Wang, Z. Dong, J. Yu, C. Yu, and G. K. Chang, “QPSK-OFDM radio over polymer optical fiber for broadband in-building 60 GHz wireless access,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2010, OTuF3.

Jiang, W.

Keller, T.

L. Hanzo and T. Keller, OFDM and MC-CDMA: A Primer. 2006.Because several major errors were found in the references, you should closely check all the references for accuracy.

Lee, J. H.

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun., vol. 12, no. 2, pp. 56–65, 2005.
[CrossRef]

S. H. Han and J. H. Lee, “Modified selected mapping technique for PAPR reduction of coded OFDM signal,” IEEE Trans. Broadcast., vol. 50, no. 3, pp. 335–341, 2004.
[CrossRef]

Lei, X.

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, “A novel radio-over-fiber system with wavelength reuse for upstream data connection,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 387–389, 2007.
[CrossRef]

Letaief, K. B.

X. Huang, J. Lu, J. Zheng, K. B. Letaief, and J. Gu, “Companding transform for reduction in peak-to-average power ratio of OFDM signals,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2030–2039, 2004.
[CrossRef]

Li, J.

J. Hou, J. Ge, D. Zhai, and J. Li, “Peak-to-average power ratio reduction of OFDM signals with nonlinear companding scheme,” IEEE Trans. Broadcast., vol. 56, no. 2, pp. 258–262, 2010.
[CrossRef]

Li, X.

X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, no. 5, pp. 131–133, 1998.
[CrossRef]

Li, Y.

Z. Dong, Z. Cao, J. Lu, Y. Li, L. Chen, and S. Wen, “Transmission performance of optical OFDM signals with low peak-to-average power ratio by a phase modulator,” Opt. Commun., vol. 282, no. 21, pp. 4194–4197, 2009.
[CrossRef]

L. Chen, S. Wen, Y. Li, J. He, H. Wen, Y. Shao, Z. Dong, and Y. Pi, “Optical front-ends to generate optical millimeter-wave signal in radio-over-fiber systems with different architectures,” J. Lightwave Technol., vol. 25, no. 11, pp. 3381–3387, 2007.
[CrossRef]

Lin, C. T.

Liu, C.

W. Jian, C. Liu, H. C. Chien, S. H. Fan, J. G. Yu, J. Wang, Z. Dong, J. Yu, C. Yu, and G. K. Chang, “QPSK-OFDM radio over polymer optical fiber for broadband in-building 60 GHz wireless access,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2010, OTuF3.

Lowery, A. J.

Lu, J.

Z. Dong, Z. Cao, J. Lu, Y. Li, L. Chen, and S. Wen, “Transmission performance of optical OFDM signals with low peak-to-average power ratio by a phase modulator,” Opt. Commun., vol. 282, no. 21, pp. 4194–4197, 2009.
[CrossRef]

X. Huang, J. Lu, J. Zheng, K. B. Letaief, and J. Gu, “Companding transform for reduction in peak-to-average power ratio of OFDM signals,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2030–2039, 2004.
[CrossRef]

Ma, J.

Mattsson, A.

A. Mattsson, G. Mendenhall, and T. D. Harris, “Comments on: “Reduction of peak-to-average power ratio of OFDM system using a companding technique”,” IEEE Trans. Broadcast., vol. 45, no. 4, pp. 418–419, 1999.
[CrossRef]

Mendenhall, G.

A. Mattsson, G. Mendenhall, and T. D. Harris, “Comments on: “Reduction of peak-to-average power ratio of OFDM system using a companding technique”,” IEEE Trans. Broadcast., vol. 45, no. 4, pp. 418–419, 1999.
[CrossRef]

Morita, I.

Muller, S. H.

S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron. Lett., vol. 33, no. 5, pp. 368–369, 1997.
[CrossRef]

Ng, C. S.

X. Wang, T. T. Tjhung, and C. S. Ng, “Reply to the comments on “Reduction of peak-to-average power ratio of OFDM system using a companding technique”,” IEEE Trans. Broadcast., vol. 45, no. 4, pp. 420–422, 1999.
[CrossRef]

X. Wang, T. T. Tjhung, and C. S. Ng, “Reduction of peak-to-average power ratio of OFDM system using a companding technique,” IEEE Trans. Broadcast., vol. 45, no. 3, pp. 303–307, 1999.
[CrossRef]

Ng’oma, A.

Peng, W. R.

Pi, Y.

Qian, D.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1545–1547, 2008.
[CrossRef]

Rao, L.

Sauer, M.

Schenk, T. C. W.

Shao, Y.

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, “A novel radio-over-fiber system with wavelength reuse for upstream data connection,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 387–389, 2007.
[CrossRef]

L. Chen, S. Wen, Y. Li, J. He, H. Wen, Y. Shao, Z. Dong, and Y. Pi, “Optical front-ends to generate optical millimeter-wave signal in radio-over-fiber systems with different architectures,” J. Lightwave Technol., vol. 25, no. 11, pp. 3381–3387, 2007.
[CrossRef]

Shih, P. T.

Takeda, N.

Tanaka, H.

Tang, Q.

Tjhung, T. T.

X. Wang, T. T. Tjhung, and C. S. Ng, “Reply to the comments on “Reduction of peak-to-average power ratio of OFDM system using a companding technique”,” IEEE Trans. Broadcast., vol. 45, no. 4, pp. 420–422, 1999.
[CrossRef]

X. Wang, T. T. Tjhung, and C. S. Ng, “Reduction of peak-to-average power ratio of OFDM system using a companding technique,” IEEE Trans. Broadcast., vol. 45, no. 3, pp. 303–307, 1999.
[CrossRef]

Wang, J.

Wang, K.

Wang, W.

Wang, X.

X. Wang, T. T. Tjhung, and C. S. Ng, “Reduction of peak-to-average power ratio of OFDM system using a companding technique,” IEEE Trans. Broadcast., vol. 45, no. 3, pp. 303–307, 1999.
[CrossRef]

X. Wang, T. T. Tjhung, and C. S. Ng, “Reply to the comments on “Reduction of peak-to-average power ratio of OFDM system using a companding technique”,” IEEE Trans. Broadcast., vol. 45, no. 4, pp. 420–422, 1999.
[CrossRef]

Wei, C. C.

Wen, H.

L. Chen, S. Wen, Y. Li, J. He, H. Wen, Y. Shao, Z. Dong, and Y. Pi, “Optical front-ends to generate optical millimeter-wave signal in radio-over-fiber systems with different architectures,” J. Lightwave Technol., vol. 25, no. 11, pp. 3381–3387, 2007.
[CrossRef]

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, “A novel radio-over-fiber system with wavelength reuse for upstream data connection,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 387–389, 2007.
[CrossRef]

Wen, S.

Z. Dong, Z. Cao, J. Lu, Y. Li, L. Chen, and S. Wen, “Transmission performance of optical OFDM signals with low peak-to-average power ratio by a phase modulator,” Opt. Commun., vol. 282, no. 21, pp. 4194–4197, 2009.
[CrossRef]

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, “A novel radio-over-fiber system with wavelength reuse for upstream data connection,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 387–389, 2007.
[CrossRef]

L. Chen, S. Wen, Y. Li, J. He, H. Wen, Y. Shao, Z. Dong, and Y. Pi, “Optical front-ends to generate optical millimeter-wave signal in radio-over-fiber systems with different architectures,” J. Lightwave Technol., vol. 25, no. 11, pp. 3381–3387, 2007.
[CrossRef]

Willner, A. E.

Wu, X.

Xia, M.

Xin, X.

Yu, C.

J. Ma, X. Xin, J. Yu, C. Yu, K. Wang, H. Huang, and L. Rao, “Optical millimeter-wave generated by octupling the frequency of the local oscillator,” J. Opt. Netw., vol. 7, no. 10, pp. 837–845, 2008.
[CrossRef]

W. Jian, C. Liu, H. C. Chien, S. H. Fan, J. G. Yu, J. Wang, Z. Dong, J. Yu, C. Yu, and G. K. Chang, “QPSK-OFDM radio over polymer optical fiber for broadband in-building 60 GHz wireless access,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2010, OTuF3.

Yu, J.

Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, and L. Chen, “WDM-RoF-PON architecture for flexible wireless and wire-line layoutThe JOCN article with the authors, volume, issue, page numbers, and year provided here has a different title from the original title provided for Ref. 7. I have replaced with the correct JOCN title. The original title provided was “A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system” and is a J. Lightwave Technol. paper with the following citation: Lin Chen, J. G. Yu, Shuangchun Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A Novel Scheme for Seamless Integration of ROF With Centralized Lightwave OFDM-WDM-PON System,” J. Lightwave Technol. 27, 2786-2791 (2009). Which is meant for Ref. 7?,” J. Opt. Commun. Netw., vol. 2, no. 2, pp. 117–121, 2010.
[CrossRef]

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett., vol. 22, no. 11, pp. 736–738, 2010.
[CrossRef]

Z. Cao, J. Yu, M. Xia, Q. Tang, Y. Gao, W. Wang, and L. Chen, “Reduction of intersubcarrier interference and frequency-selective fading in OFDM-ROF systems,” J. Lightwave Technol., vol. 28, no. 16, pp. 2423–2429, 2010.
[CrossRef]

S.-H. Fan, J. Yu, and G.-K. Chang, “Optical OFDM scheme using uniform power transmission to mitigate peak-to-average power effect over 1040 km single-mode fiberRef. 14 had incorrect volume and issue numbers. Originally it said vol. 3, no. 2. Please check that this is the reference you mean.,” J. Opt. Commun. Netw., vol. 2, no. 9, pp. 711–715, 2010.
[CrossRef]

J. Ma, X. Xin, J. Yu, C. Yu, K. Wang, H. Huang, and L. Rao, “Optical millimeter-wave generated by octupling the frequency of the local oscillator,” J. Opt. Netw., vol. 7, no. 10, pp. 837–845, 2008.
[CrossRef]

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1545–1547, 2008.
[CrossRef]

W. Jian, C. Liu, H. C. Chien, S. H. Fan, J. G. Yu, J. Wang, Z. Dong, J. Yu, C. Yu, and G. K. Chang, “QPSK-OFDM radio over polymer optical fiber for broadband in-building 60 GHz wireless access,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2010, OTuF3.

Yu, J. G.

W. Jian, C. Liu, H. C. Chien, S. H. Fan, J. G. Yu, J. Wang, Z. Dong, J. Yu, C. Yu, and G. K. Chang, “QPSK-OFDM radio over polymer optical fiber for broadband in-building 60 GHz wireless access,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2010, OTuF3.

Zhai, D.

J. Hou, J. Ge, D. Zhai, and J. Li, “Peak-to-average power ratio reduction of OFDM signals with nonlinear companding scheme,” IEEE Trans. Broadcast., vol. 56, no. 2, pp. 258–262, 2010.
[CrossRef]

Zhang, B.

Zheng, J.

X. Huang, J. Lu, J. Zheng, K. B. Letaief, and J. Gu, “Companding transform for reduction in peak-to-average power ratio of OFDM signals,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2030–2039, 2004.
[CrossRef]

Zhou, H.

Electron. Lett. (1)

S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron. Lett., vol. 33, no. 5, pp. 368–369, 1997.
[CrossRef]

IEEE Commun. Lett. (1)

X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, no. 5, pp. 131–133, 1998.
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett., vol. 22, no. 11, pp. 736–738, 2010.
[CrossRef]

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1545–1547, 2008.
[CrossRef]

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, “A novel radio-over-fiber system with wavelength reuse for upstream data connection,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 387–389, 2007.
[CrossRef]

IEEE Trans. Broadcast. (5)

J. Hou, J. Ge, D. Zhai, and J. Li, “Peak-to-average power ratio reduction of OFDM signals with nonlinear companding scheme,” IEEE Trans. Broadcast., vol. 56, no. 2, pp. 258–262, 2010.
[CrossRef]

X. Wang, T. T. Tjhung, and C. S. Ng, “Reduction of peak-to-average power ratio of OFDM system using a companding technique,” IEEE Trans. Broadcast., vol. 45, no. 3, pp. 303–307, 1999.
[CrossRef]

X. Wang, T. T. Tjhung, and C. S. Ng, “Reply to the comments on “Reduction of peak-to-average power ratio of OFDM system using a companding technique”,” IEEE Trans. Broadcast., vol. 45, no. 4, pp. 420–422, 1999.
[CrossRef]

A. Mattsson, G. Mendenhall, and T. D. Harris, “Comments on: “Reduction of peak-to-average power ratio of OFDM system using a companding technique”,” IEEE Trans. Broadcast., vol. 45, no. 4, pp. 418–419, 1999.
[CrossRef]

S. H. Han and J. H. Lee, “Modified selected mapping technique for PAPR reduction of coded OFDM signal,” IEEE Trans. Broadcast., vol. 50, no. 3, pp. 335–341, 2004.
[CrossRef]

IEEE Trans. Wireless Commun. (1)

X. Huang, J. Lu, J. Zheng, K. B. Letaief, and J. Gu, “Companding transform for reduction in peak-to-average power ratio of OFDM signals,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2030–2039, 2004.
[CrossRef]

IEEE Wireless Commun. (1)

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun., vol. 12, no. 2, pp. 56–65, 2005.
[CrossRef]

J. Lightwave Technol. (8)

A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol., vol. 25, no. 1, pp. 131–138, 2007.
[CrossRef]

L. Chen, S. Wen, Y. Li, J. He, H. Wen, Y. Shao, Z. Dong, and Y. Pi, “Optical front-ends to generate optical millimeter-wave signal in radio-over-fiber systems with different architectures,” J. Lightwave Technol., vol. 25, no. 11, pp. 3381–3387, 2007.
[CrossRef]

S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol., vol. 26, no. 1, pp. 6–15, 2008.
[CrossRef]

J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol., vol. 27, no. 3, pp. 189–204, 2009.
[CrossRef]

W. R. Peng, B. Zhang, K. M. Feng, X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightwave Technol., vol. 27, no. 24, pp. 5723–5735, 2009.
[CrossRef]

W. Jiang, C. T. Lin, A. Ng’oma, P. T. Shih, J. Chen, M. Sauer, F. Annunziata, and S. Chi, “Simple 14-Gb/s short-range radio-over-fiber system employing a single-electrode MZM for 60-GHz wireless applications,” J. Lightwave Technol., vol. 28, no. 16, pp. 2238–2246, 2010.
[CrossRef]

C. T. Lin, J. Chen, P. T. Shih, W. Jiang, and S. Chi, “Ultra-high data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and OFDM formats,” J. Lightwave Technol., vol. 28, no. 16, pp. 2296–2306, 2010.
[CrossRef]

Z. Cao, J. Yu, M. Xia, Q. Tang, Y. Gao, W. Wang, and L. Chen, “Reduction of intersubcarrier interference and frequency-selective fading in OFDM-ROF systems,” J. Lightwave Technol., vol. 28, no. 16, pp. 2423–2429, 2010.
[CrossRef]

J. Opt. Commun. Netw. (3)

S.-H. Fan, J. Yu, and G.-K. Chang, “Optical OFDM scheme using uniform power transmission to mitigate peak-to-average power effect over 1040 km single-mode fiberRef. 14 had incorrect volume and issue numbers. Originally it said vol. 3, no. 2. Please check that this is the reference you mean.,” J. Opt. Commun. Netw., vol. 2, no. 9, pp. 711–715, 2010.
[CrossRef]

J. Ma, “5 Gbit/s full-duplex radio-over-fiber link with optical millimeter-wave generation by quadrupling the frequency of the electrical RF carrier,” Ref. 18 had incorrect volume and page numbers based on the title and author and has been fixed. Please check that this is the reference you intended.J. Opt. Commun. Netw., vol. 3, no. 2, pp. 127–133, 2011.
[CrossRef]

Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, and L. Chen, “WDM-RoF-PON architecture for flexible wireless and wire-line layoutThe JOCN article with the authors, volume, issue, page numbers, and year provided here has a different title from the original title provided for Ref. 7. I have replaced with the correct JOCN title. The original title provided was “A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system” and is a J. Lightwave Technol. paper with the following citation: Lin Chen, J. G. Yu, Shuangchun Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A Novel Scheme for Seamless Integration of ROF With Centralized Lightwave OFDM-WDM-PON System,” J. Lightwave Technol. 27, 2786-2791 (2009). Which is meant for Ref. 7?,” J. Opt. Commun. Netw., vol. 2, no. 2, pp. 117–121, 2010.
[CrossRef]

J. Opt. Netw. (1)

Opt. Commun. (1)

Z. Dong, Z. Cao, J. Lu, Y. Li, L. Chen, and S. Wen, “Transmission performance of optical OFDM signals with low peak-to-average power ratio by a phase modulator,” Opt. Commun., vol. 282, no. 21, pp. 4194–4197, 2009.
[CrossRef]

Opt. Express (1)

Other (2)

W. Jian, C. Liu, H. C. Chien, S. H. Fan, J. G. Yu, J. Wang, Z. Dong, J. Yu, C. Yu, and G. K. Chang, “QPSK-OFDM radio over polymer optical fiber for broadband in-building 60 GHz wireless access,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, 2010, OTuF3.

L. Hanzo and T. Keller, OFDM and MC-CDMA: A Primer. 2006.Because several major errors were found in the references, you should closely check all the references for accuracy.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Color online) The companding formulas C(x) and C(x) and the function y=x.

Fig. 2
Fig. 2

(Color online) (a) Original OFDM signal, (b) companded OFDM signal, (c) the CCDFs of the original and the companded OFDM signals.

Fig. 3
Fig. 3

(Color online) The principle of the optical OFDM-ROF transmission system with the CT technique.

Fig. 4
Fig. 4

(Color online) The experimental setup and optical spectra of a 60 GHz OFDM-ROF transmission system with/without the CT technique. FM: frequency multiplier, PC: polarization controller, ATT: attenuator, DSC: digital storage oscilloscope, LPF: low-pass filter, EDFA: erbium-doped fiber amplifier.

Fig. 5
Fig. 5

(Color online) Comparison of BER performance and constellation figures for the companded and original OFDM signals: (a) BTB, (b) 50 km.

Fig. 6
Fig. 6

(Color online) The measured BER of the companded and original OFDM signals at different launch powers.

Fig. 7
Fig. 7

(Color online) The constellation figures of the original and companded OFDM signals at different launch powers when the received optical power is −17 dBm.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

S(t)=1Nn=1Ndnej2πntN,
PAPR=10log10max|S(t)|2E{|S(t)|2},
CCDF=P(PAPR>p0).
Vout=C(Vin)=Vpeaksgn(Vin)ln(1+μ|Vin/Vpeak|)ln(1+μ),
VoutVinμln(1+μ).
Vout=C(Vin)=KC(Vin)=Vpeaksgn(Vin)ln(1+μ|Vin/Vpeak|)μ.
Eout(t)=A0ejω0t,
Eoptmmw(t)=A+cos(ω0+ωRF)t+Acos(ω0ωRF)t,
A+22+A22=P0.
E(t)=[A+cos(ω0+ωRF)t+Acos(ω0ωRF)t]×γS(t),
Pout(t)=Pin(t)×|γS(t)|2=n=1NPin(γdn)2N=n=1NP0(γdn)2N,
S(t)=1Nn=1NVpeakSgn(dn)ln1+μdnVpeakμej2πntN,
Pout=n=1NP0γVpeakSgn(dn)ln1+μdnVpeak2Nμ2.
ppln2(1+μ)μ2,
PoutPoutμ2ln2(1+μ).
εTraining=Training symbolTraining symbol+Data symbols=1161.
εCP=CP sizeCP size+IFFT size=32288.
εpilot=pilot sizeIFFT size=8256.
εzero=number of zero points in the fronttotal signal points=363250,000.
Reffective=R×(1εTraining)×(1εCP)×(1εpilot)×(1εZero)=2.98Gb/s.