Abstract

The overall performance of modern computing systems is increasingly determined by the characteristics of the interconnection network used to provide communication links between on-chip cores and off-chip memory. Photonic technology has been proposed as an alternative to traditional electronic interconnects because of its advantages in bandwidth density, latency, and power efficiency. Circuit-switched photonic interconnect topologies take advantage of the optical spectrum to create high-bandwidth transmission links through the transmission of data channels on multiple parallel wavelengths; however, this technique suffers from low path diversity and high setup time overhead, which induces high network resource contention, unfairness, and long latencies. This work improves upon the circuit-switching paradigm by introducing the use of on-chip wavelength-selective spatial routing to produce multiple logical communication layers on a single physical plane. This technique yields higher path diversity in photonic interconnection networks, demonstrating as much as 764% saturation bandwidth improvement with synthetic traffic and as much as 89% improvement in execution time and energy dissipation for traffic from scientific application traces.

© 2012 OSA

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription