Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Energy-Efficient and Cost-Efficient Capacity Upgrade in Mixed-Line-Rate Optical Networks

Not Accessible

Your library or personal account may give you access

Abstract

Traffic in telecom networks is increasing rapidly, and it has been a challenging task to plan and upgrade network capacities for this increasing traffic, keeping the cost of resources within a targeted budget. Besides handling this drastic growth in traffic, future optical networks are also expected to be increasingly heterogeneous with respect to services supported and underlying technologies employed. To support this heterogeneous volume of traffic, mixed-line-rate (MLR) optical networks with line rates of 10, 40, and 100 Gbps have been shown to be effective. In the case of a greenfield network design, i.e., when planning capacities for a new network, MLR networks have been shown to be cost efficient as well as energy efficient in some recent studies. The concept of an MLR network is evolutionary, starting from a 10G single-line-rate network to a coexistence of multiple line rates in the same network as capacities on some links are periodically upgraded from 10G per wavelength to 40G and 100G per wavelength with traffic growth. Therefore, from a network-upgrade perspective, an important issue is to devise a cost-optimized migration strategy from 10G to 40G to 100G and beyond, given a traffic growth model. However, energy consumption in different elements in the network, especially in those elements whose energy consumption depends on the bandwidth of the traffic that they are handling, is also an important parameter to consider. Therefore, the ultimate question is: Can an MLR be a good candidate for energy-efficient and cost-efficient upgrade? In this study, we investigate the energy-efficient and cost-efficient MLR network-upgrade problem. In this context, we also study the effect of network connection disruption on energy-efficient and cost-efficient MLR network upgrade. In general, the service provider’s aim would be to have as few disruptions as possible during capacity upgrade, as disruptions may induce service degradation. Our results show that the amount of disruptions has a conflicting effect on energy-efficient and cost-efficient upgrade in MLR networks, and we develop an optimized upgrade strategy so that both cost and energy are kept within a certain limit.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
New Strategies for Connection Protection in Mixed-Line-Rate Optical WDM Networks

Menglin Liu, Massimo Tornatore, and Biswanath Mukherjee
J. Opt. Commun. Netw. 3(9) 641-650 (2011)

Efficiency of Adaptive and Mixed-Line-Rate IP Over DWDM Networks Regarding CAPEX and Power Consumption [Invited]

Axel Klekamp, Ulrich Gebhard, and Frank Ilchmann
J. Opt. Commun. Netw. 4(11) B11-B16 (2012)

Efficient Shared Subconnection Protection in Mixed-Line-Rate Optical WDM Networks

Menglin Liu, Massimo Tornatore, and Biswanath Mukherjee
J. Opt. Commun. Netw. 5(11) 1227-1235 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.