Abstract

Multicast applications are expected to be major drivers of Internet traffic growth. As most multicast connections require much lower bandwidth than the capacity offered by a wavelength, multicast traffic grooming is needed to efficiently use network resources. Recent research on multicast grooming has focused on light-trees because of their natural advantage for multicast traffic. However, using light-trees may lead to some serious negative side effects because of light splitting. In this paper, we investigate the multicast traffic grooming problem in tap-and-continue (TaC) networks, where a node can tap a small amount of incoming optical power for the local station while forwarding the remainder to an output. We first propose a simple and efficient node architecture with the TaC mechanism. We use this in an integer linear programming (ILP) formulation with the objective of minimizing the network cost in terms of the number of higher layer electronic ports and the number of wavelengths used. Since the ILP is not scalable, two heuristic algorithms, multicast trail grooming (MTG) and multiple destination trail-based grooming (MDTG), are proposed. Using the ILP, we show that having more costly nodes with multicast capability does not improve the performance significantly. The solutions obtained by MTG and MDTG are close to the ILP optimal solution. MTG and MDTG are shown to work efficiently for typical network topologies such as NSFNET, with MTG showing better performance than MDTG.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Dutta and G. N. Rouskas, “A survey of virtual topology design algorithms for wavelength routed optical networks,” Opt. Networks Mag., vol. 1, no. 1, pp. 73–89, 2000.
  2. R. Dutta and G. N. Rouskas, “Traffic grooming in WDM networks: Past and future,” IEEE Network, vol. 16, no. 6, pp. 46–56, 2002.
  3. X. Zhang and C. Qiao, “On scheduling all-to-all personalized connections and cost-effective designs in WDM rings,” IEEE/ACM Trans. Netw., vol. 7, no. 3, pp. 435–443, 1999.
  4. A. Chiu and E. Modiano, “Traffic grooming algorithms for reducing electronic multiplexing costs in WDM ring networks,” J. Lightwave Technol., vol. 18, no. 1, pp. 2–12, 2000.
  5. W. Hou, L. Guo, and X. Wei, “Robust and integrated grooming for power- and port-cost-efficient design in IP over WDM networks,” J. Lightwave Technol., vol. 29, no. 20, pp. 3035–3047, 2011.
  6. I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to high-bandwidth optical WAN’s,” IEEE Trans. Commun., vol. 40, pp. 1171–1182, 1992.
  7. R. Ul-Mustafa and A. E. Kamal, “Design and provisioning of WDM networks with multicast traffic grooming,” IEEE J. Sel. Areas Commun., vol. 24, no. 4, pp. 37–53, 2006.
  8. A. E. Kamal and R. Ul-Mustafa, “Multicast traffic grooming in WDM networks,” in Proc. Optical Networking and Communications (OptiComm), Dallas, TX, Oct. 2003, pp. 25–36.
  9. L. H. Sahasrabuddhe and B. Mukherjee, “Light trees: Optical multicasting for improved performance in wavelength routed networks,” IEEE Commun. Mag., vol. 37, no. 2, pp. 67–73, 1999.
  10. R. Lin, W.-D. Zhong, S. Bose, and M. Zukerman, “Dynamic sub-light-tree based traffic grooming for multicast in WDM networks,” in GLOBECOM, Dec. 2010.
  11. R. Lin, W.-D. Zhong, S. Bose, and M. Zukerman, “Light-tree configuration for multicast traffic grooming in WDM mesh networks,” Photonic Network Commun., vol. 20, no. 2, pp. 151–164, 2010.
  12. L. Guo, X. Wang, J. Cao, W. Hou, and L. Pang, “Multicast grooming algorithm in waveband switching optical networks,” J. Lightwave Technol., vol. 28, no. 19, pp. 2856–2864, 2010.
  13. A. Khalil, A. Hadjiantonis, C. M. Assi, A. Shami, G. Ellinas, and M. A. Ali, “Dynamic provisioning of low-speed unicast/multicast traffic demands in mesh-based WDM optical networks,” J. Lightwave Technol., vol. 24, pp. 681–693, 2006.
  14. C. Lu, X. Nie, S. Wang, and L. Li, “Efficient dynamic multicast traffic grooming algorithm on WDM networks,” Proc. SPIE, vol. 6022, 602230, 2005.
  15. X. Huang, F. Farahmand, and J. P. Jue, “Multicast traffic grooming in wavelength-routed WDM mesh networks using dynamically changing light-trees,” J. Lightwave Technol., vol. 23, no. 10, pp. 3178–3187, 2005.
  16. S. Lee, H. Yen, and A. Chen, “Traffic grooming for IP multicast over WDM networks using light-path and light-tree schemes,” in Proc. of Int. Conf. on Networks (ICN), 2010, vol. 1, pp. 291–293.
  17. W. Hou, L. Guo, J. Cao, J. Wu, and L. Hao, “Green multicast grooming based on optical bypass technology,” Opt. Fiber Technol., vol. 17, no. 2, pp. 111–119, 2011.
  18. A. Billah, B. Wang, and A. Awwal, “Multicast traffic grooming in WDM optical mesh networks,” in GLOBECOM, Dec. 2003, vol. 5, pp. 2755–2760.
  19. G. V. Chowdhary and C. S. R. Murthy, “Grooming of multicast sessions in WDM mesh networks,” in First Annu. Int. Conf. on Broadband Networks, San Jose, CA, 2004.
  20. Y. Zhu, Y. Jin, W. Sun, W. Guo, W. Hu, W. Zhong, and M. Wu, “Multicast flow aggregation in IP over optical networks,” IEEE J. Sel. Areas Commun., vol. 25, pp. 1011–1021, 2007.
  21. D. N. Yang and W. Liao, “Design of light-tree based logical topologies for multicast streams in wavelength routed optical networks,” in INFOCOM, San Francisco, Mar.–Apr.2003, vol. 1, pp. 32–41.
  22. R. Lin, W.-D. Zhong, S. Bose, and M. Zukerman, “Design of WDM networks with multicast traffic grooming,” J. Lightwave Technol., vol. 29, no. 16, pp. 2337–2349, 2011.
  23. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications. New York: Wiley, 1994.
  24. S. Yan, J. S. Deogun, and M. Ali, “Routing in sparse splitting optical networks with multicast traffic,” Comput. Netw., vol. 41, pp. 89–113, 2003.
  25. R. Malli, X. Zhang, and C. Qiao, “Benefit of multicasting in all-optical networks,” Proc. SPIE, vol. 3531, pp. 209–220, Nov.1998.
  26. X. Zhang, J. Wei, and C. Qiao, “Constrained multicast routing in WDM networks with sparse light splitting,” J. Lightwave Technol., vol. 18, pp. 1917–1927, 2000.
  27. F. Zhou, M. Molnar, and B. Cousin, “Avoidance of multicast incapable branching nodes for multicast routing in WDM networks,” Photonic Network Commun., vol. 18, no. 3, pp. 378–392, 2009.
  28. F. Zhou, M. Molnar, and B. Cousin, “Hypo-Steiner heuristic for multicast routing in all-optical WDM mesh networks,” Photonic Network Commun., vol. 20, no. 1, pp. 33–42, 2010.
  29. M. Ali and J. S. Deogun, “Cost-effective implementation of multicasting in wavelength-routed networks,” J. Lightwave Technol., vol. 18, no. 12, pp. 1628–1638, 2000.
  30. W. S. Hu and Q. J. Zeng, “Multicasting optical cross connects employing splitter-and-delivery switch,” IEEE Photon. Technol. Lett., vol. 10, pp. 970–972, 1998.
  31. P. Prucnal, E. Harstead, and S. Elby, “Low-loss, high-impedance integrated fiber-optic tap,” Opt. Eng., vol. 29, pp. 1136–1142, 1990.
  32. R. Dutta and G. N. Rouskas, “Bounds on traffic grooming in star and tree networks,” in Proc. of the 39th Allerton Conf. on Communication, Control, and Computing, Oct. 2001.
  33. N. K. Singhal, L. H. Sahasrabuddhe, and B. Mukherjee, “Optimal multicasting of multiple light-trees of different bandwidth granularities in a WDM mesh network with sparse splitting capabilities,” IEEE/ACM Trans. Netw., vol. 14, no. 5, pp. 1104–1117, 2006.
  34. ILOG CPLEX, ILOG, Inc., Mountain View, CA [Online]. Available: http://www.ilog.com/products/cplex/.
  35. H. Takahashi and A. Matsuyama, “An approximate solution for the Steiner problem in graphs,” Math. Japonica, vol. 24, pp. 573–577, 1980.

2011 (3)

2010 (3)

R. Lin, W.-D. Zhong, S. Bose, and M. Zukerman, “Light-tree configuration for multicast traffic grooming in WDM mesh networks,” Photonic Network Commun., vol. 20, no. 2, pp. 151–164, 2010.

L. Guo, X. Wang, J. Cao, W. Hou, and L. Pang, “Multicast grooming algorithm in waveband switching optical networks,” J. Lightwave Technol., vol. 28, no. 19, pp. 2856–2864, 2010.

F. Zhou, M. Molnar, and B. Cousin, “Hypo-Steiner heuristic for multicast routing in all-optical WDM mesh networks,” Photonic Network Commun., vol. 20, no. 1, pp. 33–42, 2010.

2007 (1)

Y. Zhu, Y. Jin, W. Sun, W. Guo, W. Hu, W. Zhong, and M. Wu, “Multicast flow aggregation in IP over optical networks,” IEEE J. Sel. Areas Commun., vol. 25, pp. 1011–1021, 2007.

2006 (3)

A. Khalil, A. Hadjiantonis, C. M. Assi, A. Shami, G. Ellinas, and M. A. Ali, “Dynamic provisioning of low-speed unicast/multicast traffic demands in mesh-based WDM optical networks,” J. Lightwave Technol., vol. 24, pp. 681–693, 2006.

R. Ul-Mustafa and A. E. Kamal, “Design and provisioning of WDM networks with multicast traffic grooming,” IEEE J. Sel. Areas Commun., vol. 24, no. 4, pp. 37–53, 2006.

N. K. Singhal, L. H. Sahasrabuddhe, and B. Mukherjee, “Optimal multicasting of multiple light-trees of different bandwidth granularities in a WDM mesh network with sparse splitting capabilities,” IEEE/ACM Trans. Netw., vol. 14, no. 5, pp. 1104–1117, 2006.

2005 (2)

C. Lu, X. Nie, S. Wang, and L. Li, “Efficient dynamic multicast traffic grooming algorithm on WDM networks,” Proc. SPIE, vol. 6022, 602230, 2005.

X. Huang, F. Farahmand, and J. P. Jue, “Multicast traffic grooming in wavelength-routed WDM mesh networks using dynamically changing light-trees,” J. Lightwave Technol., vol. 23, no. 10, pp. 3178–3187, 2005.

2003 (1)

S. Yan, J. S. Deogun, and M. Ali, “Routing in sparse splitting optical networks with multicast traffic,” Comput. Netw., vol. 41, pp. 89–113, 2003.

2002 (1)

R. Dutta and G. N. Rouskas, “Traffic grooming in WDM networks: Past and future,” IEEE Network, vol. 16, no. 6, pp. 46–56, 2002.

2000 (4)

R. Dutta and G. N. Rouskas, “A survey of virtual topology design algorithms for wavelength routed optical networks,” Opt. Networks Mag., vol. 1, no. 1, pp. 73–89, 2000.

A. Chiu and E. Modiano, “Traffic grooming algorithms for reducing electronic multiplexing costs in WDM ring networks,” J. Lightwave Technol., vol. 18, no. 1, pp. 2–12, 2000.

X. Zhang, J. Wei, and C. Qiao, “Constrained multicast routing in WDM networks with sparse light splitting,” J. Lightwave Technol., vol. 18, pp. 1917–1927, 2000.

M. Ali and J. S. Deogun, “Cost-effective implementation of multicasting in wavelength-routed networks,” J. Lightwave Technol., vol. 18, no. 12, pp. 1628–1638, 2000.

1999 (2)

X. Zhang and C. Qiao, “On scheduling all-to-all personalized connections and cost-effective designs in WDM rings,” IEEE/ACM Trans. Netw., vol. 7, no. 3, pp. 435–443, 1999.

L. H. Sahasrabuddhe and B. Mukherjee, “Light trees: Optical multicasting for improved performance in wavelength routed networks,” IEEE Commun. Mag., vol. 37, no. 2, pp. 67–73, 1999.

1998 (2)

R. Malli, X. Zhang, and C. Qiao, “Benefit of multicasting in all-optical networks,” Proc. SPIE, vol. 3531, pp. 209–220, Nov.1998.

W. S. Hu and Q. J. Zeng, “Multicasting optical cross connects employing splitter-and-delivery switch,” IEEE Photon. Technol. Lett., vol. 10, pp. 970–972, 1998.

1992 (1)

I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to high-bandwidth optical WAN’s,” IEEE Trans. Commun., vol. 40, pp. 1171–1182, 1992.

1990 (1)

P. Prucnal, E. Harstead, and S. Elby, “Low-loss, high-impedance integrated fiber-optic tap,” Opt. Eng., vol. 29, pp. 1136–1142, 1990.

1980 (1)

H. Takahashi and A. Matsuyama, “An approximate solution for the Steiner problem in graphs,” Math. Japonica, vol. 24, pp. 573–577, 1980.

Ali, M.

S. Yan, J. S. Deogun, and M. Ali, “Routing in sparse splitting optical networks with multicast traffic,” Comput. Netw., vol. 41, pp. 89–113, 2003.

M. Ali and J. S. Deogun, “Cost-effective implementation of multicasting in wavelength-routed networks,” J. Lightwave Technol., vol. 18, no. 12, pp. 1628–1638, 2000.

Ali, M. A.

Assi, C. M.

Awwal, A.

A. Billah, B. Wang, and A. Awwal, “Multicast traffic grooming in WDM optical mesh networks,” in GLOBECOM, Dec. 2003, vol. 5, pp. 2755–2760.

Billah, A.

A. Billah, B. Wang, and A. Awwal, “Multicast traffic grooming in WDM optical mesh networks,” in GLOBECOM, Dec. 2003, vol. 5, pp. 2755–2760.

Bose, S.

R. Lin, W.-D. Zhong, S. Bose, and M. Zukerman, “Design of WDM networks with multicast traffic grooming,” J. Lightwave Technol., vol. 29, no. 16, pp. 2337–2349, 2011.

R. Lin, W.-D. Zhong, S. Bose, and M. Zukerman, “Light-tree configuration for multicast traffic grooming in WDM mesh networks,” Photonic Network Commun., vol. 20, no. 2, pp. 151–164, 2010.

R. Lin, W.-D. Zhong, S. Bose, and M. Zukerman, “Dynamic sub-light-tree based traffic grooming for multicast in WDM networks,” in GLOBECOM, Dec. 2010.

Cao, J.

W. Hou, L. Guo, J. Cao, J. Wu, and L. Hao, “Green multicast grooming based on optical bypass technology,” Opt. Fiber Technol., vol. 17, no. 2, pp. 111–119, 2011.

L. Guo, X. Wang, J. Cao, W. Hou, and L. Pang, “Multicast grooming algorithm in waveband switching optical networks,” J. Lightwave Technol., vol. 28, no. 19, pp. 2856–2864, 2010.

Chen, A.

S. Lee, H. Yen, and A. Chen, “Traffic grooming for IP multicast over WDM networks using light-path and light-tree schemes,” in Proc. of Int. Conf. on Networks (ICN), 2010, vol. 1, pp. 291–293.

Chiu, A.

A. Chiu and E. Modiano, “Traffic grooming algorithms for reducing electronic multiplexing costs in WDM ring networks,” J. Lightwave Technol., vol. 18, no. 1, pp. 2–12, 2000.

Chlamtac, I.

I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to high-bandwidth optical WAN’s,” IEEE Trans. Commun., vol. 40, pp. 1171–1182, 1992.

Chowdhary, G. V.

G. V. Chowdhary and C. S. R. Murthy, “Grooming of multicast sessions in WDM mesh networks,” in First Annu. Int. Conf. on Broadband Networks, San Jose, CA, 2004.

Cousin, B.

F. Zhou, M. Molnar, and B. Cousin, “Hypo-Steiner heuristic for multicast routing in all-optical WDM mesh networks,” Photonic Network Commun., vol. 20, no. 1, pp. 33–42, 2010.

F. Zhou, M. Molnar, and B. Cousin, “Avoidance of multicast incapable branching nodes for multicast routing in WDM networks,” Photonic Network Commun., vol. 18, no. 3, pp. 378–392, 2009.

Deogun, J. S.

S. Yan, J. S. Deogun, and M. Ali, “Routing in sparse splitting optical networks with multicast traffic,” Comput. Netw., vol. 41, pp. 89–113, 2003.

M. Ali and J. S. Deogun, “Cost-effective implementation of multicasting in wavelength-routed networks,” J. Lightwave Technol., vol. 18, no. 12, pp. 1628–1638, 2000.

Desurvire, E.

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications. New York: Wiley, 1994.

Dutta, R.

R. Dutta and G. N. Rouskas, “Traffic grooming in WDM networks: Past and future,” IEEE Network, vol. 16, no. 6, pp. 46–56, 2002.

R. Dutta and G. N. Rouskas, “A survey of virtual topology design algorithms for wavelength routed optical networks,” Opt. Networks Mag., vol. 1, no. 1, pp. 73–89, 2000.

R. Dutta and G. N. Rouskas, “Bounds on traffic grooming in star and tree networks,” in Proc. of the 39th Allerton Conf. on Communication, Control, and Computing, Oct. 2001.

Elby, S.

P. Prucnal, E. Harstead, and S. Elby, “Low-loss, high-impedance integrated fiber-optic tap,” Opt. Eng., vol. 29, pp. 1136–1142, 1990.

Ellinas, G.

Farahmand, F.

Ganz, A.

I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to high-bandwidth optical WAN’s,” IEEE Trans. Commun., vol. 40, pp. 1171–1182, 1992.

Guo, L.

W. Hou, L. Guo, and X. Wei, “Robust and integrated grooming for power- and port-cost-efficient design in IP over WDM networks,” J. Lightwave Technol., vol. 29, no. 20, pp. 3035–3047, 2011.

W. Hou, L. Guo, J. Cao, J. Wu, and L. Hao, “Green multicast grooming based on optical bypass technology,” Opt. Fiber Technol., vol. 17, no. 2, pp. 111–119, 2011.

L. Guo, X. Wang, J. Cao, W. Hou, and L. Pang, “Multicast grooming algorithm in waveband switching optical networks,” J. Lightwave Technol., vol. 28, no. 19, pp. 2856–2864, 2010.

Guo, W.

Y. Zhu, Y. Jin, W. Sun, W. Guo, W. Hu, W. Zhong, and M. Wu, “Multicast flow aggregation in IP over optical networks,” IEEE J. Sel. Areas Commun., vol. 25, pp. 1011–1021, 2007.

Hadjiantonis, A.

Hao, L.

W. Hou, L. Guo, J. Cao, J. Wu, and L. Hao, “Green multicast grooming based on optical bypass technology,” Opt. Fiber Technol., vol. 17, no. 2, pp. 111–119, 2011.

Harstead, E.

P. Prucnal, E. Harstead, and S. Elby, “Low-loss, high-impedance integrated fiber-optic tap,” Opt. Eng., vol. 29, pp. 1136–1142, 1990.

Hou, W.

W. Hou, L. Guo, and X. Wei, “Robust and integrated grooming for power- and port-cost-efficient design in IP over WDM networks,” J. Lightwave Technol., vol. 29, no. 20, pp. 3035–3047, 2011.

W. Hou, L. Guo, J. Cao, J. Wu, and L. Hao, “Green multicast grooming based on optical bypass technology,” Opt. Fiber Technol., vol. 17, no. 2, pp. 111–119, 2011.

L. Guo, X. Wang, J. Cao, W. Hou, and L. Pang, “Multicast grooming algorithm in waveband switching optical networks,” J. Lightwave Technol., vol. 28, no. 19, pp. 2856–2864, 2010.

Hu, W.

Y. Zhu, Y. Jin, W. Sun, W. Guo, W. Hu, W. Zhong, and M. Wu, “Multicast flow aggregation in IP over optical networks,” IEEE J. Sel. Areas Commun., vol. 25, pp. 1011–1021, 2007.

Hu, W. S.

W. S. Hu and Q. J. Zeng, “Multicasting optical cross connects employing splitter-and-delivery switch,” IEEE Photon. Technol. Lett., vol. 10, pp. 970–972, 1998.

Huang, X.

Jin, Y.

Y. Zhu, Y. Jin, W. Sun, W. Guo, W. Hu, W. Zhong, and M. Wu, “Multicast flow aggregation in IP over optical networks,” IEEE J. Sel. Areas Commun., vol. 25, pp. 1011–1021, 2007.

Jue, J. P.

Kamal, A. E.

R. Ul-Mustafa and A. E. Kamal, “Design and provisioning of WDM networks with multicast traffic grooming,” IEEE J. Sel. Areas Commun., vol. 24, no. 4, pp. 37–53, 2006.

A. E. Kamal and R. Ul-Mustafa, “Multicast traffic grooming in WDM networks,” in Proc. Optical Networking and Communications (OptiComm), Dallas, TX, Oct. 2003, pp. 25–36.

Karmi, G.

I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to high-bandwidth optical WAN’s,” IEEE Trans. Commun., vol. 40, pp. 1171–1182, 1992.

Khalil, A.

Lee, S.

S. Lee, H. Yen, and A. Chen, “Traffic grooming for IP multicast over WDM networks using light-path and light-tree schemes,” in Proc. of Int. Conf. on Networks (ICN), 2010, vol. 1, pp. 291–293.

Li, L.

C. Lu, X. Nie, S. Wang, and L. Li, “Efficient dynamic multicast traffic grooming algorithm on WDM networks,” Proc. SPIE, vol. 6022, 602230, 2005.

Liao, W.

D. N. Yang and W. Liao, “Design of light-tree based logical topologies for multicast streams in wavelength routed optical networks,” in INFOCOM, San Francisco, Mar.–Apr.2003, vol. 1, pp. 32–41.

Lin, R.

R. Lin, W.-D. Zhong, S. Bose, and M. Zukerman, “Design of WDM networks with multicast traffic grooming,” J. Lightwave Technol., vol. 29, no. 16, pp. 2337–2349, 2011.

R. Lin, W.-D. Zhong, S. Bose, and M. Zukerman, “Light-tree configuration for multicast traffic grooming in WDM mesh networks,” Photonic Network Commun., vol. 20, no. 2, pp. 151–164, 2010.

R. Lin, W.-D. Zhong, S. Bose, and M. Zukerman, “Dynamic sub-light-tree based traffic grooming for multicast in WDM networks,” in GLOBECOM, Dec. 2010.

Lu, C.

C. Lu, X. Nie, S. Wang, and L. Li, “Efficient dynamic multicast traffic grooming algorithm on WDM networks,” Proc. SPIE, vol. 6022, 602230, 2005.

Malli, R.

R. Malli, X. Zhang, and C. Qiao, “Benefit of multicasting in all-optical networks,” Proc. SPIE, vol. 3531, pp. 209–220, Nov.1998.

Matsuyama, A.

H. Takahashi and A. Matsuyama, “An approximate solution for the Steiner problem in graphs,” Math. Japonica, vol. 24, pp. 573–577, 1980.

Modiano, E.

A. Chiu and E. Modiano, “Traffic grooming algorithms for reducing electronic multiplexing costs in WDM ring networks,” J. Lightwave Technol., vol. 18, no. 1, pp. 2–12, 2000.

Molnar, M.

F. Zhou, M. Molnar, and B. Cousin, “Hypo-Steiner heuristic for multicast routing in all-optical WDM mesh networks,” Photonic Network Commun., vol. 20, no. 1, pp. 33–42, 2010.

F. Zhou, M. Molnar, and B. Cousin, “Avoidance of multicast incapable branching nodes for multicast routing in WDM networks,” Photonic Network Commun., vol. 18, no. 3, pp. 378–392, 2009.

Mukherjee, B.

N. K. Singhal, L. H. Sahasrabuddhe, and B. Mukherjee, “Optimal multicasting of multiple light-trees of different bandwidth granularities in a WDM mesh network with sparse splitting capabilities,” IEEE/ACM Trans. Netw., vol. 14, no. 5, pp. 1104–1117, 2006.

L. H. Sahasrabuddhe and B. Mukherjee, “Light trees: Optical multicasting for improved performance in wavelength routed networks,” IEEE Commun. Mag., vol. 37, no. 2, pp. 67–73, 1999.

Murthy, C. S. R.

G. V. Chowdhary and C. S. R. Murthy, “Grooming of multicast sessions in WDM mesh networks,” in First Annu. Int. Conf. on Broadband Networks, San Jose, CA, 2004.

Nie, X.

C. Lu, X. Nie, S. Wang, and L. Li, “Efficient dynamic multicast traffic grooming algorithm on WDM networks,” Proc. SPIE, vol. 6022, 602230, 2005.

Pang, L.

L. Guo, X. Wang, J. Cao, W. Hou, and L. Pang, “Multicast grooming algorithm in waveband switching optical networks,” J. Lightwave Technol., vol. 28, no. 19, pp. 2856–2864, 2010.

Prucnal, P.

P. Prucnal, E. Harstead, and S. Elby, “Low-loss, high-impedance integrated fiber-optic tap,” Opt. Eng., vol. 29, pp. 1136–1142, 1990.

Qiao, C.

X. Zhang, J. Wei, and C. Qiao, “Constrained multicast routing in WDM networks with sparse light splitting,” J. Lightwave Technol., vol. 18, pp. 1917–1927, 2000.

X. Zhang and C. Qiao, “On scheduling all-to-all personalized connections and cost-effective designs in WDM rings,” IEEE/ACM Trans. Netw., vol. 7, no. 3, pp. 435–443, 1999.

R. Malli, X. Zhang, and C. Qiao, “Benefit of multicasting in all-optical networks,” Proc. SPIE, vol. 3531, pp. 209–220, Nov.1998.

Rouskas, G. N.

R. Dutta and G. N. Rouskas, “Traffic grooming in WDM networks: Past and future,” IEEE Network, vol. 16, no. 6, pp. 46–56, 2002.

R. Dutta and G. N. Rouskas, “A survey of virtual topology design algorithms for wavelength routed optical networks,” Opt. Networks Mag., vol. 1, no. 1, pp. 73–89, 2000.

R. Dutta and G. N. Rouskas, “Bounds on traffic grooming in star and tree networks,” in Proc. of the 39th Allerton Conf. on Communication, Control, and Computing, Oct. 2001.

Sahasrabuddhe, L. H.

N. K. Singhal, L. H. Sahasrabuddhe, and B. Mukherjee, “Optimal multicasting of multiple light-trees of different bandwidth granularities in a WDM mesh network with sparse splitting capabilities,” IEEE/ACM Trans. Netw., vol. 14, no. 5, pp. 1104–1117, 2006.

L. H. Sahasrabuddhe and B. Mukherjee, “Light trees: Optical multicasting for improved performance in wavelength routed networks,” IEEE Commun. Mag., vol. 37, no. 2, pp. 67–73, 1999.

Shami, A.

Singhal, N. K.

N. K. Singhal, L. H. Sahasrabuddhe, and B. Mukherjee, “Optimal multicasting of multiple light-trees of different bandwidth granularities in a WDM mesh network with sparse splitting capabilities,” IEEE/ACM Trans. Netw., vol. 14, no. 5, pp. 1104–1117, 2006.

Sun, W.

Y. Zhu, Y. Jin, W. Sun, W. Guo, W. Hu, W. Zhong, and M. Wu, “Multicast flow aggregation in IP over optical networks,” IEEE J. Sel. Areas Commun., vol. 25, pp. 1011–1021, 2007.

Takahashi, H.

H. Takahashi and A. Matsuyama, “An approximate solution for the Steiner problem in graphs,” Math. Japonica, vol. 24, pp. 573–577, 1980.

Ul-Mustafa, R.

R. Ul-Mustafa and A. E. Kamal, “Design and provisioning of WDM networks with multicast traffic grooming,” IEEE J. Sel. Areas Commun., vol. 24, no. 4, pp. 37–53, 2006.

A. E. Kamal and R. Ul-Mustafa, “Multicast traffic grooming in WDM networks,” in Proc. Optical Networking and Communications (OptiComm), Dallas, TX, Oct. 2003, pp. 25–36.

Wang, B.

A. Billah, B. Wang, and A. Awwal, “Multicast traffic grooming in WDM optical mesh networks,” in GLOBECOM, Dec. 2003, vol. 5, pp. 2755–2760.

Wang, S.

C. Lu, X. Nie, S. Wang, and L. Li, “Efficient dynamic multicast traffic grooming algorithm on WDM networks,” Proc. SPIE, vol. 6022, 602230, 2005.

Wang, X.

L. Guo, X. Wang, J. Cao, W. Hou, and L. Pang, “Multicast grooming algorithm in waveband switching optical networks,” J. Lightwave Technol., vol. 28, no. 19, pp. 2856–2864, 2010.

Wei, J.

Wei, X.

Wu, J.

W. Hou, L. Guo, J. Cao, J. Wu, and L. Hao, “Green multicast grooming based on optical bypass technology,” Opt. Fiber Technol., vol. 17, no. 2, pp. 111–119, 2011.

Wu, M.

Y. Zhu, Y. Jin, W. Sun, W. Guo, W. Hu, W. Zhong, and M. Wu, “Multicast flow aggregation in IP over optical networks,” IEEE J. Sel. Areas Commun., vol. 25, pp. 1011–1021, 2007.

Yan, S.

S. Yan, J. S. Deogun, and M. Ali, “Routing in sparse splitting optical networks with multicast traffic,” Comput. Netw., vol. 41, pp. 89–113, 2003.

Yang, D. N.

D. N. Yang and W. Liao, “Design of light-tree based logical topologies for multicast streams in wavelength routed optical networks,” in INFOCOM, San Francisco, Mar.–Apr.2003, vol. 1, pp. 32–41.

Yen, H.

S. Lee, H. Yen, and A. Chen, “Traffic grooming for IP multicast over WDM networks using light-path and light-tree schemes,” in Proc. of Int. Conf. on Networks (ICN), 2010, vol. 1, pp. 291–293.

Zeng, Q. J.

W. S. Hu and Q. J. Zeng, “Multicasting optical cross connects employing splitter-and-delivery switch,” IEEE Photon. Technol. Lett., vol. 10, pp. 970–972, 1998.

Zhang, X.

X. Zhang, J. Wei, and C. Qiao, “Constrained multicast routing in WDM networks with sparse light splitting,” J. Lightwave Technol., vol. 18, pp. 1917–1927, 2000.

X. Zhang and C. Qiao, “On scheduling all-to-all personalized connections and cost-effective designs in WDM rings,” IEEE/ACM Trans. Netw., vol. 7, no. 3, pp. 435–443, 1999.

R. Malli, X. Zhang, and C. Qiao, “Benefit of multicasting in all-optical networks,” Proc. SPIE, vol. 3531, pp. 209–220, Nov.1998.

Zhong, W.

Y. Zhu, Y. Jin, W. Sun, W. Guo, W. Hu, W. Zhong, and M. Wu, “Multicast flow aggregation in IP over optical networks,” IEEE J. Sel. Areas Commun., vol. 25, pp. 1011–1021, 2007.

Zhong, W.-D.

R. Lin, W.-D. Zhong, S. Bose, and M. Zukerman, “Design of WDM networks with multicast traffic grooming,” J. Lightwave Technol., vol. 29, no. 16, pp. 2337–2349, 2011.

R. Lin, W.-D. Zhong, S. Bose, and M. Zukerman, “Light-tree configuration for multicast traffic grooming in WDM mesh networks,” Photonic Network Commun., vol. 20, no. 2, pp. 151–164, 2010.

R. Lin, W.-D. Zhong, S. Bose, and M. Zukerman, “Dynamic sub-light-tree based traffic grooming for multicast in WDM networks,” in GLOBECOM, Dec. 2010.

Zhou, F.

F. Zhou, M. Molnar, and B. Cousin, “Hypo-Steiner heuristic for multicast routing in all-optical WDM mesh networks,” Photonic Network Commun., vol. 20, no. 1, pp. 33–42, 2010.

F. Zhou, M. Molnar, and B. Cousin, “Avoidance of multicast incapable branching nodes for multicast routing in WDM networks,” Photonic Network Commun., vol. 18, no. 3, pp. 378–392, 2009.

Zhu, Y.

Y. Zhu, Y. Jin, W. Sun, W. Guo, W. Hu, W. Zhong, and M. Wu, “Multicast flow aggregation in IP over optical networks,” IEEE J. Sel. Areas Commun., vol. 25, pp. 1011–1021, 2007.

Zukerman, M.

R. Lin, W.-D. Zhong, S. Bose, and M. Zukerman, “Design of WDM networks with multicast traffic grooming,” J. Lightwave Technol., vol. 29, no. 16, pp. 2337–2349, 2011.

R. Lin, W.-D. Zhong, S. Bose, and M. Zukerman, “Light-tree configuration for multicast traffic grooming in WDM mesh networks,” Photonic Network Commun., vol. 20, no. 2, pp. 151–164, 2010.

R. Lin, W.-D. Zhong, S. Bose, and M. Zukerman, “Dynamic sub-light-tree based traffic grooming for multicast in WDM networks,” in GLOBECOM, Dec. 2010.

J. Lightwave Technol. (2)

A. Chiu and E. Modiano, “Traffic grooming algorithms for reducing electronic multiplexing costs in WDM ring networks,” J. Lightwave Technol., vol. 18, no. 1, pp. 2–12, 2000.

L. Guo, X. Wang, J. Cao, W. Hou, and L. Pang, “Multicast grooming algorithm in waveband switching optical networks,” J. Lightwave Technol., vol. 28, no. 19, pp. 2856–2864, 2010.

Comput. Netw. (1)

S. Yan, J. S. Deogun, and M. Ali, “Routing in sparse splitting optical networks with multicast traffic,” Comput. Netw., vol. 41, pp. 89–113, 2003.

IEEE Commun. Mag. (1)

L. H. Sahasrabuddhe and B. Mukherjee, “Light trees: Optical multicasting for improved performance in wavelength routed networks,” IEEE Commun. Mag., vol. 37, no. 2, pp. 67–73, 1999.

IEEE J. Sel. Areas Commun. (2)

R. Ul-Mustafa and A. E. Kamal, “Design and provisioning of WDM networks with multicast traffic grooming,” IEEE J. Sel. Areas Commun., vol. 24, no. 4, pp. 37–53, 2006.

Y. Zhu, Y. Jin, W. Sun, W. Guo, W. Hu, W. Zhong, and M. Wu, “Multicast flow aggregation in IP over optical networks,” IEEE J. Sel. Areas Commun., vol. 25, pp. 1011–1021, 2007.

IEEE Network (1)

R. Dutta and G. N. Rouskas, “Traffic grooming in WDM networks: Past and future,” IEEE Network, vol. 16, no. 6, pp. 46–56, 2002.

IEEE Photon. Technol. Lett. (1)

W. S. Hu and Q. J. Zeng, “Multicasting optical cross connects employing splitter-and-delivery switch,” IEEE Photon. Technol. Lett., vol. 10, pp. 970–972, 1998.

IEEE Trans. Commun. (1)

I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to high-bandwidth optical WAN’s,” IEEE Trans. Commun., vol. 40, pp. 1171–1182, 1992.

IEEE/ACM Trans. Netw. (2)

X. Zhang and C. Qiao, “On scheduling all-to-all personalized connections and cost-effective designs in WDM rings,” IEEE/ACM Trans. Netw., vol. 7, no. 3, pp. 435–443, 1999.

N. K. Singhal, L. H. Sahasrabuddhe, and B. Mukherjee, “Optimal multicasting of multiple light-trees of different bandwidth granularities in a WDM mesh network with sparse splitting capabilities,” IEEE/ACM Trans. Netw., vol. 14, no. 5, pp. 1104–1117, 2006.

J. Lightwave Technol. (6)

Math. Japonica (1)

H. Takahashi and A. Matsuyama, “An approximate solution for the Steiner problem in graphs,” Math. Japonica, vol. 24, pp. 573–577, 1980.

Opt. Eng. (1)

P. Prucnal, E. Harstead, and S. Elby, “Low-loss, high-impedance integrated fiber-optic tap,” Opt. Eng., vol. 29, pp. 1136–1142, 1990.

Opt. Fiber Technol. (1)

W. Hou, L. Guo, J. Cao, J. Wu, and L. Hao, “Green multicast grooming based on optical bypass technology,” Opt. Fiber Technol., vol. 17, no. 2, pp. 111–119, 2011.

Opt. Networks Mag. (1)

R. Dutta and G. N. Rouskas, “A survey of virtual topology design algorithms for wavelength routed optical networks,” Opt. Networks Mag., vol. 1, no. 1, pp. 73–89, 2000.

Photonic Network Commun. (3)

R. Lin, W.-D. Zhong, S. Bose, and M. Zukerman, “Light-tree configuration for multicast traffic grooming in WDM mesh networks,” Photonic Network Commun., vol. 20, no. 2, pp. 151–164, 2010.

F. Zhou, M. Molnar, and B. Cousin, “Avoidance of multicast incapable branching nodes for multicast routing in WDM networks,” Photonic Network Commun., vol. 18, no. 3, pp. 378–392, 2009.

F. Zhou, M. Molnar, and B. Cousin, “Hypo-Steiner heuristic for multicast routing in all-optical WDM mesh networks,” Photonic Network Commun., vol. 20, no. 1, pp. 33–42, 2010.

Proc. SPIE (2)

R. Malli, X. Zhang, and C. Qiao, “Benefit of multicasting in all-optical networks,” Proc. SPIE, vol. 3531, pp. 209–220, Nov.1998.

C. Lu, X. Nie, S. Wang, and L. Li, “Efficient dynamic multicast traffic grooming algorithm on WDM networks,” Proc. SPIE, vol. 6022, 602230, 2005.

Other (9)

R. Lin, W.-D. Zhong, S. Bose, and M. Zukerman, “Dynamic sub-light-tree based traffic grooming for multicast in WDM networks,” in GLOBECOM, Dec. 2010.

A. Billah, B. Wang, and A. Awwal, “Multicast traffic grooming in WDM optical mesh networks,” in GLOBECOM, Dec. 2003, vol. 5, pp. 2755–2760.

G. V. Chowdhary and C. S. R. Murthy, “Grooming of multicast sessions in WDM mesh networks,” in First Annu. Int. Conf. on Broadband Networks, San Jose, CA, 2004.

S. Lee, H. Yen, and A. Chen, “Traffic grooming for IP multicast over WDM networks using light-path and light-tree schemes,” in Proc. of Int. Conf. on Networks (ICN), 2010, vol. 1, pp. 291–293.

A. E. Kamal and R. Ul-Mustafa, “Multicast traffic grooming in WDM networks,” in Proc. Optical Networking and Communications (OptiComm), Dallas, TX, Oct. 2003, pp. 25–36.

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications. New York: Wiley, 1994.

D. N. Yang and W. Liao, “Design of light-tree based logical topologies for multicast streams in wavelength routed optical networks,” in INFOCOM, San Francisco, Mar.–Apr.2003, vol. 1, pp. 32–41.

R. Dutta and G. N. Rouskas, “Bounds on traffic grooming in star and tree networks,” in Proc. of the 39th Allerton Conf. on Communication, Control, and Computing, Oct. 2001.

ILOG CPLEX, ILOG, Inc., Mountain View, CA [Online]. Available: http://www.ilog.com/products/cplex/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

A trail s d 1 s d 2 d 3 d 2 n d 4 supporting a multicast connection request ( s , d 1 , d 2 , d 3 , d 4 ) .

Fig. 2
Fig. 2

A TaC node architecture with multiple TCMs.

Fig. 3
Fig. 3

A 1 × 8 TCM consisting of log 2 8 = 3 stages of 1 × 2 switches [29].

Fig. 4
Fig. 4

The proposed node architecture with the full tap capability.

Fig. 5
Fig. 5

A six-node network.

Fig. 6
Fig. 6

Three node-adding scenarios.

Fig. 7
Fig. 7

NSFNET network.

Fig. 8
Fig. 8

Comparison of numbers of edges per connection request used.

Fig. 9
Fig. 9

Cost comparison.

Fig. 10
Fig. 10

Comparison of numbers of higher layer electronic ports used.

Fig. 11
Fig. 11

Comparison of numbers of transmitting electronic ports used.

Fig. 12
Fig. 12

Comparison of numbers of receiving electronic ports used.

Fig. 13
Fig. 13

Comparison of numbers of wavelengths used.

Fig. 14
Fig. 14

Comparison of numbers of wavelinks used.

Fig. 15
Fig. 15

Cost comparison in NSFNET.

Fig. 16
Fig. 16

Comparison of numbers of electronic ports used in NSFNET.

Fig. 17
Fig. 17

Comparison of numbers of wavelengths and wavelinks used in NSFNET.

Tables (8)

Tables Icon

Table I Trail-Based Traffic Routings of Ten Connection Requests

Tables Icon

Table II Cost and Resource (Wavelength, Transmitter, Receiver) Usage

Tables Icon

Table III RWA of Trails

Tables Icon

Table IV RWA of Trails Considering Wavelink Cost

Tables Icon

Table 5 Node adding trail routing (NATR) algorithm

Tables Icon

Table 6 Multicast trail grooming (MTG) algorithm

Tables Icon

Table V Results of MTG

Tables Icon

Table VI Results of MDTG

Equations (43)

Equations on this page are rendered with MathJax. Learn more.

Minimize : α * n ( A n + B n ) + β * φ .
k U t , w , k A t w t , w ,
w A t w A t t ,
i k m M i , w , k m t B t w t , w ,
i w k T i , w , k t B t t .
φ w * y w w ,
y w i k U i , w , k / Z w ,
U i , w , k t T i , w , k t / | V | i , w , 1 k Deg ( i ) ,
U i , w , k t T i , w , k t i , w , 1 k Deg ( i ) .
n adj ( i ) F i , w , k i n m adj ( i ) F i , w , k m i = t T i , w , k t i , w , 1 k Deg ( i ) ,
m adj ( t ) F i , w , k m t n adj ( t ) F i , w , k t n = T i , w , k t i , w , 1 k Deg ( i ) , t i ,
F i , w , k m n M i , w , k m n i , w , 1 k Deg ( i ) , m n E ,
F i , w , k m n | V | M i , w , k m n i , w , 1 k Deg ( i ) , m n E .
n adj ( i ) S i , w , k i , i , n = U i , w , k i , w , 1 k Deg ( i ) ,
n adj ( t ) S i , w , k t , t , n = 0 i , w , 1 k Deg ( i ) , t i ,
n adj ( t ) S i , w , k m , t , n 1 i , w , 1 k Deg ( i ) , t , m adj ( t ) { t } ,
m adj ( t ) { t } S i , w , k m , t , n = M i , w , k t n i , w , 1 k Deg ( i ) , t , n adj ( t ) .
S i , w , k m , t , m T i , w , k t i , w , 1 k Deg ( i ) , t , m adj ( t ) ,
F i , w , k m t F i , w , k t n ( 1 S i , w , k m , t , n ) | V | i , w , 1 k Deg ( i ) , t , m adj ( t ) , n adj ( t ) ,
i k M i , w , k m n P m n w , m n E .
λ i , w , k r + T i , w , k t 2 Q i , w , k r , t r , t , i , w , 1 k Deg ( i ) ,
λ i , w , k r + T i , w , k t Q i , w , k r , t + 1 r , t , i , w , 1 k Deg ( i ) .
w k λ s r , w , k r 1 r ,
i w k Q i , w , k r , s r = 0 r ,
i w k Q i , w , k r , t = 1 r , t D r ,
i w k Q i , w , k r , t 1 r , t s r , t D r .
w k λ t , w , k r Deg ( t ) W i w k Q i , w , k r , t r , t s r ,
w k λ t , w , k r i w k Q i , w , k r , t r , t s r , t D r ,
r f r λ i , w , k r C i , w , 1 k Deg ( i ) .
Y t r | V | i w k Q i , w , k r , t r , t ,
Y t r Y p r + 1 ( 1 w k Q p , w , k r , t ) | V | r , t , p t .
Minimize : μ n ( A n + B n ) + τ i , w , k , m n M i , w , k m n ,
Minimize : m n E M m n .
n F s n m F m s = | D | ,
m F m d n F d n = 1 d D ,
m F m t = n F t n t s , t D ,
F m n M m n m n E ,
F m n | D | M m n m n E .
n adj ( s ) S s , n s = 1 ,
n adj ( t ) S t , n t = 0 t s ,
n adj ( t ) S t , n m 1 t , m adj ( t ) { t } ,
m adj ( t ) { t } S t , n m = M t n t , n adj ( t ) ,
F m t F t n ( 1 S t , n m ) | D | t , m adj ( t ) , n adj ( t ) .