Abstract

In this paper, we propose a novel method to reduce the high peak-to-average power ratio (PAPR) of the optical orthogonal frequency division multiplexing (OFDM) signal. The method is based on the technique of the Hadamard transform combined with a companding transform. We experimentally demonstrate that, in an optical intensity-modulation direct-detection OFDM transmission system, the hybrid method has better performance in reducing the PAPR compared with the case of applying only the Hadamard transform or only a companding transform.

©2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Companding transform based SPM compensation in coherent optical OFDM transmission

Hwan Seok Chung, Sun Hyok Chang, and Kwangjoon Kim
Opt. Express 19(26) B702-B709 (2011)

Reducing the Peak-to-Average Power Ratio With Companding Transform Coding in 60 GHz OFDM-ROF Systems

Fan Li, Jianjun Yu, Zizheng Cao, Jiangnan Xiao, Hongxian Chen, and Lin Chen
J. Opt. Commun. Netw. 4(3) 202-209 (2012)

Performance of 16 QAM-OFDM With New Null Subcarrier Shifting in an Intensity-Modulated Direct Detection System

Hongxian Chen, Jing He, Jin Tang, Fan Li, Ming Chen, and Lin Chen
J. Opt. Commun. Netw. 6(2) 159-164 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription