Abstract

In this work, the performance of a distributed power control algorithm (DPCA), based on the Verhulst model for signal-to-noise plus interference ratio (SNIR) optimization in optical code path (OCP) routed networks, was investigated. These networks rest on 2-D codes (time/wavelength) to establish the OCP. The DPCA can be effectively implemented in each node because it uses only local parameters. The SNIR model considers multiple-access interference, amplified spontaneous emission at cascaded amplified spans, group velocity dispersion, and polarization mode dispersion. Numerical results have shown SNIR convergence at power penalties of 7.94 and 11.51 dB for 2.5 and 10 Gbps, respectively. These results could be utilized for adjustment of either the transmitted power to a transmitter node or the gain to dynamic intermediary amplifiers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Ram Murthy and M. Gurusamy, WDM Optical Networks: Concepts, Design, and Algorithms, Prentice Hall, New York, USA, 2002.
  2. K. Kitayama and M. Murata, "Versatile optical code-based MPLS for circuit, burst and packet switching," J. Lightwave Technol. 21, (11), 2573‒2764 (2003).
    [CrossRef]
  3. E. Mutafungwa, "Comparative analysis of the traffic performance of fiber-impairment limited WDM and hybrid OCDM/WDM networks," Photon. Netw. Commun. 13, 53‒66 (2007).
    [CrossRef]
  4. S. Huang, K. Baba, M. Murata, and K. Kitayama, "Variable-bandwidth optical paths: comparison between optical code-labeled path and OCDM path," J. Lightwave Technol. 24, (10), 3563‒3573 (2006).
    [CrossRef]
  5. H. Beyranvand and J. Salehi, "All-optical multiservice path switching in optical code switched GMPLS core network," J. Lightwave Technol. 27, (17), 2001‒2012 (2009).
    [CrossRef]
  6. K. Fouli and M. Maier, "OCDMA and optical coding: Principles, applications, and challenges," IEEE Commun. Mag. 45, (8), 27‒34 (2007).
    [CrossRef]
  7. G. P. Agrawal, Fiber-Optic Communication Systems, John Wiley & Sons, 2002.
  8. F. Forghieri, R. W. Tkach, and R. L. Favin, "Simple model of optical amplifier chains to evaluate penalties in WDM systems," J. Lightwave Technol. 16, (9), 1570‒1576 (1998).
    [CrossRef]
  9. L. Pavel, "OSNR optimization in optical networks: Modeling and distributed algorithms via a central cost approach," IEEE J. Sel. Areas Commun. 24, (4), 54‒65 (2006).
    [CrossRef]
  10. G. Pavani, L. Zuliani, H. Waldman, and M. Magalhães, "Distributed approaches for impairment-aware routing and wavelength assignment algorithms in GMPLS networks," Comput. Netw. 52, (10), 1905‒1915 (2008).
    [CrossRef]
  11. N. G. Tarhuni, M. S. Elmusrati, T. O. Korhonen, and E. Mutafungwa, "Multi-access-interference mitigation using power control in optical-CDMA star networks," IEEE ICC 3, 1593‒1597 (2005).
  12. N. Tarhuni, T. Korhonen, M. Elmusrati, and E. Mutafungwa, "Power control of optical CDMA star networks," Opt. Commun. 259, 655‒664 (2006).
    [CrossRef]
  13. E. Inaty, H. Shalaby, P. Fortie, and L. Rusch, "Optical fast frequency hopping CDMA system using power control," J. Lightwave Technol. 20, (2), 166‒177 (2003).
    [CrossRef]
  14. G. Foschini and Z. Miljanic, "A simple distributed autonomous power control algorithm and its convergence," IEEE Trans. Veh. Technol. 42, (4), 641‒646 (1993).
    [CrossRef]
  15. W. J. M. Al-galbi, M. Mokhtar, A. F. Abas, S. B. A. Anas, and R. K. Z. Sahbudin, "Solving the near–far problem in dynamic frequency hopping-optical code division multiple access using power control," J. Comput. Sci. 5, (6), 413‒418 (2009).
    [CrossRef]
  16. C. C. Yang, J. F. Huang, and T. C. Hsu, "Differentiated service provision in optical CDMA network using power control," IEEE Photon. Technol. Lett. 20, (20), 1664‒1666 (2008).
    [CrossRef]
  17. S. Khaleghi and M. Reza Pakravan, "Quality of service provisioning in optical CDMA packet networks," J. Opt. Commun. Netw. 2, (5), 283‒292 (2010).
    [CrossRef]
  18. H. Yashima and T. Kobayashi, "Optical CDMA with time hopping and power control for multirate networks," J. Lightwave Technol. 21, 695‒702 (2003).
    [CrossRef]
  19. T. Miyazawa and I. Sasase, "Multirate and multiquality transmission scheme using adaptive overlapping pulse-position modulator and power controller in optical CDMA networks," 12th IEEE Int. Conf. on Networks (ICON), Vol. 1, Nov. 2004, pp. 127‒131.
  20. R. Raad, E. Inaty, P. Fortier, and H. M. H. Shalaby, "Optimal resource allocation scheme in a multirate overlapped optical CDMA system," J. Lightwave Technol. 25, (8), 2044‒2053 (2007).
    [CrossRef]
  21. E. Inaty, R. Raad, P. Fortier, and H. M. H. Shalaby, "A fair QoS-based resource allocation scheme for a time-slotted optical OV-CDMA packet network: A unified approach," J. Lightwave Technol. 26, (21), 1‒10 (2009).
  22. F. R. Durand, M. L. F. Abbade, F. R. Barbosa, and E. Moschim, "Design of multi-rate optical code paths considering polarisation mode dispersion limitations," IET Commun. 4, (2), 234‒239 (2010).
    [CrossRef]
  23. P. F. Verhulst, "Notice sur la loi que la population poursuit dans son accroissement," Correspondance mathématique et physique 10, 113‒121 (1838).
  24. C.-S. Brès and P. R. Prucnal, "Code-empowered lightwave networks," J. Lightwave Technol. 25, (10), 2911‒2921 (2007).
    [CrossRef]
  25. C.-S. Brès, Ivan Glesk, and P. R. Prucnal, "Demonstration of a transparent router for wavelength-hopping time-spreading optical CDMA," Opt. Commun. 254, 58‒66 (2005).
    [CrossRef]
  26. Y.-K. Huang, V. Baby, I. Glesk, C.-S. Bres, C. M. Greiner, D. Iazikov, T. W. Mossberg, and P. R. Prucnal, "Novel multicode-processing platform for wavelength-hopping time-spreading optical CDMA: A path to device miniaturization and enhanced network functionality," IEEE J. Sel. Top. Quantum Electron. 13, (5), 1471‒1479 (2007).
    [CrossRef]
  27. G.-C. Yang and W. C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks, Artech House, Boston, MA, 2002.
  28. F. R. Durand, L. Galdino, L. H. Bonani, F. R. Barbosa, M. L. F. Abbade, and E. Moschim, "The effects of polarization mode dispersion on 2D wavelength-hopping time spreading code routed networks," Photon. Netw. Commun. 20, (1), 27‒32 (2010).
    [CrossRef]
  29. T. J. Gross, T. Abrão, and P. J. E. Jeszensky, "Distributed power control algorithm for multiple access systems based on Verhulst model," AEU, Int. J. Electron. Commun. 65, (4), 361‒372 (2011).
    [CrossRef]
  30. B.-J. Y. Y. Zheng and X.-G. Zhang, "Analytical theory for pulse broadening induced by all-order polarization mode dispersion combined with frequency chirp and group-velocity dispersion," Opt. Quantum Electron. 35, (7), 725‒734 (2003).
    [CrossRef]
  31. Q. Zhu and L. Pavel, "Enabling differentiated services using generalized power control model in optical networks," IEEE Trans. Commun. 57, (9), 2570‒2575 (2009).
    [CrossRef]
  32. F. R. Durand, M. Lima, and E. Moschim, "Impact of PMD on hybrid WDM/OCDM networks," IEEE Photon. Technol. Lett. 17, (12), 2787‒2789 (2005).
    [CrossRef]
  33. A. L. Sanches, J. V. dos Reis Jr., and B.-H. V. Borges, "Analysis of high-speed optical wavelength/time CDMA networks using pulse-position modulation and forward error correction techniques," J. Lightwave Technol. 27, (22), 5134‒5144 (2009).
    [CrossRef]
  34. E. K. H. Ng, G. E. Weichenberg, and E. H. Sargent, "Dispersion in multiwavelength optical code-division multiple-access systems: impact and remedies," IEEE Trans. Commun. 50, (11), 1811‒1816 (2002).
    [CrossRef]
  35. R. V. B. Santos-Filho, E. R. Martins, and B. V. Borges, "Performance evaluation of a gigabit optical CDMA network for two distinct families of two-dimensional codes and different transmission rates," Fiber Integr. Opt. 26, 147‒157 (2007).
    [CrossRef]
  36. C. Zuo, W. Ma, H. Pu, and J. Lin, "The impact of group velocity on frequency-hopping optical code division multiple access system," J. Lightwave Technol. 19, (10), 1416‒1419 (2001).
    [CrossRef]
  37. S. Huang, K. Baba, M. Murata, and K. Kitayama, "Architecture design and performance evaluation of multigranularity optical networks based on optical code division multiplexing," J. Opt. Netw. 5, (12), 1028‒1042 (2006).
    [CrossRef]

2011 (1)

T. J. Gross, T. Abrão, and P. J. E. Jeszensky, "Distributed power control algorithm for multiple access systems based on Verhulst model," AEU, Int. J. Electron. Commun. 65, (4), 361‒372 (2011).
[CrossRef]

2010 (3)

F. R. Durand, L. Galdino, L. H. Bonani, F. R. Barbosa, M. L. F. Abbade, and E. Moschim, "The effects of polarization mode dispersion on 2D wavelength-hopping time spreading code routed networks," Photon. Netw. Commun. 20, (1), 27‒32 (2010).
[CrossRef]

F. R. Durand, M. L. F. Abbade, F. R. Barbosa, and E. Moschim, "Design of multi-rate optical code paths considering polarisation mode dispersion limitations," IET Commun. 4, (2), 234‒239 (2010).
[CrossRef]

S. Khaleghi and M. Reza Pakravan, "Quality of service provisioning in optical CDMA packet networks," J. Opt. Commun. Netw. 2, (5), 283‒292 (2010).
[CrossRef]

2009 (5)

E. Inaty, R. Raad, P. Fortier, and H. M. H. Shalaby, "A fair QoS-based resource allocation scheme for a time-slotted optical OV-CDMA packet network: A unified approach," J. Lightwave Technol. 26, (21), 1‒10 (2009).

W. J. M. Al-galbi, M. Mokhtar, A. F. Abas, S. B. A. Anas, and R. K. Z. Sahbudin, "Solving the near–far problem in dynamic frequency hopping-optical code division multiple access using power control," J. Comput. Sci. 5, (6), 413‒418 (2009).
[CrossRef]

H. Beyranvand and J. Salehi, "All-optical multiservice path switching in optical code switched GMPLS core network," J. Lightwave Technol. 27, (17), 2001‒2012 (2009).
[CrossRef]

Q. Zhu and L. Pavel, "Enabling differentiated services using generalized power control model in optical networks," IEEE Trans. Commun. 57, (9), 2570‒2575 (2009).
[CrossRef]

A. L. Sanches, J. V. dos Reis Jr., and B.-H. V. Borges, "Analysis of high-speed optical wavelength/time CDMA networks using pulse-position modulation and forward error correction techniques," J. Lightwave Technol. 27, (22), 5134‒5144 (2009).
[CrossRef]

2008 (2)

G. Pavani, L. Zuliani, H. Waldman, and M. Magalhães, "Distributed approaches for impairment-aware routing and wavelength assignment algorithms in GMPLS networks," Comput. Netw. 52, (10), 1905‒1915 (2008).
[CrossRef]

C. C. Yang, J. F. Huang, and T. C. Hsu, "Differentiated service provision in optical CDMA network using power control," IEEE Photon. Technol. Lett. 20, (20), 1664‒1666 (2008).
[CrossRef]

2007 (6)

R. Raad, E. Inaty, P. Fortier, and H. M. H. Shalaby, "Optimal resource allocation scheme in a multirate overlapped optical CDMA system," J. Lightwave Technol. 25, (8), 2044‒2053 (2007).
[CrossRef]

K. Fouli and M. Maier, "OCDMA and optical coding: Principles, applications, and challenges," IEEE Commun. Mag. 45, (8), 27‒34 (2007).
[CrossRef]

E. Mutafungwa, "Comparative analysis of the traffic performance of fiber-impairment limited WDM and hybrid OCDM/WDM networks," Photon. Netw. Commun. 13, 53‒66 (2007).
[CrossRef]

R. V. B. Santos-Filho, E. R. Martins, and B. V. Borges, "Performance evaluation of a gigabit optical CDMA network for two distinct families of two-dimensional codes and different transmission rates," Fiber Integr. Opt. 26, 147‒157 (2007).
[CrossRef]

C.-S. Brès and P. R. Prucnal, "Code-empowered lightwave networks," J. Lightwave Technol. 25, (10), 2911‒2921 (2007).
[CrossRef]

Y.-K. Huang, V. Baby, I. Glesk, C.-S. Bres, C. M. Greiner, D. Iazikov, T. W. Mossberg, and P. R. Prucnal, "Novel multicode-processing platform for wavelength-hopping time-spreading optical CDMA: A path to device miniaturization and enhanced network functionality," IEEE J. Sel. Top. Quantum Electron. 13, (5), 1471‒1479 (2007).
[CrossRef]

2006 (4)

S. Huang, K. Baba, M. Murata, and K. Kitayama, "Architecture design and performance evaluation of multigranularity optical networks based on optical code division multiplexing," J. Opt. Netw. 5, (12), 1028‒1042 (2006).
[CrossRef]

S. Huang, K. Baba, M. Murata, and K. Kitayama, "Variable-bandwidth optical paths: comparison between optical code-labeled path and OCDM path," J. Lightwave Technol. 24, (10), 3563‒3573 (2006).
[CrossRef]

L. Pavel, "OSNR optimization in optical networks: Modeling and distributed algorithms via a central cost approach," IEEE J. Sel. Areas Commun. 24, (4), 54‒65 (2006).
[CrossRef]

N. Tarhuni, T. Korhonen, M. Elmusrati, and E. Mutafungwa, "Power control of optical CDMA star networks," Opt. Commun. 259, 655‒664 (2006).
[CrossRef]

2005 (3)

N. G. Tarhuni, M. S. Elmusrati, T. O. Korhonen, and E. Mutafungwa, "Multi-access-interference mitigation using power control in optical-CDMA star networks," IEEE ICC 3, 1593‒1597 (2005).

F. R. Durand, M. Lima, and E. Moschim, "Impact of PMD on hybrid WDM/OCDM networks," IEEE Photon. Technol. Lett. 17, (12), 2787‒2789 (2005).
[CrossRef]

C.-S. Brès, Ivan Glesk, and P. R. Prucnal, "Demonstration of a transparent router for wavelength-hopping time-spreading optical CDMA," Opt. Commun. 254, 58‒66 (2005).
[CrossRef]

2003 (4)

B.-J. Y. Y. Zheng and X.-G. Zhang, "Analytical theory for pulse broadening induced by all-order polarization mode dispersion combined with frequency chirp and group-velocity dispersion," Opt. Quantum Electron. 35, (7), 725‒734 (2003).
[CrossRef]

K. Kitayama and M. Murata, "Versatile optical code-based MPLS for circuit, burst and packet switching," J. Lightwave Technol. 21, (11), 2573‒2764 (2003).
[CrossRef]

E. Inaty, H. Shalaby, P. Fortie, and L. Rusch, "Optical fast frequency hopping CDMA system using power control," J. Lightwave Technol. 20, (2), 166‒177 (2003).
[CrossRef]

H. Yashima and T. Kobayashi, "Optical CDMA with time hopping and power control for multirate networks," J. Lightwave Technol. 21, 695‒702 (2003).
[CrossRef]

2002 (1)

E. K. H. Ng, G. E. Weichenberg, and E. H. Sargent, "Dispersion in multiwavelength optical code-division multiple-access systems: impact and remedies," IEEE Trans. Commun. 50, (11), 1811‒1816 (2002).
[CrossRef]

2001 (1)

1998 (1)

1993 (1)

G. Foschini and Z. Miljanic, "A simple distributed autonomous power control algorithm and its convergence," IEEE Trans. Veh. Technol. 42, (4), 641‒646 (1993).
[CrossRef]

1838 (1)

P. F. Verhulst, "Notice sur la loi que la population poursuit dans son accroissement," Correspondance mathématique et physique 10, 113‒121 (1838).

Abas, A. F.

W. J. M. Al-galbi, M. Mokhtar, A. F. Abas, S. B. A. Anas, and R. K. Z. Sahbudin, "Solving the near–far problem in dynamic frequency hopping-optical code division multiple access using power control," J. Comput. Sci. 5, (6), 413‒418 (2009).
[CrossRef]

Abbade, M. L. F.

F. R. Durand, L. Galdino, L. H. Bonani, F. R. Barbosa, M. L. F. Abbade, and E. Moschim, "The effects of polarization mode dispersion on 2D wavelength-hopping time spreading code routed networks," Photon. Netw. Commun. 20, (1), 27‒32 (2010).
[CrossRef]

Abbade, M. L. F.

F. R. Durand, M. L. F. Abbade, F. R. Barbosa, and E. Moschim, "Design of multi-rate optical code paths considering polarisation mode dispersion limitations," IET Commun. 4, (2), 234‒239 (2010).
[CrossRef]

Abrão, T.

T. J. Gross, T. Abrão, and P. J. E. Jeszensky, "Distributed power control algorithm for multiple access systems based on Verhulst model," AEU, Int. J. Electron. Commun. 65, (4), 361‒372 (2011).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, John Wiley & Sons, 2002.

Al-galbi, W. J. M.

W. J. M. Al-galbi, M. Mokhtar, A. F. Abas, S. B. A. Anas, and R. K. Z. Sahbudin, "Solving the near–far problem in dynamic frequency hopping-optical code division multiple access using power control," J. Comput. Sci. 5, (6), 413‒418 (2009).
[CrossRef]

Anas, S. B. A.

W. J. M. Al-galbi, M. Mokhtar, A. F. Abas, S. B. A. Anas, and R. K. Z. Sahbudin, "Solving the near–far problem in dynamic frequency hopping-optical code division multiple access using power control," J. Comput. Sci. 5, (6), 413‒418 (2009).
[CrossRef]

Baba, K.

Baby, V.

Y.-K. Huang, V. Baby, I. Glesk, C.-S. Bres, C. M. Greiner, D. Iazikov, T. W. Mossberg, and P. R. Prucnal, "Novel multicode-processing platform for wavelength-hopping time-spreading optical CDMA: A path to device miniaturization and enhanced network functionality," IEEE J. Sel. Top. Quantum Electron. 13, (5), 1471‒1479 (2007).
[CrossRef]

Barbosa, F. R.

F. R. Durand, M. L. F. Abbade, F. R. Barbosa, and E. Moschim, "Design of multi-rate optical code paths considering polarisation mode dispersion limitations," IET Commun. 4, (2), 234‒239 (2010).
[CrossRef]

F. R. Durand, L. Galdino, L. H. Bonani, F. R. Barbosa, M. L. F. Abbade, and E. Moschim, "The effects of polarization mode dispersion on 2D wavelength-hopping time spreading code routed networks," Photon. Netw. Commun. 20, (1), 27‒32 (2010).
[CrossRef]

Beyranvand, H.

Bonani, L. H.

F. R. Durand, L. Galdino, L. H. Bonani, F. R. Barbosa, M. L. F. Abbade, and E. Moschim, "The effects of polarization mode dispersion on 2D wavelength-hopping time spreading code routed networks," Photon. Netw. Commun. 20, (1), 27‒32 (2010).
[CrossRef]

Borges, B. V.

R. V. B. Santos-Filho, E. R. Martins, and B. V. Borges, "Performance evaluation of a gigabit optical CDMA network for two distinct families of two-dimensional codes and different transmission rates," Fiber Integr. Opt. 26, 147‒157 (2007).
[CrossRef]

Borges, B.-H. V.

Bres, C.-S.

Y.-K. Huang, V. Baby, I. Glesk, C.-S. Bres, C. M. Greiner, D. Iazikov, T. W. Mossberg, and P. R. Prucnal, "Novel multicode-processing platform for wavelength-hopping time-spreading optical CDMA: A path to device miniaturization and enhanced network functionality," IEEE J. Sel. Top. Quantum Electron. 13, (5), 1471‒1479 (2007).
[CrossRef]

Brès, C.-S.

C.-S. Brès and P. R. Prucnal, "Code-empowered lightwave networks," J. Lightwave Technol. 25, (10), 2911‒2921 (2007).
[CrossRef]

C.-S. Brès, Ivan Glesk, and P. R. Prucnal, "Demonstration of a transparent router for wavelength-hopping time-spreading optical CDMA," Opt. Commun. 254, 58‒66 (2005).
[CrossRef]

dos Reis, J. V.

Durand, F. R.

F. R. Durand, L. Galdino, L. H. Bonani, F. R. Barbosa, M. L. F. Abbade, and E. Moschim, "The effects of polarization mode dispersion on 2D wavelength-hopping time spreading code routed networks," Photon. Netw. Commun. 20, (1), 27‒32 (2010).
[CrossRef]

F. R. Durand, M. L. F. Abbade, F. R. Barbosa, and E. Moschim, "Design of multi-rate optical code paths considering polarisation mode dispersion limitations," IET Commun. 4, (2), 234‒239 (2010).
[CrossRef]

F. R. Durand, M. Lima, and E. Moschim, "Impact of PMD on hybrid WDM/OCDM networks," IEEE Photon. Technol. Lett. 17, (12), 2787‒2789 (2005).
[CrossRef]

Elmusrati, M.

N. Tarhuni, T. Korhonen, M. Elmusrati, and E. Mutafungwa, "Power control of optical CDMA star networks," Opt. Commun. 259, 655‒664 (2006).
[CrossRef]

Elmusrati, M. S.

N. G. Tarhuni, M. S. Elmusrati, T. O. Korhonen, and E. Mutafungwa, "Multi-access-interference mitigation using power control in optical-CDMA star networks," IEEE ICC 3, 1593‒1597 (2005).

Favin, R. L.

Forghieri, F.

Fortie, P.

Fortier, P.

E. Inaty, R. Raad, P. Fortier, and H. M. H. Shalaby, "A fair QoS-based resource allocation scheme for a time-slotted optical OV-CDMA packet network: A unified approach," J. Lightwave Technol. 26, (21), 1‒10 (2009).

R. Raad, E. Inaty, P. Fortier, and H. M. H. Shalaby, "Optimal resource allocation scheme in a multirate overlapped optical CDMA system," J. Lightwave Technol. 25, (8), 2044‒2053 (2007).
[CrossRef]

Foschini, G.

G. Foschini and Z. Miljanic, "A simple distributed autonomous power control algorithm and its convergence," IEEE Trans. Veh. Technol. 42, (4), 641‒646 (1993).
[CrossRef]

Fouli, K.

K. Fouli and M. Maier, "OCDMA and optical coding: Principles, applications, and challenges," IEEE Commun. Mag. 45, (8), 27‒34 (2007).
[CrossRef]

Galdino, L.

F. R. Durand, L. Galdino, L. H. Bonani, F. R. Barbosa, M. L. F. Abbade, and E. Moschim, "The effects of polarization mode dispersion on 2D wavelength-hopping time spreading code routed networks," Photon. Netw. Commun. 20, (1), 27‒32 (2010).
[CrossRef]

Glesk, I.

Y.-K. Huang, V. Baby, I. Glesk, C.-S. Bres, C. M. Greiner, D. Iazikov, T. W. Mossberg, and P. R. Prucnal, "Novel multicode-processing platform for wavelength-hopping time-spreading optical CDMA: A path to device miniaturization and enhanced network functionality," IEEE J. Sel. Top. Quantum Electron. 13, (5), 1471‒1479 (2007).
[CrossRef]

Glesk, Ivan

C.-S. Brès, Ivan Glesk, and P. R. Prucnal, "Demonstration of a transparent router for wavelength-hopping time-spreading optical CDMA," Opt. Commun. 254, 58‒66 (2005).
[CrossRef]

Greiner, C. M.

Y.-K. Huang, V. Baby, I. Glesk, C.-S. Bres, C. M. Greiner, D. Iazikov, T. W. Mossberg, and P. R. Prucnal, "Novel multicode-processing platform for wavelength-hopping time-spreading optical CDMA: A path to device miniaturization and enhanced network functionality," IEEE J. Sel. Top. Quantum Electron. 13, (5), 1471‒1479 (2007).
[CrossRef]

Gross, T. J.

T. J. Gross, T. Abrão, and P. J. E. Jeszensky, "Distributed power control algorithm for multiple access systems based on Verhulst model," AEU, Int. J. Electron. Commun. 65, (4), 361‒372 (2011).
[CrossRef]

Gurusamy, M.

C. S. Ram Murthy and M. Gurusamy, WDM Optical Networks: Concepts, Design, and Algorithms, Prentice Hall, New York, USA, 2002.

Hsu, T. C.

C. C. Yang, J. F. Huang, and T. C. Hsu, "Differentiated service provision in optical CDMA network using power control," IEEE Photon. Technol. Lett. 20, (20), 1664‒1666 (2008).
[CrossRef]

Huang, J. F.

C. C. Yang, J. F. Huang, and T. C. Hsu, "Differentiated service provision in optical CDMA network using power control," IEEE Photon. Technol. Lett. 20, (20), 1664‒1666 (2008).
[CrossRef]

Huang, S.

Huang, Y.-K.

Y.-K. Huang, V. Baby, I. Glesk, C.-S. Bres, C. M. Greiner, D. Iazikov, T. W. Mossberg, and P. R. Prucnal, "Novel multicode-processing platform for wavelength-hopping time-spreading optical CDMA: A path to device miniaturization and enhanced network functionality," IEEE J. Sel. Top. Quantum Electron. 13, (5), 1471‒1479 (2007).
[CrossRef]

Iazikov, D.

Y.-K. Huang, V. Baby, I. Glesk, C.-S. Bres, C. M. Greiner, D. Iazikov, T. W. Mossberg, and P. R. Prucnal, "Novel multicode-processing platform for wavelength-hopping time-spreading optical CDMA: A path to device miniaturization and enhanced network functionality," IEEE J. Sel. Top. Quantum Electron. 13, (5), 1471‒1479 (2007).
[CrossRef]

Inaty, E.

Jeszensky, P. J. E.

T. J. Gross, T. Abrão, and P. J. E. Jeszensky, "Distributed power control algorithm for multiple access systems based on Verhulst model," AEU, Int. J. Electron. Commun. 65, (4), 361‒372 (2011).
[CrossRef]

Khaleghi, S.

Kitayama, K.

Kobayashi, T.

Korhonen, T.

N. Tarhuni, T. Korhonen, M. Elmusrati, and E. Mutafungwa, "Power control of optical CDMA star networks," Opt. Commun. 259, 655‒664 (2006).
[CrossRef]

Korhonen, T. O.

N. G. Tarhuni, M. S. Elmusrati, T. O. Korhonen, and E. Mutafungwa, "Multi-access-interference mitigation using power control in optical-CDMA star networks," IEEE ICC 3, 1593‒1597 (2005).

Kwong, W. C.

G.-C. Yang and W. C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks, Artech House, Boston, MA, 2002.

Lima, M.

F. R. Durand, M. Lima, and E. Moschim, "Impact of PMD on hybrid WDM/OCDM networks," IEEE Photon. Technol. Lett. 17, (12), 2787‒2789 (2005).
[CrossRef]

Lin, J.

Ma, W.

Magalhães, M.

G. Pavani, L. Zuliani, H. Waldman, and M. Magalhães, "Distributed approaches for impairment-aware routing and wavelength assignment algorithms in GMPLS networks," Comput. Netw. 52, (10), 1905‒1915 (2008).
[CrossRef]

Maier, M.

K. Fouli and M. Maier, "OCDMA and optical coding: Principles, applications, and challenges," IEEE Commun. Mag. 45, (8), 27‒34 (2007).
[CrossRef]

Martins, E. R.

R. V. B. Santos-Filho, E. R. Martins, and B. V. Borges, "Performance evaluation of a gigabit optical CDMA network for two distinct families of two-dimensional codes and different transmission rates," Fiber Integr. Opt. 26, 147‒157 (2007).
[CrossRef]

Miljanic, Z.

G. Foschini and Z. Miljanic, "A simple distributed autonomous power control algorithm and its convergence," IEEE Trans. Veh. Technol. 42, (4), 641‒646 (1993).
[CrossRef]

Miyazawa, T.

T. Miyazawa and I. Sasase, "Multirate and multiquality transmission scheme using adaptive overlapping pulse-position modulator and power controller in optical CDMA networks," 12th IEEE Int. Conf. on Networks (ICON), Vol. 1, Nov. 2004, pp. 127‒131.

Mokhtar, M.

W. J. M. Al-galbi, M. Mokhtar, A. F. Abas, S. B. A. Anas, and R. K. Z. Sahbudin, "Solving the near–far problem in dynamic frequency hopping-optical code division multiple access using power control," J. Comput. Sci. 5, (6), 413‒418 (2009).
[CrossRef]

Moschim, E.

F. R. Durand, M. L. F. Abbade, F. R. Barbosa, and E. Moschim, "Design of multi-rate optical code paths considering polarisation mode dispersion limitations," IET Commun. 4, (2), 234‒239 (2010).
[CrossRef]

F. R. Durand, L. Galdino, L. H. Bonani, F. R. Barbosa, M. L. F. Abbade, and E. Moschim, "The effects of polarization mode dispersion on 2D wavelength-hopping time spreading code routed networks," Photon. Netw. Commun. 20, (1), 27‒32 (2010).
[CrossRef]

F. R. Durand, M. Lima, and E. Moschim, "Impact of PMD on hybrid WDM/OCDM networks," IEEE Photon. Technol. Lett. 17, (12), 2787‒2789 (2005).
[CrossRef]

Mossberg, T. W.

Y.-K. Huang, V. Baby, I. Glesk, C.-S. Bres, C. M. Greiner, D. Iazikov, T. W. Mossberg, and P. R. Prucnal, "Novel multicode-processing platform for wavelength-hopping time-spreading optical CDMA: A path to device miniaturization and enhanced network functionality," IEEE J. Sel. Top. Quantum Electron. 13, (5), 1471‒1479 (2007).
[CrossRef]

Murata, M.

Mutafungwa, E.

E. Mutafungwa, "Comparative analysis of the traffic performance of fiber-impairment limited WDM and hybrid OCDM/WDM networks," Photon. Netw. Commun. 13, 53‒66 (2007).
[CrossRef]

N. Tarhuni, T. Korhonen, M. Elmusrati, and E. Mutafungwa, "Power control of optical CDMA star networks," Opt. Commun. 259, 655‒664 (2006).
[CrossRef]

N. G. Tarhuni, M. S. Elmusrati, T. O. Korhonen, and E. Mutafungwa, "Multi-access-interference mitigation using power control in optical-CDMA star networks," IEEE ICC 3, 1593‒1597 (2005).

Ng, E. K. H.

E. K. H. Ng, G. E. Weichenberg, and E. H. Sargent, "Dispersion in multiwavelength optical code-division multiple-access systems: impact and remedies," IEEE Trans. Commun. 50, (11), 1811‒1816 (2002).
[CrossRef]

Pavani, G.

G. Pavani, L. Zuliani, H. Waldman, and M. Magalhães, "Distributed approaches for impairment-aware routing and wavelength assignment algorithms in GMPLS networks," Comput. Netw. 52, (10), 1905‒1915 (2008).
[CrossRef]

Pavel, L.

Q. Zhu and L. Pavel, "Enabling differentiated services using generalized power control model in optical networks," IEEE Trans. Commun. 57, (9), 2570‒2575 (2009).
[CrossRef]

L. Pavel, "OSNR optimization in optical networks: Modeling and distributed algorithms via a central cost approach," IEEE J. Sel. Areas Commun. 24, (4), 54‒65 (2006).
[CrossRef]

Prucnal, P. R.

Y.-K. Huang, V. Baby, I. Glesk, C.-S. Bres, C. M. Greiner, D. Iazikov, T. W. Mossberg, and P. R. Prucnal, "Novel multicode-processing platform for wavelength-hopping time-spreading optical CDMA: A path to device miniaturization and enhanced network functionality," IEEE J. Sel. Top. Quantum Electron. 13, (5), 1471‒1479 (2007).
[CrossRef]

C.-S. Brès and P. R. Prucnal, "Code-empowered lightwave networks," J. Lightwave Technol. 25, (10), 2911‒2921 (2007).
[CrossRef]

C.-S. Brès, Ivan Glesk, and P. R. Prucnal, "Demonstration of a transparent router for wavelength-hopping time-spreading optical CDMA," Opt. Commun. 254, 58‒66 (2005).
[CrossRef]

Pu, H.

Raad, R.

E. Inaty, R. Raad, P. Fortier, and H. M. H. Shalaby, "A fair QoS-based resource allocation scheme for a time-slotted optical OV-CDMA packet network: A unified approach," J. Lightwave Technol. 26, (21), 1‒10 (2009).

R. Raad, E. Inaty, P. Fortier, and H. M. H. Shalaby, "Optimal resource allocation scheme in a multirate overlapped optical CDMA system," J. Lightwave Technol. 25, (8), 2044‒2053 (2007).
[CrossRef]

Ram Murthy, C. S.

C. S. Ram Murthy and M. Gurusamy, WDM Optical Networks: Concepts, Design, and Algorithms, Prentice Hall, New York, USA, 2002.

Reza Pakravan, M.

Rusch, L.

Sahbudin, R. K. Z.

W. J. M. Al-galbi, M. Mokhtar, A. F. Abas, S. B. A. Anas, and R. K. Z. Sahbudin, "Solving the near–far problem in dynamic frequency hopping-optical code division multiple access using power control," J. Comput. Sci. 5, (6), 413‒418 (2009).
[CrossRef]

Salehi, J.

Sanches, A. L.

Santos-Filho, R. V. B.

R. V. B. Santos-Filho, E. R. Martins, and B. V. Borges, "Performance evaluation of a gigabit optical CDMA network for two distinct families of two-dimensional codes and different transmission rates," Fiber Integr. Opt. 26, 147‒157 (2007).
[CrossRef]

Sargent, E. H.

E. K. H. Ng, G. E. Weichenberg, and E. H. Sargent, "Dispersion in multiwavelength optical code-division multiple-access systems: impact and remedies," IEEE Trans. Commun. 50, (11), 1811‒1816 (2002).
[CrossRef]

Sasase, I.

T. Miyazawa and I. Sasase, "Multirate and multiquality transmission scheme using adaptive overlapping pulse-position modulator and power controller in optical CDMA networks," 12th IEEE Int. Conf. on Networks (ICON), Vol. 1, Nov. 2004, pp. 127‒131.

Shalaby, H.

Shalaby, H. M. H.

E. Inaty, R. Raad, P. Fortier, and H. M. H. Shalaby, "A fair QoS-based resource allocation scheme for a time-slotted optical OV-CDMA packet network: A unified approach," J. Lightwave Technol. 26, (21), 1‒10 (2009).

R. Raad, E. Inaty, P. Fortier, and H. M. H. Shalaby, "Optimal resource allocation scheme in a multirate overlapped optical CDMA system," J. Lightwave Technol. 25, (8), 2044‒2053 (2007).
[CrossRef]

Tarhuni, N.

N. Tarhuni, T. Korhonen, M. Elmusrati, and E. Mutafungwa, "Power control of optical CDMA star networks," Opt. Commun. 259, 655‒664 (2006).
[CrossRef]

Tarhuni, N. G.

N. G. Tarhuni, M. S. Elmusrati, T. O. Korhonen, and E. Mutafungwa, "Multi-access-interference mitigation using power control in optical-CDMA star networks," IEEE ICC 3, 1593‒1597 (2005).

Tkach, R. W.

Verhulst, P. F.

P. F. Verhulst, "Notice sur la loi que la population poursuit dans son accroissement," Correspondance mathématique et physique 10, 113‒121 (1838).

Waldman, H.

G. Pavani, L. Zuliani, H. Waldman, and M. Magalhães, "Distributed approaches for impairment-aware routing and wavelength assignment algorithms in GMPLS networks," Comput. Netw. 52, (10), 1905‒1915 (2008).
[CrossRef]

Weichenberg, G. E.

E. K. H. Ng, G. E. Weichenberg, and E. H. Sargent, "Dispersion in multiwavelength optical code-division multiple-access systems: impact and remedies," IEEE Trans. Commun. 50, (11), 1811‒1816 (2002).
[CrossRef]

Yang, C. C.

C. C. Yang, J. F. Huang, and T. C. Hsu, "Differentiated service provision in optical CDMA network using power control," IEEE Photon. Technol. Lett. 20, (20), 1664‒1666 (2008).
[CrossRef]

Yang, G.-C.

G.-C. Yang and W. C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks, Artech House, Boston, MA, 2002.

Yashima, H.

Zhang, X.-G.

B.-J. Y. Y. Zheng and X.-G. Zhang, "Analytical theory for pulse broadening induced by all-order polarization mode dispersion combined with frequency chirp and group-velocity dispersion," Opt. Quantum Electron. 35, (7), 725‒734 (2003).
[CrossRef]

Zheng, B.-J. Y. Y.

B.-J. Y. Y. Zheng and X.-G. Zhang, "Analytical theory for pulse broadening induced by all-order polarization mode dispersion combined with frequency chirp and group-velocity dispersion," Opt. Quantum Electron. 35, (7), 725‒734 (2003).
[CrossRef]

Zhu, Q.

Q. Zhu and L. Pavel, "Enabling differentiated services using generalized power control model in optical networks," IEEE Trans. Commun. 57, (9), 2570‒2575 (2009).
[CrossRef]

Zuliani, L.

G. Pavani, L. Zuliani, H. Waldman, and M. Magalhães, "Distributed approaches for impairment-aware routing and wavelength assignment algorithms in GMPLS networks," Comput. Netw. 52, (10), 1905‒1915 (2008).
[CrossRef]

Zuo, C.

AEU, Int. J. Electron. Commun. (1)

T. J. Gross, T. Abrão, and P. J. E. Jeszensky, "Distributed power control algorithm for multiple access systems based on Verhulst model," AEU, Int. J. Electron. Commun. 65, (4), 361‒372 (2011).
[CrossRef]

Comput. Netw. (1)

G. Pavani, L. Zuliani, H. Waldman, and M. Magalhães, "Distributed approaches for impairment-aware routing and wavelength assignment algorithms in GMPLS networks," Comput. Netw. 52, (10), 1905‒1915 (2008).
[CrossRef]

Correspondance mathématique et physique (1)

P. F. Verhulst, "Notice sur la loi que la population poursuit dans son accroissement," Correspondance mathématique et physique 10, 113‒121 (1838).

Fiber Integr. Opt. (1)

R. V. B. Santos-Filho, E. R. Martins, and B. V. Borges, "Performance evaluation of a gigabit optical CDMA network for two distinct families of two-dimensional codes and different transmission rates," Fiber Integr. Opt. 26, 147‒157 (2007).
[CrossRef]

IEEE Commun. Mag. (1)

K. Fouli and M. Maier, "OCDMA and optical coding: Principles, applications, and challenges," IEEE Commun. Mag. 45, (8), 27‒34 (2007).
[CrossRef]

IEEE ICC (1)

N. G. Tarhuni, M. S. Elmusrati, T. O. Korhonen, and E. Mutafungwa, "Multi-access-interference mitigation using power control in optical-CDMA star networks," IEEE ICC 3, 1593‒1597 (2005).

IEEE J. Sel. Areas Commun. (1)

L. Pavel, "OSNR optimization in optical networks: Modeling and distributed algorithms via a central cost approach," IEEE J. Sel. Areas Commun. 24, (4), 54‒65 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y.-K. Huang, V. Baby, I. Glesk, C.-S. Bres, C. M. Greiner, D. Iazikov, T. W. Mossberg, and P. R. Prucnal, "Novel multicode-processing platform for wavelength-hopping time-spreading optical CDMA: A path to device miniaturization and enhanced network functionality," IEEE J. Sel. Top. Quantum Electron. 13, (5), 1471‒1479 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

F. R. Durand, M. Lima, and E. Moschim, "Impact of PMD on hybrid WDM/OCDM networks," IEEE Photon. Technol. Lett. 17, (12), 2787‒2789 (2005).
[CrossRef]

C. C. Yang, J. F. Huang, and T. C. Hsu, "Differentiated service provision in optical CDMA network using power control," IEEE Photon. Technol. Lett. 20, (20), 1664‒1666 (2008).
[CrossRef]

IEEE Trans. Commun. (2)

Q. Zhu and L. Pavel, "Enabling differentiated services using generalized power control model in optical networks," IEEE Trans. Commun. 57, (9), 2570‒2575 (2009).
[CrossRef]

E. K. H. Ng, G. E. Weichenberg, and E. H. Sargent, "Dispersion in multiwavelength optical code-division multiple-access systems: impact and remedies," IEEE Trans. Commun. 50, (11), 1811‒1816 (2002).
[CrossRef]

IEEE Trans. Veh. Technol. (1)

G. Foschini and Z. Miljanic, "A simple distributed autonomous power control algorithm and its convergence," IEEE Trans. Veh. Technol. 42, (4), 641‒646 (1993).
[CrossRef]

IET Commun. (1)

F. R. Durand, M. L. F. Abbade, F. R. Barbosa, and E. Moschim, "Design of multi-rate optical code paths considering polarisation mode dispersion limitations," IET Commun. 4, (2), 234‒239 (2010).
[CrossRef]

J. Comput. Sci. (1)

W. J. M. Al-galbi, M. Mokhtar, A. F. Abas, S. B. A. Anas, and R. K. Z. Sahbudin, "Solving the near–far problem in dynamic frequency hopping-optical code division multiple access using power control," J. Comput. Sci. 5, (6), 413‒418 (2009).
[CrossRef]

J. Lightwave Technol. (11)

E. Inaty, H. Shalaby, P. Fortie, and L. Rusch, "Optical fast frequency hopping CDMA system using power control," J. Lightwave Technol. 20, (2), 166‒177 (2003).
[CrossRef]

F. Forghieri, R. W. Tkach, and R. L. Favin, "Simple model of optical amplifier chains to evaluate penalties in WDM systems," J. Lightwave Technol. 16, (9), 1570‒1576 (1998).
[CrossRef]

K. Kitayama and M. Murata, "Versatile optical code-based MPLS for circuit, burst and packet switching," J. Lightwave Technol. 21, (11), 2573‒2764 (2003).
[CrossRef]

S. Huang, K. Baba, M. Murata, and K. Kitayama, "Variable-bandwidth optical paths: comparison between optical code-labeled path and OCDM path," J. Lightwave Technol. 24, (10), 3563‒3573 (2006).
[CrossRef]

H. Beyranvand and J. Salehi, "All-optical multiservice path switching in optical code switched GMPLS core network," J. Lightwave Technol. 27, (17), 2001‒2012 (2009).
[CrossRef]

A. L. Sanches, J. V. dos Reis Jr., and B.-H. V. Borges, "Analysis of high-speed optical wavelength/time CDMA networks using pulse-position modulation and forward error correction techniques," J. Lightwave Technol. 27, (22), 5134‒5144 (2009).
[CrossRef]

C.-S. Brès and P. R. Prucnal, "Code-empowered lightwave networks," J. Lightwave Technol. 25, (10), 2911‒2921 (2007).
[CrossRef]

H. Yashima and T. Kobayashi, "Optical CDMA with time hopping and power control for multirate networks," J. Lightwave Technol. 21, 695‒702 (2003).
[CrossRef]

R. Raad, E. Inaty, P. Fortier, and H. M. H. Shalaby, "Optimal resource allocation scheme in a multirate overlapped optical CDMA system," J. Lightwave Technol. 25, (8), 2044‒2053 (2007).
[CrossRef]

E. Inaty, R. Raad, P. Fortier, and H. M. H. Shalaby, "A fair QoS-based resource allocation scheme for a time-slotted optical OV-CDMA packet network: A unified approach," J. Lightwave Technol. 26, (21), 1‒10 (2009).

C. Zuo, W. Ma, H. Pu, and J. Lin, "The impact of group velocity on frequency-hopping optical code division multiple access system," J. Lightwave Technol. 19, (10), 1416‒1419 (2001).
[CrossRef]

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (1)

Opt. Commun. (2)

N. Tarhuni, T. Korhonen, M. Elmusrati, and E. Mutafungwa, "Power control of optical CDMA star networks," Opt. Commun. 259, 655‒664 (2006).
[CrossRef]

C.-S. Brès, Ivan Glesk, and P. R. Prucnal, "Demonstration of a transparent router for wavelength-hopping time-spreading optical CDMA," Opt. Commun. 254, 58‒66 (2005).
[CrossRef]

Opt. Quantum Electron. (1)

B.-J. Y. Y. Zheng and X.-G. Zhang, "Analytical theory for pulse broadening induced by all-order polarization mode dispersion combined with frequency chirp and group-velocity dispersion," Opt. Quantum Electron. 35, (7), 725‒734 (2003).
[CrossRef]

Photon. Netw. Commun. (2)

F. R. Durand, L. Galdino, L. H. Bonani, F. R. Barbosa, M. L. F. Abbade, and E. Moschim, "The effects of polarization mode dispersion on 2D wavelength-hopping time spreading code routed networks," Photon. Netw. Commun. 20, (1), 27‒32 (2010).
[CrossRef]

E. Mutafungwa, "Comparative analysis of the traffic performance of fiber-impairment limited WDM and hybrid OCDM/WDM networks," Photon. Netw. Commun. 13, 53‒66 (2007).
[CrossRef]

Other (4)

C. S. Ram Murthy and M. Gurusamy, WDM Optical Networks: Concepts, Design, and Algorithms, Prentice Hall, New York, USA, 2002.

G. P. Agrawal, Fiber-Optic Communication Systems, John Wiley & Sons, 2002.

G.-C. Yang and W. C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks, Artech House, Boston, MA, 2002.

T. Miyazawa and I. Sasase, "Multirate and multiquality transmission scheme using adaptive overlapping pulse-position modulator and power controller in optical CDMA networks," 12th IEEE Int. Conf. on Networks (ICON), Vol. 1, Nov. 2004, pp. 127‒131.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) Optical code path routed network architecture.

Fig. 2
Fig. 2

Cascading amplifiers.

Fig. 3
Fig. 3

(Color online) The high-speed southern Finland network topology consisting of 12 nodes and 19 bi-directional links.

Fig. 4
Fig. 4

(Color online) The SNIR evolution for the number of iterations for α of (a) 0.1, (b) 0.5, and (c) 0.9.

Fig. 5
Fig. 5

(Color online) Transmitted power per node × number of iterations, α = 0 . 1 .

Fig. 6
Fig. 6

(Color online) Transmitted power per node × number of iterations, α = 0 . 5 .

Fig. 7
Fig. 7

(Color online) Transmitted power per node × number of iterations, α = 0 . 9 .

Fig. 8
Fig. 8

(Color online) NMSE × number of iterations × SNIR error estimation (δ).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Γ i = G i i p i G a m p G a m p j = 1 , j i K G i j p j + 2 N s p e q Γ , P min p i P max i = 1 , , K ,
p i [ n + 1 ] = p i [ n ] α 1 γ i γ [ n ] p i [ n ] , i = 1 , , K ,
p ̇ = z ( p ) = p 1 p p .
p ( t ) = exp ( t ) p ( 0 ) p p + p ( 0 ) exp ( t ) 1 ,
lim t + p ( t ) = p
p i [ n + 1 ] = ( 1 + α ) p i [ n ] α γ n γ i p i [ n ] , i = 1 , , K .
NMSE [ n ] = E p [ n ] p 2 p 2 ,
γ i = N T 2 ( G i i p i G a m p ) / σ D σ 2 G a m p j = 1 , j i K G i j p j + 2 N s p e q , i = 1 , , K ,
N s p e q = N s p 1 ( G 1 1 ) G i i G 0 + N s p 0 ( G 0 1 ) G 1 G i i G 0 1 .
σ D = 1 + C p β 2 d i j 2 τ 0 2 + β 2 d i j 2 τ 0 2 + x 1 2 1 + C p 2 × 1 + 4 3 1 + C p 2 x 1 1 / 2 ,
γ i = 1 + ε γ i , i  and  ε U δ ; + δ .