Abstract

We investigate the advantages and disadvantages of different loopback buffer architectures for optical switches and compare their performance via simulation. The simulation results show that, without the use of virtual output queuing, the head-of-line blocking can be alleviated by wavelength parallelism when each separate queue in a loopback buffer has multiple transmitters. Furthermore, the proposed two-level flow control can eliminate packet drop at the switch, resolve rate mismatching due to output queuing at switch outputs, and ensure that congestion occurring at the hotspot port will not affect the performance of non-congested ports.

© 2011 OSA

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription