Abstract

A scalable and flexible photonic interconnection network architecture suitable for warehouse-scale networks is proposed. The architecture comprises three functional layers: physical, optical, and logical layers. The network topologies achieved at the layers are tree in the physical layer; hypercube in the optical layer; and relatively lower dimensional topologies like two-dimensional mesh, tree, and ring in the logical layer. The application of the appropriate network configuration in each layer by making good use of wavelength division multiplexing technology realizes a truly scalable and flexible network. Evaluation of the physical link requirements reveals the scalability of the proposed network architecture.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Katz, "Tech titans building boom," IEEE Spectrum 46, (2), 40‒54 (2009).
    [CrossRef]
  2. C. F. Lam, "Optical network technologies for datacenter networks (invited paper)," OFC/NFOEC2010, 2010, NWA3.
  3. M. Glick, "Optical interconnects in next generation data centers: an end to end view," Proc. 16th IEEE Symp. on High Performance Interconnects, 2008, pp. 178‒181.
  4. A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.
  5. L. Schares, D. M. Kuchta, and A. F. Benner, "Optics in future data center networks," Proc. 2010 18th IEEE Symp. on High Performance Interconnects, 2010, pp. 104‒108.
  6. H. Liu, C. F. Lam, and C. Johnson, "Scaling optical interconnects in datacenter networks," Proc. 2010 18th IEEE Symp. on High Performance Interconnects, 2010, pp. 113‒116.
  7. B. Mukherjee, "WDM-based local lightwave networks. II. Multihop systems," IEEE Network 6, (4), 20‒32 (1992).
    [CrossRef]
  8. Y. Saad and M. Schultz, "Topological properties of hypercubes," IEEE Trans. Comput. 37, (7), 867‒872 (1988).
    [CrossRef]
  9. K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, "32 × 32 full-mesh (1024path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating," Electron. Lett. 36, (15), 1294‒1296 (2000).
    [CrossRef]
  10. S. Kamei, M. Ishii, M. Itoh, T. Shibata, Y. Inoue, and T. Kitagawa, "64 × 64-channel uniform-loss and cyclic-frequency arrayed-waveguide grating router module," Electron. Lett. 39, (1), 83‒84 (2003).
    [CrossRef]
  11. O. Moriwaki, K. Noguchi, T. Sakamoto, S. Kamei, and H. Takahashi, "Wavelength path reconfigurable AWG-STAR employing coprime-channel-cycle arrayed-waveguide gratings," IEEE Photon. Technol. Lett. 21, (14), 1005‒1007 (2009).
    [CrossRef]
  12. S. Kamei, M. Ishii, A. Kaneko, T. Shibata, and M. Itoh, "N×N cyclic-frequency router with improved performance based on arrayed-waveguide grating," J. Lightwave Technol. 27, (18), 4097‒4104 (2009).
    [CrossRef]
  13. T. Sakano, A. Tsutsui, T. Kitagawa, K. Sasayama, and A. Takahara, "Dual layer hypercube WDM network using arrayed waveguide gratings and wavelength-band multiplexers/demultiplexiers as photonic interchangers," Proc. 5th OptoElectronics and Communications Conf. 2000 (OECC2000), 2000, pp. 468‒46914A3-5.
  14. T. Sakano, A. Kadohata, Y. Sone, A. Watanabe, and M. Jinno, "Multi-layer hypercube photonic network architecture for intra-datacenter network," IEICE Trans. Commun. E94-B, (4), 910‒917 (2011).
    [CrossRef]
  15. F. Petrini and M. Vanneschi, "k-ary n-trees: high performance networks for massively parallel architectures," Proc. 11th Int. Parallel Processing Symp., Apr. 1997, pp. 87‒93.
  16. E. John, F. Hudson, and L. K. John, "Hybrid tree: a scalable optoelectronic interconnection network for parallel computing," Proc. 31st Hawaii Int. Conf. on System Sciences, Vol. 7, Jan. 1998, pp. 466‒474.
  17. "52.7. PMD to MDI optical specification for 10GBASE-E," IEEE Std. 802.3-2005, 2005, pp. 322‒324.

2011 (1)

T. Sakano, A. Kadohata, Y. Sone, A. Watanabe, and M. Jinno, "Multi-layer hypercube photonic network architecture for intra-datacenter network," IEICE Trans. Commun. E94-B, (4), 910‒917 (2011).
[CrossRef]

2009 (3)

O. Moriwaki, K. Noguchi, T. Sakamoto, S. Kamei, and H. Takahashi, "Wavelength path reconfigurable AWG-STAR employing coprime-channel-cycle arrayed-waveguide gratings," IEEE Photon. Technol. Lett. 21, (14), 1005‒1007 (2009).
[CrossRef]

S. Kamei, M. Ishii, A. Kaneko, T. Shibata, and M. Itoh, "N×N cyclic-frequency router with improved performance based on arrayed-waveguide grating," J. Lightwave Technol. 27, (18), 4097‒4104 (2009).
[CrossRef]

R. H. Katz, "Tech titans building boom," IEEE Spectrum 46, (2), 40‒54 (2009).
[CrossRef]

2003 (1)

S. Kamei, M. Ishii, M. Itoh, T. Shibata, Y. Inoue, and T. Kitagawa, "64 × 64-channel uniform-loss and cyclic-frequency arrayed-waveguide grating router module," Electron. Lett. 39, (1), 83‒84 (2003).
[CrossRef]

2000 (1)

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, "32 × 32 full-mesh (1024path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating," Electron. Lett. 36, (15), 1294‒1296 (2000).
[CrossRef]

1992 (1)

B. Mukherjee, "WDM-based local lightwave networks. II. Multihop systems," IEEE Network 6, (4), 20‒32 (1992).
[CrossRef]

1988 (1)

Y. Saad and M. Schultz, "Topological properties of hypercubes," IEEE Trans. Comput. 37, (7), 867‒872 (1988).
[CrossRef]

Bagheri, H.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

Benner, A. F.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

L. Schares, D. M. Kuchta, and A. F. Benner, "Optics in future data center networks," Proc. 2010 18th IEEE Symp. on High Performance Interconnects, 2010, pp. 104‒108.

Budd, R. A.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

Childers, D.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

Childers, E.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

Fasano, B. V.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

Fields, M. H.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

Glick, M.

M. Glick, "Optical interconnects in next generation data centers: an end to end view," Proc. 16th IEEE Symp. on High Performance Interconnects, 2008, pp. 178‒181.

Granger, R.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

Hougham, G.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

Hudson, F.

E. John, F. Hudson, and L. K. John, "Hybrid tree: a scalable optoelectronic interconnection network for parallel computing," Proc. 31st Hawaii Int. Conf. on System Sciences, Vol. 7, Jan. 1998, pp. 466‒474.

Inoue, Y.

S. Kamei, M. Ishii, M. Itoh, T. Shibata, Y. Inoue, and T. Kitagawa, "64 × 64-channel uniform-loss and cyclic-frequency arrayed-waveguide grating router module," Electron. Lett. 39, (1), 83‒84 (2003).
[CrossRef]

Ishii, M.

S. Kamei, M. Ishii, A. Kaneko, T. Shibata, and M. Itoh, "N×N cyclic-frequency router with improved performance based on arrayed-waveguide grating," J. Lightwave Technol. 27, (18), 4097‒4104 (2009).
[CrossRef]

S. Kamei, M. Ishii, M. Itoh, T. Shibata, Y. Inoue, and T. Kitagawa, "64 × 64-channel uniform-loss and cyclic-frequency arrayed-waveguide grating router module," Electron. Lett. 39, (1), 83‒84 (2003).
[CrossRef]

Itoh, M.

S. Kamei, M. Ishii, A. Kaneko, T. Shibata, and M. Itoh, "N×N cyclic-frequency router with improved performance based on arrayed-waveguide grating," J. Lightwave Technol. 27, (18), 4097‒4104 (2009).
[CrossRef]

S. Kamei, M. Ishii, M. Itoh, T. Shibata, Y. Inoue, and T. Kitagawa, "64 × 64-channel uniform-loss and cyclic-frequency arrayed-waveguide grating router module," Electron. Lett. 39, (1), 83‒84 (2003).
[CrossRef]

Jinno, M.

T. Sakano, A. Kadohata, Y. Sone, A. Watanabe, and M. Jinno, "Multi-layer hypercube photonic network architecture for intra-datacenter network," IEICE Trans. Commun. E94-B, (4), 910‒917 (2011).
[CrossRef]

John, E.

E. John, F. Hudson, and L. K. John, "Hybrid tree: a scalable optoelectronic interconnection network for parallel computing," Proc. 31st Hawaii Int. Conf. on System Sciences, Vol. 7, Jan. 1998, pp. 466‒474.

John, L. K.

E. John, F. Hudson, and L. K. John, "Hybrid tree: a scalable optoelectronic interconnection network for parallel computing," Proc. 31st Hawaii Int. Conf. on System Sciences, Vol. 7, Jan. 1998, pp. 466‒474.

Johnson, C.

H. Liu, C. F. Lam, and C. Johnson, "Scaling optical interconnects in datacenter networks," Proc. 2010 18th IEEE Symp. on High Performance Interconnects, 2010, pp. 113‒116.

Kadohata, A.

T. Sakano, A. Kadohata, Y. Sone, A. Watanabe, and M. Jinno, "Multi-layer hypercube photonic network architecture for intra-datacenter network," IEICE Trans. Commun. E94-B, (4), 910‒917 (2011).
[CrossRef]

Kamei, S.

S. Kamei, M. Ishii, A. Kaneko, T. Shibata, and M. Itoh, "N×N cyclic-frequency router with improved performance based on arrayed-waveguide grating," J. Lightwave Technol. 27, (18), 4097‒4104 (2009).
[CrossRef]

O. Moriwaki, K. Noguchi, T. Sakamoto, S. Kamei, and H. Takahashi, "Wavelength path reconfigurable AWG-STAR employing coprime-channel-cycle arrayed-waveguide gratings," IEEE Photon. Technol. Lett. 21, (14), 1005‒1007 (2009).
[CrossRef]

S. Kamei, M. Ishii, M. Itoh, T. Shibata, Y. Inoue, and T. Kitagawa, "64 × 64-channel uniform-loss and cyclic-frequency arrayed-waveguide grating router module," Electron. Lett. 39, (1), 83‒84 (2003).
[CrossRef]

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, "32 × 32 full-mesh (1024path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating," Electron. Lett. 36, (15), 1294‒1296 (2000).
[CrossRef]

Kaneko, A.

S. Kamei, M. Ishii, A. Kaneko, T. Shibata, and M. Itoh, "N×N cyclic-frequency router with improved performance based on arrayed-waveguide grating," J. Lightwave Technol. 27, (18), 4097‒4104 (2009).
[CrossRef]

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, "32 × 32 full-mesh (1024path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating," Electron. Lett. 36, (15), 1294‒1296 (2000).
[CrossRef]

Kaneshiro, R.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

Kato, K.

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, "32 × 32 full-mesh (1024path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating," Electron. Lett. 36, (15), 1294‒1296 (2000).
[CrossRef]

Katz, R. H.

R. H. Katz, "Tech titans building boom," IEEE Spectrum 46, (2), 40‒54 (2009).
[CrossRef]

Kitagawa, T.

S. Kamei, M. Ishii, M. Itoh, T. Shibata, Y. Inoue, and T. Kitagawa, "64 × 64-channel uniform-loss and cyclic-frequency arrayed-waveguide grating router module," Electron. Lett. 39, (1), 83‒84 (2003).
[CrossRef]

T. Sakano, A. Tsutsui, T. Kitagawa, K. Sasayama, and A. Takahara, "Dual layer hypercube WDM network using arrayed waveguide gratings and wavelength-band multiplexers/demultiplexiers as photonic interchangers," Proc. 5th OptoElectronics and Communications Conf. 2000 (OECC2000), 2000, pp. 468‒46914A3-5.

Kuchta, D. M.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

L. Schares, D. M. Kuchta, and A. F. Benner, "Optics in future data center networks," Proc. 2010 18th IEEE Symp. on High Performance Interconnects, 2010, pp. 104‒108.

Lam, C. F.

C. F. Lam, "Optical network technologies for datacenter networks (invited paper)," OFC/NFOEC2010, 2010, NWA3.

H. Liu, C. F. Lam, and C. Johnson, "Scaling optical interconnects in datacenter networks," Proc. 2010 18th IEEE Symp. on High Performance Interconnects, 2010, pp. 113‒116.

Liu, H.

H. Liu, C. F. Lam, and C. Johnson, "Scaling optical interconnects in datacenter networks," Proc. 2010 18th IEEE Symp. on High Performance Interconnects, 2010, pp. 113‒116.

Marston, K.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

Matsuoka, M.

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, "32 × 32 full-mesh (1024path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating," Electron. Lett. 36, (15), 1294‒1296 (2000).
[CrossRef]

McColloch, L.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

Meadowcroft, D.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

Miller, F. W.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

Moriwaki, O.

O. Moriwaki, K. Noguchi, T. Sakamoto, S. Kamei, and H. Takahashi, "Wavelength path reconfigurable AWG-STAR employing coprime-channel-cycle arrayed-waveguide gratings," IEEE Photon. Technol. Lett. 21, (14), 1005‒1007 (2009).
[CrossRef]

Mukherjee, B.

B. Mukherjee, "WDM-based local lightwave networks. II. Multihop systems," IEEE Network 6, (4), 20‒32 (1992).
[CrossRef]

Noguchi, K.

O. Moriwaki, K. Noguchi, T. Sakamoto, S. Kamei, and H. Takahashi, "Wavelength path reconfigurable AWG-STAR employing coprime-channel-cycle arrayed-waveguide gratings," IEEE Photon. Technol. Lett. 21, (14), 1005‒1007 (2009).
[CrossRef]

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, "32 × 32 full-mesh (1024path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating," Electron. Lett. 36, (15), 1294‒1296 (2000).
[CrossRef]

Okada, A.

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, "32 × 32 full-mesh (1024path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating," Electron. Lett. 36, (15), 1294‒1296 (2000).
[CrossRef]

Pepeljugoski, P. K.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

Petrini, F.

F. Petrini and M. Vanneschi, "k-ary n-trees: high performance networks for massively parallel architectures," Proc. 11th Int. Parallel Processing Symp., Apr. 1997, pp. 87‒93.

Robinson, M.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

Saad, Y.

Y. Saad and M. Schultz, "Topological properties of hypercubes," IEEE Trans. Comput. 37, (7), 867‒872 (1988).
[CrossRef]

Sakai, Y.

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, "32 × 32 full-mesh (1024path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating," Electron. Lett. 36, (15), 1294‒1296 (2000).
[CrossRef]

Sakamoto, T.

O. Moriwaki, K. Noguchi, T. Sakamoto, S. Kamei, and H. Takahashi, "Wavelength path reconfigurable AWG-STAR employing coprime-channel-cycle arrayed-waveguide gratings," IEEE Photon. Technol. Lett. 21, (14), 1005‒1007 (2009).
[CrossRef]

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, "32 × 32 full-mesh (1024path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating," Electron. Lett. 36, (15), 1294‒1296 (2000).
[CrossRef]

Sakano, T.

T. Sakano, A. Kadohata, Y. Sone, A. Watanabe, and M. Jinno, "Multi-layer hypercube photonic network architecture for intra-datacenter network," IEICE Trans. Commun. E94-B, (4), 910‒917 (2011).
[CrossRef]

T. Sakano, A. Tsutsui, T. Kitagawa, K. Sasayama, and A. Takahara, "Dual layer hypercube WDM network using arrayed waveguide gratings and wavelength-band multiplexers/demultiplexiers as photonic interchangers," Proc. 5th OptoElectronics and Communications Conf. 2000 (OECC2000), 2000, pp. 468‒46914A3-5.

Sasayama, K.

T. Sakano, A. Tsutsui, T. Kitagawa, K. Sasayama, and A. Takahara, "Dual layer hypercube WDM network using arrayed waveguide gratings and wavelength-band multiplexers/demultiplexiers as photonic interchangers," Proc. 5th OptoElectronics and Communications Conf. 2000 (OECC2000), 2000, pp. 468‒46914A3-5.

Schares, L.

L. Schares, D. M. Kuchta, and A. F. Benner, "Optics in future data center networks," Proc. 2010 18th IEEE Symp. on High Performance Interconnects, 2010, pp. 104‒108.

Schultz, M.

Y. Saad and M. Schultz, "Topological properties of hypercubes," IEEE Trans. Comput. 37, (7), 867‒872 (1988).
[CrossRef]

Seminaro, E. J.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

Shibata, T.

S. Kamei, M. Ishii, A. Kaneko, T. Shibata, and M. Itoh, "N×N cyclic-frequency router with improved performance based on arrayed-waveguide grating," J. Lightwave Technol. 27, (18), 4097‒4104 (2009).
[CrossRef]

S. Kamei, M. Ishii, M. Itoh, T. Shibata, Y. Inoue, and T. Kitagawa, "64 × 64-channel uniform-loss and cyclic-frequency arrayed-waveguide grating router module," Electron. Lett. 39, (1), 83‒84 (2003).
[CrossRef]

Sone, Y.

T. Sakano, A. Kadohata, Y. Sone, A. Watanabe, and M. Jinno, "Multi-layer hypercube photonic network architecture for intra-datacenter network," IEICE Trans. Commun. E94-B, (4), 910‒917 (2011).
[CrossRef]

Suzuki, S.

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, "32 × 32 full-mesh (1024path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating," Electron. Lett. 36, (15), 1294‒1296 (2000).
[CrossRef]

Takahara, A.

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, "32 × 32 full-mesh (1024path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating," Electron. Lett. 36, (15), 1294‒1296 (2000).
[CrossRef]

T. Sakano, A. Tsutsui, T. Kitagawa, K. Sasayama, and A. Takahara, "Dual layer hypercube WDM network using arrayed waveguide gratings and wavelength-band multiplexers/demultiplexiers as photonic interchangers," Proc. 5th OptoElectronics and Communications Conf. 2000 (OECC2000), 2000, pp. 468‒46914A3-5.

Takahashi, H.

O. Moriwaki, K. Noguchi, T. Sakamoto, S. Kamei, and H. Takahashi, "Wavelength path reconfigurable AWG-STAR employing coprime-channel-cycle arrayed-waveguide gratings," IEEE Photon. Technol. Lett. 21, (14), 1005‒1007 (2009).
[CrossRef]

Tsutsui, A.

T. Sakano, A. Tsutsui, T. Kitagawa, K. Sasayama, and A. Takahara, "Dual layer hypercube WDM network using arrayed waveguide gratings and wavelength-band multiplexers/demultiplexiers as photonic interchangers," Proc. 5th OptoElectronics and Communications Conf. 2000 (OECC2000), 2000, pp. 468‒46914A3-5.

Vanneschi, M.

F. Petrini and M. Vanneschi, "k-ary n-trees: high performance networks for massively parallel architectures," Proc. 11th Int. Parallel Processing Symp., Apr. 1997, pp. 87‒93.

Watanabe, A.

T. Sakano, A. Kadohata, Y. Sone, A. Watanabe, and M. Jinno, "Multi-layer hypercube photonic network architecture for intra-datacenter network," IEICE Trans. Commun. E94-B, (4), 910‒917 (2011).
[CrossRef]

Xu, H.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

Electron. Lett. (2)

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, "32 × 32 full-mesh (1024path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating," Electron. Lett. 36, (15), 1294‒1296 (2000).
[CrossRef]

S. Kamei, M. Ishii, M. Itoh, T. Shibata, Y. Inoue, and T. Kitagawa, "64 × 64-channel uniform-loss and cyclic-frequency arrayed-waveguide grating router module," Electron. Lett. 39, (1), 83‒84 (2003).
[CrossRef]

IEEE Network (1)

B. Mukherjee, "WDM-based local lightwave networks. II. Multihop systems," IEEE Network 6, (4), 20‒32 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

O. Moriwaki, K. Noguchi, T. Sakamoto, S. Kamei, and H. Takahashi, "Wavelength path reconfigurable AWG-STAR employing coprime-channel-cycle arrayed-waveguide gratings," IEEE Photon. Technol. Lett. 21, (14), 1005‒1007 (2009).
[CrossRef]

IEEE Spectrum (1)

R. H. Katz, "Tech titans building boom," IEEE Spectrum 46, (2), 40‒54 (2009).
[CrossRef]

IEEE Trans. Comput. (1)

Y. Saad and M. Schultz, "Topological properties of hypercubes," IEEE Trans. Comput. 37, (7), 867‒872 (1988).
[CrossRef]

IEICE Trans. Commun. (1)

T. Sakano, A. Kadohata, Y. Sone, A. Watanabe, and M. Jinno, "Multi-layer hypercube photonic network architecture for intra-datacenter network," IEICE Trans. Commun. E94-B, (4), 910‒917 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Other (9)

F. Petrini and M. Vanneschi, "k-ary n-trees: high performance networks for massively parallel architectures," Proc. 11th Int. Parallel Processing Symp., Apr. 1997, pp. 87‒93.

E. John, F. Hudson, and L. K. John, "Hybrid tree: a scalable optoelectronic interconnection network for parallel computing," Proc. 31st Hawaii Int. Conf. on System Sciences, Vol. 7, Jan. 1998, pp. 466‒474.

"52.7. PMD to MDI optical specification for 10GBASE-E," IEEE Std. 802.3-2005, 2005, pp. 322‒324.

C. F. Lam, "Optical network technologies for datacenter networks (invited paper)," OFC/NFOEC2010, 2010, NWA3.

M. Glick, "Optical interconnects in next generation data centers: an end to end view," Proc. 16th IEEE Symp. on High Performance Interconnects, 2008, pp. 178‒181.

A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, "Optics for high-performance servers and supercomputers," OFC/NFOEC2010, 2010, OTuH1.

L. Schares, D. M. Kuchta, and A. F. Benner, "Optics in future data center networks," Proc. 2010 18th IEEE Symp. on High Performance Interconnects, 2010, pp. 104‒108.

H. Liu, C. F. Lam, and C. Johnson, "Scaling optical interconnects in datacenter networks," Proc. 2010 18th IEEE Symp. on High Performance Interconnects, 2010, pp. 113‒116.

T. Sakano, A. Tsutsui, T. Kitagawa, K. Sasayama, and A. Takahara, "Dual layer hypercube WDM network using arrayed waveguide gratings and wavelength-band multiplexers/demultiplexiers as photonic interchangers," Proc. 5th OptoElectronics and Communications Conf. 2000 (OECC2000), 2000, pp. 468‒46914A3-5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Typical physical-layer configurations of an interconnection network.

Fig. 2
Fig. 2

Physical-layer configuration of the proposed architecture. SW, switch; PE, processing element; C, interchanger.

Fig. 3
Fig. 3

Three-layer configuration in the proposed architecture.

Fig. 4
Fig. 4

Number of physical links depending on the network topology. Links are assumed to be uni-directional.

Fig. 5
Fig. 5

Configuration of a three-dimensional hypercube network.

Fig. 6
Fig. 6

(Color online) Optical implementation of the proposed network.

Fig. 7
Fig. 7

(Color online) Input/output relationship of a CF-AWG.

Fig. 8
Fig. 8

(Color online) Optical interconnection using a CF-AWG to form a three-dimensional hypercube.

Fig. 9
Fig. 9

(Color online) Optical interconnection between subcubes using a CF-AWG to form a higher-dimensional hypercube.

Fig. 10
Fig. 10

(Color online) Configuration of a PI. PI, photonic interchanger; WB-MUX/DEMUX, wavelength-band multiplexer/demultiplexer; S-AWG, AWG for intra-subnetwork interconnection; OG-AWG, outgoing AWG; and IC-AWG, incoming AWG.

Fig. 11
Fig. 11

Configuration of the whole network. The network C ( p , q ) depicts an n ( = p + q ) -dimensional hypercube, which is composed of a q-dimensional hypercube with 2 q subcubes, each of which includes a p-dimensional hypercube with 2 p network nodes.

Fig. 12
Fig. 12

(Color online) Relationship between the number of network nodes and the number of required physical links (optical fibers) to form a hypercube network.

Fig. 13
Fig. 13

(Color online) Comparison of the interconnection complexity between (a) the proposed architecture and (b) the conventional interconnection to form a seven-dimensional hypercube network with 128 nodes. In the figure, squares show the network nodes and the circles in (a) show the PI.

Fig. 14
Fig. 14

(Color online) Relationship between the number of network nodes and wavelength path utilization.

Tables (1)

Tables Icon

Table I Configuration of the Proposed Hypercube Network and Achievable Network Scale