Abstract

We analyze the system impairment due to beat noises between backreflections and the upstream signal in bidirectional single-fiber wavelength-division-multiplexing passive optical networks (WDM-PONs). The relative intensity noise (RIN), the power penalty caused by the beat noises and the optimum optical network unit (ONU) gain that minimizes this penalty are investigated. In addition to the transmission line loss (TLL), we find that these parameters are also dependent on the linewidth of the seed light, the chirp effect at the ONU and the receiver bandwidth. Different types of laser sources at the optical line terminal (OLT) and various wavelength-independent ONU configurations are intensively investigated to explore those dependencies. It is also found that the systems with remodulation configurations are more tolerant to the backreflections.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Xu, Y. J. Wen, C. Chae, Y. Wang, and C. Lu, "10 Gb/s WDM-PON upstream transmission using injection-locked Fabry–Perot laser diodes," Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2006, JThB72.
  2. P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, (19), 1181‒1182 (2001).
    [CrossRef]
  3. H. D. Kim, S. G. Kang, and C. H. Le, "A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser," IEEE Photon. Technol. Lett. 12, (8), 1067‒1069 (2000).
    [CrossRef]
  4. W. Hung, C. K. Chan, L. K. Chen, and F. Tong, "An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser," IEEE Photon. Technol. Lett. 15, (10), 1476‒1478 (2003).
    [CrossRef]
  5. W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, "Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, (11), 1476‒1478 (2005).
  6. J. H. Yu, N. Kim, and B. W. Kim, "Remodulation schemes with reflective SOA for colorless DWDM PON," J. Opt. Netw. 6, (8), 1041‒1054 (2007).
    [CrossRef]
  7. C. Arellano, K.-D. Langer, and J. Prat, "Reflections and multiple Rayleigh backscattering in WDM single-fiber loopback access networks," J. Lightwave Technol. 27, (1), 12‒18 (2009).
    [CrossRef]
  8. E. T. Lopez, J. A. Lazaro, C. Arellano, V. Polo, and J. Prat, "Optimization of Rayleigh-limited WDM-PONs with reflective ONU by MUX positioning and optimal ONU gain," IEEE Photon. Technol. Lett. 22, (2), 97‒99 (2010).
    [CrossRef]
  9. M. Fujiwara, J. I. Kani, H. Suzuki, and K. Iwatsuki, "Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks," J. Lightwave Technol. 24, (2), 740‒746 (2006).
    [CrossRef]
  10. G. Talli, D. Cotter, and P. D. Townsend, "Rayleigh backscattering impairments in access networks with centralized light source," Electron. Lett. 42, (15), 877‒878 (2006).
    [CrossRef]
  11. Y. J. Lee, K. Y. Cho, A. Murakami, A. Agata, Y. Takushima, and Y. C. Chung, "Reflection tolerance of RSOA-based WDM-PON," Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2008, OTuH5.
  12. P. J. Urban, A. M. J. Koonen, G. D. Khoe, and H. de Waardt, "Interferometric crosstalk reduction in an RSOA-based WDM passive optical network," J. Lightwave Technol. 27, (22), 4943‒4953 (2009).
    [CrossRef]
  13. L. Banchi, R. Corsini, M. Presi, F. Cavaliere, and E. Ciaramella, "Enhanced reflection tolerance in WDM-PON by chirped RZ modulation," Electron. Lett. 46, (14), 1009‒1011 (2010).
    [CrossRef]
  14. P. Wan and J. Conradi, "Impact of double Rayleigh backscatter noise on digital and analog fiber systems," J. Lightwave Technol. 14, (3), 288‒297 (1996).
    [CrossRef]
  15. H. Hu and H. Anis, "Degradation of bi-directional single fiber transmission in WDM-PON due to beat noise," J. Lightwave Technol. 26, (8), 870‒881 (2008).
    [CrossRef]
  16. R. Lang, "Injection locking properties of a semiconductor laser," IEEE J. Quantum Electron. 18, (6), 976‒983 (1982).
    [CrossRef]
  17. X. J. Meng, T. Chau, and M. C. Wu, "Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking," IEEE Trans. Microwave Theory Tech. 47, (7), 1172‒1176 (1999).
    [CrossRef]
  18. S. Y. Kim, S. B. Jun, Y. Takushima, E. S. Son, and Y. C. Chung, "Enhanced performance of RSOA-based WDM PON by using Manchester coding," J. Opt. Netw. 6, (6), 624‒630 (2007).
    [CrossRef]

2010 (2)

E. T. Lopez, J. A. Lazaro, C. Arellano, V. Polo, and J. Prat, "Optimization of Rayleigh-limited WDM-PONs with reflective ONU by MUX positioning and optimal ONU gain," IEEE Photon. Technol. Lett. 22, (2), 97‒99 (2010).
[CrossRef]

L. Banchi, R. Corsini, M. Presi, F. Cavaliere, and E. Ciaramella, "Enhanced reflection tolerance in WDM-PON by chirped RZ modulation," Electron. Lett. 46, (14), 1009‒1011 (2010).
[CrossRef]

2009 (2)

2008 (1)

2007 (2)

2006 (2)

M. Fujiwara, J. I. Kani, H. Suzuki, and K. Iwatsuki, "Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks," J. Lightwave Technol. 24, (2), 740‒746 (2006).
[CrossRef]

G. Talli, D. Cotter, and P. D. Townsend, "Rayleigh backscattering impairments in access networks with centralized light source," Electron. Lett. 42, (15), 877‒878 (2006).
[CrossRef]

2005 (1)

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, "Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, (11), 1476‒1478 (2005).

2003 (1)

W. Hung, C. K. Chan, L. K. Chen, and F. Tong, "An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser," IEEE Photon. Technol. Lett. 15, (10), 1476‒1478 (2003).
[CrossRef]

2001 (1)

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, (19), 1181‒1182 (2001).
[CrossRef]

2000 (1)

H. D. Kim, S. G. Kang, and C. H. Le, "A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser," IEEE Photon. Technol. Lett. 12, (8), 1067‒1069 (2000).
[CrossRef]

1999 (1)

X. J. Meng, T. Chau, and M. C. Wu, "Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking," IEEE Trans. Microwave Theory Tech. 47, (7), 1172‒1176 (1999).
[CrossRef]

1996 (1)

P. Wan and J. Conradi, "Impact of double Rayleigh backscatter noise on digital and analog fiber systems," J. Lightwave Technol. 14, (3), 288‒297 (1996).
[CrossRef]

1982 (1)

R. Lang, "Injection locking properties of a semiconductor laser," IEEE J. Quantum Electron. 18, (6), 976‒983 (1982).
[CrossRef]

Agata, A.

Y. J. Lee, K. Y. Cho, A. Murakami, A. Agata, Y. Takushima, and Y. C. Chung, "Reflection tolerance of RSOA-based WDM-PON," Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2008, OTuH5.

Anis, H.

Arellano, C.

E. T. Lopez, J. A. Lazaro, C. Arellano, V. Polo, and J. Prat, "Optimization of Rayleigh-limited WDM-PONs with reflective ONU by MUX positioning and optimal ONU gain," IEEE Photon. Technol. Lett. 22, (2), 97‒99 (2010).
[CrossRef]

C. Arellano, K.-D. Langer, and J. Prat, "Reflections and multiple Rayleigh backscattering in WDM single-fiber loopback access networks," J. Lightwave Technol. 27, (1), 12‒18 (2009).
[CrossRef]

Banchi, L.

L. Banchi, R. Corsini, M. Presi, F. Cavaliere, and E. Ciaramella, "Enhanced reflection tolerance in WDM-PON by chirped RZ modulation," Electron. Lett. 46, (14), 1009‒1011 (2010).
[CrossRef]

Cavaliere, F.

L. Banchi, R. Corsini, M. Presi, F. Cavaliere, and E. Ciaramella, "Enhanced reflection tolerance in WDM-PON by chirped RZ modulation," Electron. Lett. 46, (14), 1009‒1011 (2010).
[CrossRef]

Chae, C.

Z. Xu, Y. J. Wen, C. Chae, Y. Wang, and C. Lu, "10 Gb/s WDM-PON upstream transmission using injection-locked Fabry–Perot laser diodes," Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2006, JThB72.

Chan, C. K.

W. Hung, C. K. Chan, L. K. Chen, and F. Tong, "An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser," IEEE Photon. Technol. Lett. 15, (10), 1476‒1478 (2003).
[CrossRef]

Chau, T.

X. J. Meng, T. Chau, and M. C. Wu, "Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking," IEEE Trans. Microwave Theory Tech. 47, (7), 1172‒1176 (1999).
[CrossRef]

Chen, L. K.

W. Hung, C. K. Chan, L. K. Chen, and F. Tong, "An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser," IEEE Photon. Technol. Lett. 15, (10), 1476‒1478 (2003).
[CrossRef]

Cho, K. Y.

Y. J. Lee, K. Y. Cho, A. Murakami, A. Agata, Y. Takushima, and Y. C. Chung, "Reflection tolerance of RSOA-based WDM-PON," Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2008, OTuH5.

Cho, S. H.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, "Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, (11), 1476‒1478 (2005).

Chung, Y. C.

Chung, Y. C.

Y. J. Lee, K. Y. Cho, A. Murakami, A. Agata, Y. Takushima, and Y. C. Chung, "Reflection tolerance of RSOA-based WDM-PON," Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2008, OTuH5.

Ciaramella, E.

L. Banchi, R. Corsini, M. Presi, F. Cavaliere, and E. Ciaramella, "Enhanced reflection tolerance in WDM-PON by chirped RZ modulation," Electron. Lett. 46, (14), 1009‒1011 (2010).
[CrossRef]

Conradi, J.

P. Wan and J. Conradi, "Impact of double Rayleigh backscatter noise on digital and analog fiber systems," J. Lightwave Technol. 14, (3), 288‒297 (1996).
[CrossRef]

Corsini, R.

L. Banchi, R. Corsini, M. Presi, F. Cavaliere, and E. Ciaramella, "Enhanced reflection tolerance in WDM-PON by chirped RZ modulation," Electron. Lett. 46, (14), 1009‒1011 (2010).
[CrossRef]

Cotter, D.

G. Talli, D. Cotter, and P. D. Townsend, "Rayleigh backscattering impairments in access networks with centralized light source," Electron. Lett. 42, (15), 877‒878 (2006).
[CrossRef]

de Waardt, H.

Ford, C.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, (19), 1181‒1182 (2001).
[CrossRef]

Fujiwara, M.

Healey, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, (19), 1181‒1182 (2001).
[CrossRef]

Hu, H.

Hung, W.

W. Hung, C. K. Chan, L. K. Chen, and F. Tong, "An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser," IEEE Photon. Technol. Lett. 15, (10), 1476‒1478 (2003).
[CrossRef]

Iwatsuki, K.

Jeong, G.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, "Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, (11), 1476‒1478 (2005).

Johnston, L.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, (19), 1181‒1182 (2001).
[CrossRef]

Jun, S. B.

Kang, S. G.

H. D. Kim, S. G. Kang, and C. H. Le, "A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser," IEEE Photon. Technol. Lett. 12, (8), 1067‒1069 (2000).
[CrossRef]

Kani, J. I.

Khoe, G. D.

Kim, B. W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, "Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, (11), 1476‒1478 (2005).

Kim, B. W.

Kim, C.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, "Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, (11), 1476‒1478 (2005).

Kim, H. D.

H. D. Kim, S. G. Kang, and C. H. Le, "A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser," IEEE Photon. Technol. Lett. 12, (8), 1067‒1069 (2000).
[CrossRef]

Kim, N.

Kim, S. Y.

Koonen, A. M. J.

Lang, R.

R. Lang, "Injection locking properties of a semiconductor laser," IEEE J. Quantum Electron. 18, (6), 976‒983 (1982).
[CrossRef]

Langer, K.-D.

Lazaro, J. A.

E. T. Lopez, J. A. Lazaro, C. Arellano, V. Polo, and J. Prat, "Optimization of Rayleigh-limited WDM-PONs with reflective ONU by MUX positioning and optimal ONU gain," IEEE Photon. Technol. Lett. 22, (2), 97‒99 (2010).
[CrossRef]

Le, C. H.

H. D. Kim, S. G. Kang, and C. H. Le, "A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser," IEEE Photon. Technol. Lett. 12, (8), 1067‒1069 (2000).
[CrossRef]

Lealman, I.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, (19), 1181‒1182 (2001).
[CrossRef]

Lee, J.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, "Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, (11), 1476‒1478 (2005).

Lee, W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, "Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, (11), 1476‒1478 (2005).

Lee, Y. J.

Y. J. Lee, K. Y. Cho, A. Murakami, A. Agata, Y. Takushima, and Y. C. Chung, "Reflection tolerance of RSOA-based WDM-PON," Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2008, OTuH5.

Lopez, E. T.

E. T. Lopez, J. A. Lazaro, C. Arellano, V. Polo, and J. Prat, "Optimization of Rayleigh-limited WDM-PONs with reflective ONU by MUX positioning and optimal ONU gain," IEEE Photon. Technol. Lett. 22, (2), 97‒99 (2010).
[CrossRef]

Lu, C.

Z. Xu, Y. J. Wen, C. Chae, Y. Wang, and C. Lu, "10 Gb/s WDM-PON upstream transmission using injection-locked Fabry–Perot laser diodes," Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2006, JThB72.

Meng, X. J.

X. J. Meng, T. Chau, and M. C. Wu, "Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking," IEEE Trans. Microwave Theory Tech. 47, (7), 1172‒1176 (1999).
[CrossRef]

Moore, R.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, (19), 1181‒1182 (2001).
[CrossRef]

Murakami, A.

Y. J. Lee, K. Y. Cho, A. Murakami, A. Agata, Y. Takushima, and Y. C. Chung, "Reflection tolerance of RSOA-based WDM-PON," Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2008, OTuH5.

Park, M. Y.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, "Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, (11), 1476‒1478 (2005).

Perrin, S.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, (19), 1181‒1182 (2001).
[CrossRef]

Polo, V.

E. T. Lopez, J. A. Lazaro, C. Arellano, V. Polo, and J. Prat, "Optimization of Rayleigh-limited WDM-PONs with reflective ONU by MUX positioning and optimal ONU gain," IEEE Photon. Technol. Lett. 22, (2), 97‒99 (2010).
[CrossRef]

Prat, J.

E. T. Lopez, J. A. Lazaro, C. Arellano, V. Polo, and J. Prat, "Optimization of Rayleigh-limited WDM-PONs with reflective ONU by MUX positioning and optimal ONU gain," IEEE Photon. Technol. Lett. 22, (2), 97‒99 (2010).
[CrossRef]

C. Arellano, K.-D. Langer, and J. Prat, "Reflections and multiple Rayleigh backscattering in WDM single-fiber loopback access networks," J. Lightwave Technol. 27, (1), 12‒18 (2009).
[CrossRef]

Presi, M.

L. Banchi, R. Corsini, M. Presi, F. Cavaliere, and E. Ciaramella, "Enhanced reflection tolerance in WDM-PON by chirped RZ modulation," Electron. Lett. 46, (14), 1009‒1011 (2010).
[CrossRef]

Rivers, L.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, (19), 1181‒1182 (2001).
[CrossRef]

Son, E. S.

Suzuki, H.

Takushima, Y.

S. Y. Kim, S. B. Jun, Y. Takushima, E. S. Son, and Y. C. Chung, "Enhanced performance of RSOA-based WDM PON by using Manchester coding," J. Opt. Netw. 6, (6), 624‒630 (2007).
[CrossRef]

Y. J. Lee, K. Y. Cho, A. Murakami, A. Agata, Y. Takushima, and Y. C. Chung, "Reflection tolerance of RSOA-based WDM-PON," Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2008, OTuH5.

Talli, G.

G. Talli, D. Cotter, and P. D. Townsend, "Rayleigh backscattering impairments in access networks with centralized light source," Electron. Lett. 42, (15), 877‒878 (2006).
[CrossRef]

Tong, F.

W. Hung, C. K. Chan, L. K. Chen, and F. Tong, "An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser," IEEE Photon. Technol. Lett. 15, (10), 1476‒1478 (2003).
[CrossRef]

Townley, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, (19), 1181‒1182 (2001).
[CrossRef]

Townsend, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, (19), 1181‒1182 (2001).
[CrossRef]

Townsend, P. D.

G. Talli, D. Cotter, and P. D. Townsend, "Rayleigh backscattering impairments in access networks with centralized light source," Electron. Lett. 42, (15), 877‒878 (2006).
[CrossRef]

Urban, P. J.

Wan, P.

P. Wan and J. Conradi, "Impact of double Rayleigh backscatter noise on digital and analog fiber systems," J. Lightwave Technol. 14, (3), 288‒297 (1996).
[CrossRef]

Wang, Y.

Z. Xu, Y. J. Wen, C. Chae, Y. Wang, and C. Lu, "10 Gb/s WDM-PON upstream transmission using injection-locked Fabry–Perot laser diodes," Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2006, JThB72.

Wen, Y. J.

Z. Xu, Y. J. Wen, C. Chae, Y. Wang, and C. Lu, "10 Gb/s WDM-PON upstream transmission using injection-locked Fabry–Perot laser diodes," Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2006, JThB72.

Wu, M. C.

X. J. Meng, T. Chau, and M. C. Wu, "Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking," IEEE Trans. Microwave Theory Tech. 47, (7), 1172‒1176 (1999).
[CrossRef]

Xu, Z.

Z. Xu, Y. J. Wen, C. Chae, Y. Wang, and C. Lu, "10 Gb/s WDM-PON upstream transmission using injection-locked Fabry–Perot laser diodes," Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2006, JThB72.

Yu, J. H.

Electron. Lett. (3)

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, (19), 1181‒1182 (2001).
[CrossRef]

G. Talli, D. Cotter, and P. D. Townsend, "Rayleigh backscattering impairments in access networks with centralized light source," Electron. Lett. 42, (15), 877‒878 (2006).
[CrossRef]

L. Banchi, R. Corsini, M. Presi, F. Cavaliere, and E. Ciaramella, "Enhanced reflection tolerance in WDM-PON by chirped RZ modulation," Electron. Lett. 46, (14), 1009‒1011 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Lang, "Injection locking properties of a semiconductor laser," IEEE J. Quantum Electron. 18, (6), 976‒983 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

H. D. Kim, S. G. Kang, and C. H. Le, "A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser," IEEE Photon. Technol. Lett. 12, (8), 1067‒1069 (2000).
[CrossRef]

W. Hung, C. K. Chan, L. K. Chen, and F. Tong, "An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser," IEEE Photon. Technol. Lett. 15, (10), 1476‒1478 (2003).
[CrossRef]

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, "Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, (11), 1476‒1478 (2005).

E. T. Lopez, J. A. Lazaro, C. Arellano, V. Polo, and J. Prat, "Optimization of Rayleigh-limited WDM-PONs with reflective ONU by MUX positioning and optimal ONU gain," IEEE Photon. Technol. Lett. 22, (2), 97‒99 (2010).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

X. J. Meng, T. Chau, and M. C. Wu, "Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking," IEEE Trans. Microwave Theory Tech. 47, (7), 1172‒1176 (1999).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Netw. (2)

Other (2)

Y. J. Lee, K. Y. Cho, A. Murakami, A. Agata, Y. Takushima, and Y. C. Chung, "Reflection tolerance of RSOA-based WDM-PON," Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2008, OTuH5.

Z. Xu, Y. J. Wen, C. Chae, Y. Wang, and C. Lu, "10 Gb/s WDM-PON upstream transmission using injection-locked Fabry–Perot laser diodes," Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2006, JThB72.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(Color online) Backreflections I and II in a bidirectional single-fiber WDM-PON system.

Fig. 2
Fig. 2

(Color online) Schematic of the experimental setup.

Fig. 3
Fig. 3

(Color online) Spectrum of total RIN at the mark level for three cases: DFB-LD, ASE and MW-LS injection.

Fig. 4
Fig. 4

(Color online) Power penalty as a function of the ONU gain for different injection sources at the OLT: (a) all, (b) ASE.

Fig. 5
Fig. 5

(Color online) Power penalty versus ONU gain at various ORLs.

Fig. 6
Fig. 6

(Color online) Power penalty as a function of the ONU gain for different receiver bandwidths at the OLT.

Fig. 7
Fig. 7

(Color online) FP-LD spectra after injection: (a) −3 dBm injected power, (b) 0 dBm injected power.

Fig. 8
Fig. 8

(Color online) Power penalty versus ONU gain for −3 dBm and 0 dBm injection powers to the FP-LD.

Fig. 9
Fig. 9

(Color online) Power penalty as a function of ONU gain for identical OLT and different ONUs.

Fig. 10
Fig. 10

(Color online) Power penalty as a function of the ONU gain for different TLLs.

Fig. 11
Fig. 11

(Color online) Power penalty versus ONU gain for −3 dBm and 0 dBm injection powers to the FP-LD.

Fig. 12
Fig. 12

(Color online) Measured eye diagrams at different ONU gains: (a) G = 5 dB, (b) G = 9 dB, (c) G = 14 dB.

Fig. 13
Fig. 13

(Color online) Power penalty as a function of ONU gain for identical OLT and different ONUs.

Fig. 14
Fig. 14

(Color online) Power penalty comparison between CW and modulated signal injection.

Tables (1)

Tables Icon

Table I Linewidth Measurement Results

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ = 10 log 10 ( 1 Q 2 r 2 ( f b w ) ) ,
G ( d B ) = TLL + 1 . 5 + 5 log 10 0 f b w Δ ν d_avg Δ ν d_avg 2 + ( f Δ ν d 0 ) 2 + Δ ν d_avg Δ ν d_avg 2 + ( f + Δ ν d 0 ) 2 d f 0 f b w Δ ν u_avg Δ ν u_avg 2 + ( f Δ ν u 0 ) 2 + Δ ν u_avg Δ ν u_avg 2 + ( f + Δ ν u 0 ) 2 d f ,