Abstract

An optical code-labeled router that performs packet forwarding through optical code label swapping (OCLS) based on code division multiplexing technology is proposed. It can enhance the processing speed of packets that can adapt to the growth of data and the aggregation of data service. The throughput of the router increases obviously since the optical code division multiplexing (OCDM) paths on the same wavelength can be processed in parallel. Moreover, it is attractive for its traffic control, bandwidth efficiency, protocol transparency, channel granularity, and so on.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bannister, J. Touch, A. Willner, “How many wavelengths do we really need? A study of the performance limits of packets over wavelengths,” Opt. Networks Mag., vol. 1, no. 2, pp. 17–28, Apr. 2000.
  2. D. J. Blumenthal, G. Rossi, T. E. Dimmick, “All-optical label swapping networks and technologies,” J. Lightwave Technol., vol. 18, no. 12, pp. 2058–2074, Apr. 2000.
    [CrossRef]
  3. S. Huang, K. Kitayama, “Variable-bandwidth optical paths: comparison between optical code-labeled path and OCDM path,” J. Lightwave Technol., vol. 24, no. 10, pp. 3563–3573, Oct. 2006.
    [CrossRef]
  4. D. J. Benhaddou, A. Al-Fuqaha, G. Chaudhury, “New multiprotocol WDM/CDMA-based optical switch architecture,” in Proc. of the 34th Annu. Simulation Symp., Oct. 2001, pp. 285–291.
  5. K. Kitayama, N. Wada, H. Sotobayashi, “Architectural considerations of photonic IP router based upon optical code correlation,” J. Lightwave Technol., vol. 18, pp. 1834–1844, Dec. 2000.
    [CrossRef]
  6. D.-Z. Hsu, “A novel photonic label switching based on optical code division multiplexing,” in 10th Int. Conf. on Telecommunications, vol. 1, Mar. 2003, pp. 634–640.
  7. M.-C. Oh, M.-H. Lee, H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photon. Technol. Lett., vol. 11, no. 9, pp. 1144–1146, Sept. 1999.
    [CrossRef]
  8. I. Saeki, S. Nishi, K. Murakami, “All-optical code division multiplexing switching network based on self-routing principle,” IEICE Trans. Commun., vol. E82-B, no. 2, pp. 239–245, Feb. 1999.
  9. A. Teixeira, T. Silveira, A. Ferreira, R. Nogueira, P. Andre, M. Lima, P. Monteiro, J. da Rocha, “All optical router based on OCDMA codes and SOA based devices,” in Proc. of 2005 7th Int. Conf. on IEEE Transparent Optical Networks, vol. 1, Sept. 2005, pp. 183–188.

2006

2000

1999

M.-C. Oh, M.-H. Lee, H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photon. Technol. Lett., vol. 11, no. 9, pp. 1144–1146, Sept. 1999.
[CrossRef]

I. Saeki, S. Nishi, K. Murakami, “All-optical code division multiplexing switching network based on self-routing principle,” IEICE Trans. Commun., vol. E82-B, no. 2, pp. 239–245, Feb. 1999.

Al-Fuqaha, A.

D. J. Benhaddou, A. Al-Fuqaha, G. Chaudhury, “New multiprotocol WDM/CDMA-based optical switch architecture,” in Proc. of the 34th Annu. Simulation Symp., Oct. 2001, pp. 285–291.

Andre, P.

A. Teixeira, T. Silveira, A. Ferreira, R. Nogueira, P. Andre, M. Lima, P. Monteiro, J. da Rocha, “All optical router based on OCDMA codes and SOA based devices,” in Proc. of 2005 7th Int. Conf. on IEEE Transparent Optical Networks, vol. 1, Sept. 2005, pp. 183–188.

Bannister, J.

J. Bannister, J. Touch, A. Willner, “How many wavelengths do we really need? A study of the performance limits of packets over wavelengths,” Opt. Networks Mag., vol. 1, no. 2, pp. 17–28, Apr. 2000.

Benhaddou, D. J.

D. J. Benhaddou, A. Al-Fuqaha, G. Chaudhury, “New multiprotocol WDM/CDMA-based optical switch architecture,” in Proc. of the 34th Annu. Simulation Symp., Oct. 2001, pp. 285–291.

Blumenthal, D. J.

Chaudhury, G.

D. J. Benhaddou, A. Al-Fuqaha, G. Chaudhury, “New multiprotocol WDM/CDMA-based optical switch architecture,” in Proc. of the 34th Annu. Simulation Symp., Oct. 2001, pp. 285–291.

da Rocha, J.

A. Teixeira, T. Silveira, A. Ferreira, R. Nogueira, P. Andre, M. Lima, P. Monteiro, J. da Rocha, “All optical router based on OCDMA codes and SOA based devices,” in Proc. of 2005 7th Int. Conf. on IEEE Transparent Optical Networks, vol. 1, Sept. 2005, pp. 183–188.

Dimmick, T. E.

Ferreira, A.

A. Teixeira, T. Silveira, A. Ferreira, R. Nogueira, P. Andre, M. Lima, P. Monteiro, J. da Rocha, “All optical router based on OCDMA codes and SOA based devices,” in Proc. of 2005 7th Int. Conf. on IEEE Transparent Optical Networks, vol. 1, Sept. 2005, pp. 183–188.

Hsu, D.-Z.

D.-Z. Hsu, “A novel photonic label switching based on optical code division multiplexing,” in 10th Int. Conf. on Telecommunications, vol. 1, Mar. 2003, pp. 634–640.

Huang, S.

Kitayama, K.

Lee, H.-J.

M.-C. Oh, M.-H. Lee, H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photon. Technol. Lett., vol. 11, no. 9, pp. 1144–1146, Sept. 1999.
[CrossRef]

Lee, M.-H.

M.-C. Oh, M.-H. Lee, H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photon. Technol. Lett., vol. 11, no. 9, pp. 1144–1146, Sept. 1999.
[CrossRef]

Lima, M.

A. Teixeira, T. Silveira, A. Ferreira, R. Nogueira, P. Andre, M. Lima, P. Monteiro, J. da Rocha, “All optical router based on OCDMA codes and SOA based devices,” in Proc. of 2005 7th Int. Conf. on IEEE Transparent Optical Networks, vol. 1, Sept. 2005, pp. 183–188.

Monteiro, P.

A. Teixeira, T. Silveira, A. Ferreira, R. Nogueira, P. Andre, M. Lima, P. Monteiro, J. da Rocha, “All optical router based on OCDMA codes and SOA based devices,” in Proc. of 2005 7th Int. Conf. on IEEE Transparent Optical Networks, vol. 1, Sept. 2005, pp. 183–188.

Murakami, K.

I. Saeki, S. Nishi, K. Murakami, “All-optical code division multiplexing switching network based on self-routing principle,” IEICE Trans. Commun., vol. E82-B, no. 2, pp. 239–245, Feb. 1999.

Nishi, S.

I. Saeki, S. Nishi, K. Murakami, “All-optical code division multiplexing switching network based on self-routing principle,” IEICE Trans. Commun., vol. E82-B, no. 2, pp. 239–245, Feb. 1999.

Nogueira, R.

A. Teixeira, T. Silveira, A. Ferreira, R. Nogueira, P. Andre, M. Lima, P. Monteiro, J. da Rocha, “All optical router based on OCDMA codes and SOA based devices,” in Proc. of 2005 7th Int. Conf. on IEEE Transparent Optical Networks, vol. 1, Sept. 2005, pp. 183–188.

Oh, M.-C.

M.-C. Oh, M.-H. Lee, H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photon. Technol. Lett., vol. 11, no. 9, pp. 1144–1146, Sept. 1999.
[CrossRef]

Rossi, G.

Saeki, I.

I. Saeki, S. Nishi, K. Murakami, “All-optical code division multiplexing switching network based on self-routing principle,” IEICE Trans. Commun., vol. E82-B, no. 2, pp. 239–245, Feb. 1999.

Silveira, T.

A. Teixeira, T. Silveira, A. Ferreira, R. Nogueira, P. Andre, M. Lima, P. Monteiro, J. da Rocha, “All optical router based on OCDMA codes and SOA based devices,” in Proc. of 2005 7th Int. Conf. on IEEE Transparent Optical Networks, vol. 1, Sept. 2005, pp. 183–188.

Sotobayashi, H.

Teixeira, A.

A. Teixeira, T. Silveira, A. Ferreira, R. Nogueira, P. Andre, M. Lima, P. Monteiro, J. da Rocha, “All optical router based on OCDMA codes and SOA based devices,” in Proc. of 2005 7th Int. Conf. on IEEE Transparent Optical Networks, vol. 1, Sept. 2005, pp. 183–188.

Touch, J.

J. Bannister, J. Touch, A. Willner, “How many wavelengths do we really need? A study of the performance limits of packets over wavelengths,” Opt. Networks Mag., vol. 1, no. 2, pp. 17–28, Apr. 2000.

Wada, N.

Willner, A.

J. Bannister, J. Touch, A. Willner, “How many wavelengths do we really need? A study of the performance limits of packets over wavelengths,” Opt. Networks Mag., vol. 1, no. 2, pp. 17–28, Apr. 2000.

IEEE Photon. Technol. Lett.

M.-C. Oh, M.-H. Lee, H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photon. Technol. Lett., vol. 11, no. 9, pp. 1144–1146, Sept. 1999.
[CrossRef]

IEICE Trans. Commun.

I. Saeki, S. Nishi, K. Murakami, “All-optical code division multiplexing switching network based on self-routing principle,” IEICE Trans. Commun., vol. E82-B, no. 2, pp. 239–245, Feb. 1999.

J. Lightwave Technol.

Opt. Networks Mag.

J. Bannister, J. Touch, A. Willner, “How many wavelengths do we really need? A study of the performance limits of packets over wavelengths,” Opt. Networks Mag., vol. 1, no. 2, pp. 17–28, Apr. 2000.

Other

D. J. Benhaddou, A. Al-Fuqaha, G. Chaudhury, “New multiprotocol WDM/CDMA-based optical switch architecture,” in Proc. of the 34th Annu. Simulation Symp., Oct. 2001, pp. 285–291.

D.-Z. Hsu, “A novel photonic label switching based on optical code division multiplexing,” in 10th Int. Conf. on Telecommunications, vol. 1, Mar. 2003, pp. 634–640.

A. Teixeira, T. Silveira, A. Ferreira, R. Nogueira, P. Andre, M. Lima, P. Monteiro, J. da Rocha, “All optical router based on OCDMA codes and SOA based devices,” in Proc. of 2005 7th Int. Conf. on IEEE Transparent Optical Networks, vol. 1, Sept. 2005, pp. 183–188.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical code label swapping in an optical network.

Fig. 2
Fig. 2

Architecture of the optical code-labeled router based on OCDM.

Fig. 3
Fig. 3

Architecture of OCDM switching with 2 × 2 × 2 paths.

Fig. 4
Fig. 4

Architecture of the optical code label processing module.

Fig. 5
Fig. 5

Operation principle of autocorrelation and threshold detection.

Fig. 6
Fig. 6

PLP versus source utilization.

Fig. 7
Fig. 7

PLP versus the number of active users.

Fig. 8
Fig. 8

Throughput versus the number of active users.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

SNR = 1 σ 2 ( n ) × ( k 1 ) .
BER ( n , k ) = pr ( b = 0 ) pr ( Z > Th | b = 0 ) + pr ( b = 1 ) pr ( Z < Th | b = 1 ) .
BER ( n , k ) = 1 2 pr ( Z > Th | b = 0 ) = 1 2 erfc ( Th 2 SNR ( n , k ) ) ,
erfc ( x ) = 2 π x e t 2 d t .
PLP ( n , k ) = 1 [ 1 BER ( n , k ) ] L .
B ( k , m ) = c m k ρ k ( 1 ρ ) m k .
PLP ( n , m ) = k = 1 m B ( k , m ) PLP ( n , k ) .
c α b ( 1 ρ ) R peak B 2 α b ( 1 ρ ) + [ α b ( 1 ρ ) R peak B ] 2 + 4 B α b ρ ( 1 ρ ) R peak 2 α b ( 1 ρ ) ,
M = C wavelength c .
T correlation = ( N c 1 ) Δ τ ,
T p = L ( N c 1 ) Δ τ + ( L 1 ) τ 0 .
R p = m T p = m L ( N c 1 ) Δ τ + ( L 1 ) τ 0 .