Abstract

We design virtual topologies in wavelength division multiplexing (WDM) networks to minimize the network diameter and average hop count, where network diameter refers to the number of hops of the longest shortest path and average hop count is the average number of hops among the shortest paths of all node pairs. Such objectives are important to WDM networks, especially to those with statistical multiplexing mechanisms such as optical burst switching (OBS) and optical packet switching (OPS). By minimizing the network diameter and average hop count, optical packets or bursts will experience less contention loss and smaller delay due to a reduced number of intermediate nodes en route. In this paper, we first formulate an integer linear program (ILP) for optimal design of virtual topologies with minimized network diameter and average hop count. Then, a novel heuristic least weight minimum diameter (LWMD) is proposed to find good solutions efficiently. Based on the virtual topology obtained, we further design two traffic accommodation schemes to provision wavelengths under a given traffic matrix, with guaranteed network diameter and minimized network resource consumption.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ensuring Resilience in Optical WDM Networks With Nature-Inspired Heuristics

Fatma Corut Ergin, Elif Kaldırım, Ayşegül Yayımlı, and A. Şima Uyar
J. Opt. Commun. Netw. 2(8) 642-652 (2010)

Full Featured and Lightweight Control for Optical Packet Metro Networks [Invited]

Lida Sadeghioon, Annie Gravey, Bogdan Uscumlic, Philippe Gravey, and Michel Morvan
J. Opt. Commun. Netw. 7(2) A235-A248 (2015)

Reservation information sharing enhancement for deflection routing in OBS network

onghui Gao, Hanyi Zhang, and Zhiyu Zhou
Opt. Express 13(5) 1702-1709 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription